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Reverse engineering

GEOMETRIE

= Reverse engineering deals
Laguerre sphere geometry with the reconstruction of
Part1l a computer model from an
existing object
= Automatic detection of
special surfaces in the
reconstruction process of
the CAD model is =
important for a precise &
CAD representation =

\
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Minolta VIVID
900 optical
laser scanner
Object to be
scanned:

Data acquisition

GEOMETRIE
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= One shot of the object: 215 203 points
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Surface normal estimation
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@
O;/O

= Given: Point cloud p;,
P>, ..., Py representing
a surface
= Estimate surface normal Ol
O
© o

vectors n,, n,, ..., n,
(= tangent planes) o

= Various methods:
= Local regression plane O
= Local quadric surfaces

= Problems: Edges in data
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* Gaussian Sphere Methods

10

TU Gaussian image
WiEn of an oriented plane

GEOMETRIE

n

= Given: oriented plane
E: nx+d=0 in R3 with unit
normal vector n.

= Gaussian image of E is the
point n on the unit sphere
S2in R3.

= Gaussian pre-image of a
point n of S2 is the pencil of
parallel planes nx+d=0
with varying d.
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Recognition of special surfaces

GEOMETRIE

Algorithms are used that investigate the Gaussian
image of a triangulated data point cloud for
occurrence of special clusters:

triangulated data,
point cloud =

planar region point-like cluster

cylindrical region curve-like cluster
along great circle

Gaussian image

region of a right curve-like cluster
circular cone along small circle
region of curve-like cluster

developable surf.

=
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TU Problems of Gaussian sphere
WIEN methOds

GEOMETRIE

Restriction of tangent planes nx+d=0 to
normals n results in the following problems:

= Translated objects (e.g. parallel planes) have
the same Gaussian image

= Great circle (small circle) as Gaussian image
does not characterize a cylinder or cone of
revolution, respectively.

This loss of information can be avoided by
working in the space of planes (leads to
Laguerre geometry)
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Laguerre Geometric and
Hough Transform Methods
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2D-Hough transform

GEOMETRIE

m Lines are mapped to points of the Hough plane.
= Lines through a point appear as curve in the Hough plane.

= Points of a Line h are mapped to curves passing through a point h
in the Hough plane.

Original plane Hough plane
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2D-Blaschke cylinder
z A

= Map oriented line /ﬁ\

with distance d from

GEOMETRIE

the origin and ™ ]
directional angle ¢ I
onto a cylinder P
(Blaschke cylinder) d

= Standard Hough u

lane is the planar LT

gevelopmen’fof this X 2<~‘«L// o
cylinder
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2D-Blaschke model
WiEw of 2D-Laguerre geometry
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Lines of a pencil — ellipse; center o
tangents of oriented circle— ellipse; center (0,0,r)
Dilation by distance d—»translation by (0,0,d)
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3D Laguerre geometry

GEOMETRIE

= Given or. plane E with unit
normal vector n = (n,,n,,n3)
and distance d from the origin
E: nyx+n,y+nsz+d=

nx+d=0

= Plane E is mapped onto the
point Ef = (n,d) in R4

= 3D-Blaschke cylinder
B: U12 + UZZ + U32 =1

= Cross sections of B are copies
of the Gaussian sphere.
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TU Blaschke model
wien)  for oriented planes in 3-space

GEOMETRIE

= All oriented planes E:nx+d=0
which are tangent to a given
sphere with center p and signed
radius r satisfy

np+d=r

= Their Blaschke image points E?
lie in the hyperplane H:
piUy + poUy + psUuz + Uy —r =20

= The hyperplanar cut of B with H
is an ellipsoid on B
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TU Surface recognition with PCA
wien on the Blaschke image

GEOMETRIE

= Given data points p;, i=1,...,k in R? with
estimated tangent planes

E;:d+ax+by+cz=0 with a?+b2+c?=1.
= Blaschke image points b, = (a, b, c,d;) in R4
= Compute best fitting hyperplane

H: hy + hyu;+...+hu, = 0,

to image points b; in R4
H passes through barycenter ¢ = (Zb,)/k
= Compute new coordinate vectors q; = b;-c

H has vanishing h,=0
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Surface recognition with PCA
on the Blaschke image
of estimated tangent planes ceomeTRIE

= Minimize the homogeneous quadratic function

1 k
F(h,...,h,)=F(h)=h"-C-h,withC==Y ¢q,-q/,
(Bys-.oshy) = F(h) k;%%
under the constraint h2=1. This is an ordinary

eigenvalue problem.

