
Swept Volumes

M. Peternell1, H. Pottmann1, T. Steiner1, H. Zhao2

1Vienna Univ. of Technology, {peternell, pottmann, tibor}@geometrie.tuwien.ac.at
2 University of California, Irvine, zhao@math.uci.edu.

Abstract

Given a solid S ⊂ R3 with a piecewise smooth boundary, we compute an approximation of the
boundary surface of the volume which is swept by S under a smooth one-parameter motion. Using
knowledge from kinematical and elementary differential geometry, the algorithm computes a set of
points plus surface normals from the envelope surface. A study of the evolution speed of the so
called characteristic set along the envelope is used to achieve a prescribed sampling density. With
a marching algorithm in a grid, the part of the envelope which lies on the boundary of the swept
volume is extracted. The final boundary representation of the swept volume is either a triangle mesh,
a B-spline surface or a point-set surface.
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1 Introduction

The swept volume of a solid S is formed by all points in space which are covered by positions of S during
a motion. The most frequently considered motions are those which depend smoothly on a parameter t to
be thought of as time. The arising swept volumes have a variety of applications including NC machining
verification, geometric modeling, robot workspace analysis, collision detection, motion planning, etc., see
e.g. [1, 11].

1.1 Previous work

The theoretical foundation of swept volumes lies in the computation of envelope surfaces in kinematical
geometry. This is classical knowledge and can be found in a number of textbooks [5, 16].

Probably the first contribution on envelopes dealing with computational aspects is the PhD thesis
of J. Hoschek [9]. There is a number of papers which provide explicit and even rational parameteriza-
tions of envelope surfaces (see the survey [13]). In general, however, one can only achieve a numerical
approximation of the boundary surface of a swept volume.

Although there is already a pretty large number of contributions on this topic (for a survey, see [1, 4]),
the problem cannot be considered as sufficiently well solved and thus swept volumes are hardly included
in today’s CAD systems.

From the most recent work we point to a paper by Kim et al. [11] which addresses swept volumes of
moving polyhedra and exploits the fact that in this case we have only ruled or developable surfaces on
the boundary of the swept volume.

1.2 Contribution of the article

Our paper does not make any special assumption on the moving solid S apart from the natural requirement
that its boundary shall be a piecewise smooth surface Φ. As many other papers in the past, we use
envelope theory to compute the so-called characteristic sets at a discrete number of time instances. This
immediately gives a cloud of points plus surface normals in a superset Γ of the boundary surface Ψ of
the swept volume. As a new component in our algorithm we use a formula for the evolution speed of the
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characteristic curve to get a good time step selection which yields a nice data point distribution on Ψ
and Γ.

A kind of marching algorithm on an underlying grid is used to trim away the part of the envelope
surface Γ which lies in the interior of the swept volume. Special care is taken to correctly resolve edges
at the boundary of the swept volume. At this stage we have a sufficiently dense set of points plus surface
normals — a set of surfels in Graphics terminology — at the boundary surface Ψ of the swept volume.
Now, any method that can interpolate or approximate such data is appropriate to get the final boundary
representation. We present solutions with a triangle mesh, a point-set surface and B-spline surfaces.

The novelty of our method lies in the combination of classical results of kinematical and differential
geometry with recent developments in geometry processing such as fast marching, point-set surfaces
[2, 3, 12] and B-spline approximation using squared distance minimization [14].

2 Geometric background

2.1 The velocity vector field

Kinematical geometry provides the necessary geometric background for our problem. Thus we briefly
review a few basics and refer to the literature for more information [5, 16].

Consider a rigid body moving in Euclidean three-space R3. We think of two copies of R3: One copy
associated with the moving body and called moving space or moving system Σ, and one copy called the
fixed space or fixed system Σ0. We use Cartesian coordinates and denote points of the moving system Σ
by x, y, . . . , and points of the fixed system by x0, y0, and so on.

A one-parameter motion Σ/Σ0 is a smooth family of Euclidean congruence transformations depending
on a parameter t which can be thought of as time. A point x of Σ is, at time t, mapped to the point

x0(t) = A(t) · x + a0(t) (1)

of Σ0. Each point x of Σ has a path curve or trajectory x0(t) in Σ0. The trajectory of the origin is a0(t).
A(t) describes the rotational part of the motion; we have AT = A−1 and det(A) = 1.

The first derivative ẋ0(t) = Ȧ(t) · x + ȧ0(t) of the path of x is its velocity vector at time t. We
write v(x0) for the vector field of vectors ẋ0(t) attached to the points x0(t). The same velocity field,
represented in the moving system, is v(x) = A(t)T · ẋ0(t) = A(t)T ·[Ȧ(t)·x+ ȧ0(t)]. Since A is orthogonal,
AT · Ȧ is skew symmetric. This gives immediately the well-known fact that the vector field v(x) is linear
and has the special form

v(x) = c + c× x, where (2)

Ȧ(t) ·AT (t) =

 0 −c3 c2

c3 0 −c1

−c2 c1 0

 , c =

 c1

c2

c3

 , c = AT · ȧ0(t).

The vector c is called vector of angular velocity.
Up to the first differentiation order, any one-parameter motion agrees locally with a uniform motion,

whose velocity vector field is constant over time. Apart from the trivial uniform motion, where nothing
moves at all and all velocities are zero, there are the following three cases: Uniform translations have
c = o, but c 6= o, i.e., all velocity vectors equal c. Uniform rotations with nonzero angular velocity
about a fixed axis are given by c · c = 0, but c 6= o. Uniform helical motions are the superposition of
a uniform rotation and a uniform translation parallel to the rotation’s axis. They are characterized by
c · c 6= 0.
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2.2 Envelope condition and characteristic curve

For our problem, we have to consider the solid S in the moving system and its boundary surface Φ. Let
us first assume that Φ is smooth. Then, at any time instant t, we consider those points of Φ, whose
velocity vector is tangent to Φ. In general, the set of these so-called characteristic points is a curve, called
characteristic curve C(t). Note that C(t) may be composed of several connected components. If n(x) is
a normal vector field of Φ, the curve C(t) is the zero level set of the function

G(x) := n(x) · v(x) = n(x) · (c + c× x), (3)

which is defined on Φ. For a line geometric interpretation of the envelope condition G(x) = 0 see [16].
The set of all positions C0(t) of characteristic curves in the fixed system is the complete envelope surface
Γ of Φ under the given motion. However, only part of the surface Γ lies on the boundary of the swept
volume. Our algorithm will at first compute Γ via the characteristic curves and later remove that part
of Γ which is inside the swept volume.

Remark 1. At a time instant with c = 0 (instantaneous translation), the characteristic curve is the
silhouette of Φ for parallel projection in direction c. In general, however, this is not true and the
rotational part needs to be considered. We warn the reader that there is a number of papers in the
literature, which consider any time instant as translational in the context of envelope computations.

Figure 1: Left: Velocity vectors in points of the characteristic curve of an object. Right: Three
positions of the moving object.

Let us briefly discuss the case where Φ is given as a level set F (x) = 0. Since surface normals are
given by the gradient field ∇F of F , the characteristic curve also satisfies

G(x) = ∇F (x) · (c + c× x) = 0.

Note that the surface G(x) = 0 simultaneously contains the characteristic curves of all level sets F (x) =
k = const of F .

The positions of the characteristic curves in the fixed system can also be found as follows: Φ’s position
in Σ0 at time t is F 0(x0) := F (AT · (x0 − a0)) = 0. From general envelope theory, the derivative of
this equation with respect to t is known to contain the characteristic curve. This derivative surface is
precisely the position of the surface G(x) = 0 in Σ0.

We also get some insight into the case of a moving algebraic surface F (x) = 0 of degree n. Its
positions F 0(x0) = 0 in Σ0 are represented by a polynomial F 0(x0) with coefficients depending on t.
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The derivative with respect to t is a polynomial of degree ≤ n and thus C0(t) is by Bezout’s theorem an
algebraic curve of degree ≤ n2. This explains the well-known simplicity of the cases of a moving plane
(C is a straight line), a sphere (C is a circle), a quadratic cylinder or cone (C is a rational curve of
degree ≤ 4), or a torus (C is algebraic of degree ≤ 8; as for the sphere, the degree reduction is caused
by the absolute conic). But even for simple freeform surfaces, the degree will become very high and thus
algebraic methods seem to be infeasible for our purpose.