= Best fitting hyperplane H, belongs to the
smallest eigenvalue 4, of C.
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TU Surface recognition with PCA
WiEn on the Blaschke image

GEOMETRIE

= Distribution of eigenvalues (EV) 1,< 1,< ;< 4,
gives important information about the type of
the surface S:
= One small EV and surface-like Blaschke image:

S = sphere
= One small EV and curve-like Blaschke image:

S = general cone or cylinder, special developable
surface

= Two small EV and curve-like Blaschke image:
S = cone or cylinder of rotation

= Three small EV: not possible
= Four small EV: S = plane
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Example: Sphere

GEOMETRIE

L A

“‘.0

-~

Q‘g&
1
17
98
3
i
L
I
i
=

\\‘\‘\“

SN

s

e

%‘E
Eﬁ"g
i
i
g
o

in
|
RNRNAY

G
A,
HEY
2

TH
i

L]
llil
I

S8

RS

Nann

Blaschke image is surface-like
and is contained in a 3-space
which is determined by one
small eigenvalue
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A, =0.00004, A, =0.18820, A, =0.35731, 4, =0.37100
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Example: General cone
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Blaschke image is curve-like and is
contained in a 3-space which is
determined by one
small eigenvalue

L
"---:_?'_.Fqﬂ'_'%r.- -~

e

Data points of general Blaschke image
quadratic cone orthogonally projected onto S2

A, =0.00433, A, = 0.01480, A, = 0.17442, A, = 0.57563
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Example: Cylinder of revolution A

IE

Example: Developable surface A TU

GEOMETRIE

= The Blaschke image of developable
surfaces are curves on B

= Use accumulator array to detect
curve like arrangement in the set of
estimated tangent planes
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Blaschke image is curve-like and is contained in a plane
which is determined by two small eigenvalues

CAD model Blaschke image A =0.00013. A, =0.00023. A3 = 0.48055, A4 =0.51496
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W'H Shape recognition in point clouds é w'.':{. Shape recognition in point clouds
= Detected edges are represented = Pre-segmentation with help of computed
by black triangles and lead to a edges of the object

= Clustering of the pre-segmented data with
help of the Blaschke model

= Computation of hyperplanes of regression to
detected clusters gives the following
eigenvalues:

pre-segmentation of the data
points

= Clustering of the pre-
segmented data with help of
the Blaschke model

= PCA for the recognized clusters
in the Blaschke image

= Four small eigenvalues indicate
that the Blaschke image of a eigenvalues: 0.00002, 0.00069, 0.10908, 0.62807.

region is a point-like cluster Cone of rotation:
= planar region eigenvalues: 0.00001, 0.00079, 0.36814, 0.55629.

Planar vertical region left:
eigenvalues: 0.00000, 0.00006, 0.00098, 0.00200.
Cylinder of rotation, front:

Ry : 0.00001,0.00018,0.00175,0.00315 Spherical part:
R> = 0.00001.0.00046,0.00112,0.00201 eigenvalues: 0.00000, 0.07370, 0.33614, 0.51365.
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Laguerre sphere geometry
Part2

29

Contents

GEOMETRIE

= The model chain of Laguerre
geometry
» Cyclographic model
» Blaschke cylinder
» Isotropic model
= Application to rational offsets

= Application to parametrization of
special surfaces
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TU 2D Laguerre geometry

WIEN

GEOMETRIE

= An oriented (or.) circle Cin 2D (R2) E

is given by
C: (x-m)3-r2=0,
and the orientation is determined
by or. normals. Points are
considered as circles of radius 0.
= An oriented line E in 2D is given by
E: epte x;+ex,=e,+ex=0. We
always assume that e?=1.

= £ and C are said to be in oriented contact iff
ept+e,m;+e,m,+r=e,+em+r=0, e’=1.
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TU| 2D Laguerre transformations
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= A Laguerre trafo T consists of two mappings
Tc:€C - C, TeE - E,
which are bijective on the sets of circles C
and lines E, respectively, and preserve or.
contact of circles and lines.

= Motions and similarities in 2D are
examples for point-preserving
Laguerre trafos.

= A dilation D maps the circle
C:(x-m)?-r’=0 onto the circle
C,:(x-m)2-(r+d)?=0. D is not
point- preserving but maps points
to circles of radius d.
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Offsets of 2D curves

A dilation D maps a curve
Yoy(t) = (yuy)(t)
onto the offset Y, which is
constructed as envelope of
the 1-par. family of circles
C(t): (x-y(t))*-d’=0,

which are centered at Y.

Remark: An oriented curve possesses oriented
one-sided offset curves. The offsets of not
oriented curves consist locally of two not
connected components, the inner part and the
outer part.
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Cyclographic model - 2D case

= An or. circle C: (x-m)2-r2=0 is mapped to
the point C¢=(m,,m,,r) in 3-space A3. R? is
embedded in A3 as plane x;=0.
= Anor. line E: e,+ex=0, e’=1, is mapped to
the plane E¢: ey+e;x;+e,x,+x5=0, e/°+e,’=1.
Oriented contact of C and E is realized by
incidence of C¢and E-.
If A%is equipped with the ‘scalar product’
(X, y)c = xt I.y, with I.=diag(1,1,-1),
A3 is the Lorenz space R3,.
Laguerre trafos T are transformed to affine
mappings in R3,, which satisfy
(X, Ye= (TX TY
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Cyclographic model - 2D case

GEOMETRIE

A one-par. family of circles
C(t): (x-m(t))?-r(t)?=0
is identified with the curve
Ce(t)=(my,my,r)(t) in R3,.
The circles C(t) possess a real
envelope, exactly if
mg-rZ = (Cf G >0.
Notation: x; :=dx/dt.