2.3 Non-smooth boundary surface or non-smooth motions

If the boundary surface Φ of S contains sharp edges and corners, the considerations above remain correct
if we generalize the meaning of the normal vector n. In order to get a good feeling what we have to do
at these places, one may consider them smoothed by a rolling ball blend of a very small radius.

At an edge point p, there are two different outside unit normals nl, nr at either side of it. The set of
normals at p is then of the form (1 − h)λlnl + hλrnr with h ∈ [0, 1]. The corresponding unit normals
form an arc of a great circle on the unit sphere.

At a corner point p, the set of normals is even two-dimensional; it is defined by the convex cone to
the unit normals of the surface patches which meet at p.

We see that the envelope condition becomes weaker at edges or corners so that those appear more
likely as part of the characteristic curve.

If the motion is not smooth at some time instant t0, we may also consider a locally smoothed version.
The left-sided derivative at t = t0 yields a velocity field characterized by (cl, cl), and on the right side we
have (cr, cr). This yields a one-parameter family of vector fields (1− h)(cl, cl) + h(cr, cr), h ∈ [0, 1]. It
has to be considered for the computation of the characteristic set which is in general in a two-dimensional
subset of Φ. For an initial position of a non-closed motion, we define all points with G ≤ 0 as characteristic,
and for an end position all points with G ≥ 0. The entire surface Φ arises as characteristic set for an
instant with (c, c) = (0, 0).

2.4 Evolution of characteristic curves

In our algorithm we will sample the motion at discrete time instances t0, . . . , tn and compute the corre-
sponding characteristic sets C0(ti) in Σ0. In order to get a good representation of the envelope surface,
the distances between adjacent curves C0(ti) and C0(ti+1) should not become too large. In other words,
our time sampling has to respect the evolution speed of the curves C0(t). We will derive here an equation
for the speed of this evolution. This is similar to results on the evolution of apparent contours on a
surface, which have been studied extensively in Computer Vision [6].

Figure 2: Characteristic curves together with start and end position of the moving object.
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Let us first look into the moving system and consider – just for the sake of simplicity of the derivation
– a local parametrization s(u, t) of Φ in which the iso-parameter lines t = const are the characteristic
curves C(t) and u = const are orthogonal trajectories of those. We are interested in the evolution
speed, which is measured orthogonal to C(t). Thus, it is given by the vector ∂s/∂t =: st = λr (with
r := st/‖st‖). With n(u, t) as unit normal vector field of Φ, the parametrization s must satisfy condition
(3), n(u, t) · [c(t) + c(t)× s(u, t)] = 0. Differentiation of this identity with respect to t yields,

nt · (c + c× s) + n · (ċ + ċ× s + c× st) = 0. (4)

Let v denote an arc length parameter along the parameter line u = const passing through the considered
point s(u, t). Then,

nt = nv
dv

dt
= nv‖st‖ = λnv.

The variation nv of the normal in direction r is given by

nv = −ω(r). (5)

Here, ω is the Weingarten map (shape operator) [7]. We use a right handed Cartesian system r, h, n at
s(u, t) and solve (4) for the evolution speed in the moving system λ,

λ =
n · (ċ + ċ× s)

ω(r) · v(s) + c · h
. (6)

In the numerator we have the component of the acceleration of s in direction of the surface normal.
The denominator contains only first order information of the motion, namely components of the velocity
v(s) and of the angular velocity vector c; the directions h, r and ω(r) however depend on second order
surface information. Considering a point s which moves on Φ with the evolution velocity vector λr,
the corresponding velocity vector in the fixed system (but represented in the moving system) is the sum
λr + v(s). Since we are again only interested in the component orthogonal to C(t), we find for the
magnitude of the evolution speed in the fixed system

λ0 = |λ + r · v(s)|. (7)

3 Outline of the algorithm

In order to simplify the presentation, we first consider the case where we are not interested in eventually
appearing holes inside the swept volume. Even if there are holes, a number of applications is not interested
in them. How to handle holes will be outlined in section 7.

Our algorithm contains the following three basic steps, which will be explained in more detail in the
following sections.

1. At a number of time instances t0, . . . , tn, chosen with an appropriate time step control, we compute
the respective positions C0(ti) of the characteristic set in the fixed system. The characteristic set
is represented as a set of points plus surface normals. This results in a set Q.

2. Based on a marching algorithm in an underlying grid of the fixed system, we remove those points
from Q which lie in the interior of the swept volume. This yields a new point set B on the boundary
of the swept volume.

3. We compute an approximating surface to the point set B, which respects the provided surface
normals well.
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For the detailed explanation we assume that the boundary surface Φ of the moving surface is given
as a triangle mesh (with reliably estimated surface normals) or a parametric surface. We also assume
that the motion can be evaluated at any time instant. If the motion is only given at a discrete number
of positions, a motion interpolation scheme (see e.g. [10, 17]) might be required if the time steps are not
satisfying our criteria.

4 Computation of characteristic points

In order to compute the characteristic set C(ti) at a given time instant ti, we set up the velocity vector
field (c, c) in the moving system, and search for the zero level set of the function F (inner product between
velocity vector and surface normal) in equation (3). It is sufficient to compute a sequence of points plus
surface normals along C(ti). The maximum distance of adjacent points along the same component of
C(ti) shall be bounded by a prescribed value δ. Finally, the positions qi of characteristic points and
associated surface normals in the fixed system Σ0 are computed.

Of course, at discontinuities of motion or surface, we have to compute characteristic points according
to subsection 2.3.

Along a given characteristic C(ti) we estimate the maximum evolution velocity vmax in the fixed
system using equation (7). Then, a time step ∆ti := ti+1 − ti is chosen such that

vmax∆ti ≤ δ. (8)

In this way the spacing across characteristics is in general not much larger than the spacing of points
along the characteristic. If one wants to avoid second order estimates arising in (7), one can use the pairs
of corresponding points q−j ∈ C0(ti−1) and qj ∈ C0(ti) (such that qj − q−j is orthogonal to C0(ti)) to
get an estimate of vmax via vmax = (max‖qj − q−j ‖)/∆ti−1. If max‖qj − q−j ‖ exceeds δ, we can reduce
ti−1 accordingly and recompute C0(ti).

5 Selection of points on the boundary of the swept volume

The result of the previous step is a point set Q (plus surface normals) on the envelope surface Γ. Note
that we do not care about holes inside a swept volume and thus we proceed as follows to compute the
outer boundary surface of the swept volume.

The data point set Q is placed in a rectangular grid whose cell size is larger than δ. We compute the
unsigned distance function for the grid points with respect to Q. In order to trim parts of Q to obtain
the trimmed envelope Γ we perform a fast marching method similar to that described in [11] on the grid
points.

Roughly this works as follows: At the beginning all grid points are labeled as unknown and inside.
We begin the loop by taking a point surely outside of Γ and initialize an active front by storing this point
in it and label it as trial. We extract a point p from the active front and this point p is labeled as visited
and outside. We collect all its unknown neighbors q on the grid. If the distance value of q is larger than
some threshold τ , q is labeled as outside and trial and q is added to the active front. In this manner the
front propagates on the grid and this procedure is performed until the active front is empty.

The active front stops at the outer boundary of the envelope Γ. We perform a nearest neighbor search
for all those grid points close to Γ with respect to the point set Q which is actually formed by points of
the characteristic curves, see sections 2.2 and 2.4. This results in a relatively uniform sampling of Γ by a
subset B of points of the set Q. We note that also the normal vectors of Γ at points of B are available.

Self intersection of the envelope Γ are smoothed out and are treated in a separate procedure (sec-
tion 5.1).
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5.1 Handling edges and features

There are methods for the computation of intersections of point sets in the literature, see e.g. [2, 12].
We follow a different approach and additionally use a triangulation of the point set B of the trimmed
envelope Γ.

The method for detection of sharp features on Γ is motivated by the following observations:

• The envelope Γ possesses a relatively uniform sampling by the point set B.

• The distances of points of B do not vary much and thus the size of triangles and the length of their
segments is nearly constant.

According to these observations we detect sharp features by investigating distances of adjacent points
taking into account the variation of their normal vectors. Let p ∈ B and n an arbitrary point and its
(unit) normal vector. We form the surface B̂ ⊂ R6 consisting of points p̂ = (p, wn). The canonical
metric in R6 induces a metric on B̂ and this defines a feature sensitive metric on B. The value w controls
the influence of the normal vectors.

See [15] for more information concerning the feature sensitive metric.
Once having defined the feature locations on B we form connected components (on the triangulation)

and investigate the neighborhood of each connected component (with respect to the triangulation) of the
sharp features. Each connected component is replaced by a spine curve which represents the shape of
the sharp feature.

Then profile sections of the investigated neighborhoods, orthogonal to the spine curve are computed.
For typical self intersections we can recognize different sides of the neighborhood of a sharp feature.
The intersection points of the approximating lines of the profile sections are good estimates for the true
self intersection. The intersection points are sorted and smoothed by a spline curve which serves as
approximation of the sharp feature. After having inserted a regularly sampled sequence of points of each
of these spline curves into the data set B, a new triangulation is performed, see Fig. 3.

Note that there is an easy kind of sharp edges: they are (parts of) trajectories of corner points of the
moving solid and do not require the present approach.

Figure 3: Right: Global self intersection of the swept volume. Left: Triangulation and the inserted
points along the sharp edge of the detail.
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6 Approximating the boundary surface of the swept volume

6.1 Approximating triangle mesh

Since the careful handling of features labels edges, we can perform a good triangulation. The edge points
have already been assembled into polygons. So we just have to perform a triangulation of the point set
which contains these edge polygons.

6.2 B-spline approximation

Especially if the boundary surface of the swept volume has a simple topology, a recently developed B-spline
approximation scheme called squared distance minimization [14] can be used. We do not recommend to
use the full squared distance formula which also requires curvature estimates, but just the corresponding
Gauss-Newton iteration that is based on surfels. Figure 5 displays an example, where the self intersections
are smoothed.

6.3 Approximating point-set surface

The definition of the boundary of the swept volume with a set of points (surfels) allows us to apply
recent work on point-set surfaces. For rendering, we need a disk radius of the surfels; it is derived from
the sampling density δ as λδ with λ > 1/

√
3. If we did not recover edges on the boundary of the swept

volume, there are many good methods in the literature, e.g. [2, 3, 12], to represent these data as a
point-set surface (implicit surface). Since surfels are available, the use of corresponding point-set surfaces
according to Amenta and Kim [3] is recommended. In the presence of edges special care has to be taken,
as outlined e.g. in [12].

7 Extensions

Our method can be extended in various ways. We list here a only few items and point to a forthcoming
journal publication in which we will address these topics in detail.

1. In order to resolve holes inside the swept volume, one can write information into the grid in Σ0

already during the sweep through the motion. Basically, we have to mark grid cells which are at
least partially covered by a position of the moving body. One way to do this is to sample Φ (can
be coarser than the sampling used for the computation of characteristic points); this gives a set I.
At any time instant ti, we then compute all points x ∈ I with G(x) > 0 and label those cells into
which their positions fall.

2. The main ideas of the method also work for an implicit representation of the boundary surface Φ
of S. We are currently exploring an approach which derives a signed distance representation of the
swept volume boundary from a signed distance representation of Φ.

3. The present approach can be extended to swept volumes generated by motions which depend on
more than one parameter. For example, we may consider two-parameter motions. An important
special case of those, namely purely translational motions, are generating Minkowski sums, which
form the basic building block of mathematical morphology [8].
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Figure 4: Objects and their swept volume with respect to some motions

Figure 5: B-spline approximation of the swept volume. Left: B-spline approximation. Right: B-spline
approximation superimposed with the triangulated data points.
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