The envelope of C(t) is traced
out by the developable of
constant slope 45°, passing
through C(t)c.
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3D Laguerre geometry

GEOMETRIE

= An oriented (or.) sphere S in 3D is given by
S: (x-m)?-r’=0,
and the orientation is determined by or.
normals. Points are considered as spheres
of radius 0.

= An oriented plane E in 3D is given by
E: epte x;+ex,+esx; =e,+ex=0, e?=1,
= £ and S are said to be in oriented contact iff
ep+e,m;+e,m, +e;m; +r=e,+em+r=0, e’=1.
e denotes the unit normal vector of E.
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3D Laguerre transformations

GEOMETRIE

= A Laguerre trafo T consists of two mappings
Ts:S > S, Tz:E > E,
which are bijective on the sets of spheres S
and planes E, respectively, and preserve or.
contact of spheres and planes.

= Motions and similarities in 3D are
examples for point-preserving
Laguerre trafos.

= A dilation D maps the sphere
S:(x-m)?-r?=0 onto the sphere
Sy (x-m)?-(r+d)?=0. D is not point-
preserving but maps points to
spheres of radius d.
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Offsets of curves and surfaces

= A dilation D maps a curve

onto the offset Y, which is
the envelope of the spheres

ce

pipe surface.

onto the offset Y, which is
the envelope of the spheres

ce

A dilation D maps a surface

Yo y(t) = (Yi,Y2Y3)(t)

S(t): (x-y(t))*-d*=0,
ntered at Y. Y, is called

Y-' y(ulv) = (y1/y2/y3)(ulv)

S(u,v): (x-y(u,v))?-d?>=0,
ntered at Y.

SEOMETRIE

www.geometrie.tuwien.ac.at
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Cyclographic model - 3D case,1

= An or. sphere S: (x-m)?-r?=0 is mapped to
the point S¢=(m,,m,, ms,r) in 4-space A%. R3 is
embedded in A% as hyperplane x,=0.

= An or. plane E: e,+ex=0, e’=1, is mapped to
the 3-space E°: epy+e,x;+ex,+esx3+x,=0,
e’ +e,’+ e?=1.

= Oriented contact of S and E is realized by
incidence of S¢and E-.

= If A%is equipped with the ‘scalar product’

(X, ¥)e = xt 1.y, with I.=diag(1,1,1,-1),

A% is the Lorenz space R?,.

= Laguerre trafos T appear as affine mappings in
R?,, which satisfy (x, y). = (Tx, Ty ..
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Cyclographic model - 3D case, 2

A

is

The spheres S(t) possess a MDA,
real envelope F, exactly if ”

The envelope of a one-par. family of spheres

one-par. family of spheres
S(t): (x-m(t))?-r(t)?=0

mapped to the curve
Sc(t)=(m1/m2/ m3/ l')(t)

A
o i
ik l".t:i!’ o

e

mtz - rt = (Stcl StC)C 20-

S(t) is called canal surface.

GEOMETRIE

www.geometrie.tuwien.ac.at
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Cyclographic model - 3D case, 3

GEOMETRIE

= A two-par. family of spheres
S(u,v): (x-m(u,v))?-r(u,v)?=0
is mapped to the surface
SC(U/ v)=(m1,m2,m3,r)(u,v).

* The two-par. family
of spheres S(u,v)
possesses a real S« Sc
envelope, exactly if !

[e} SC
(am,+ um,)? - (Ar, + ur,)? =
(ASC, + uSe¢,, AS¢, + uS¢, ). =0, for all (A,u).
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TU| Cyclographic mapping and image
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= Let y: R4, — S be the mapping, which maps

points P=(p,,p,,pP3p.)R?; onto spheres Prin

R3, with center P’=(p,,p,,p3) and radius p,.

v is called cyclographic mapping.

= Let F be a curve or surface in R?;. By F7 we will
always denote the envelope of the one- or
two-par. family of spheres corresponding to F.

= F7is called cyclographic image of F.

= Aline L:a+tb in R, corresponds to a one-par.
family of spheres S(t). The family S(t) has a
real envelope F=L7, if (b, b). > 0.
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Cones and cylinders of rotation

GEOMETRIE

s F=L7is a cylinder of rot. with radius d, if
b,=0 and a, =d.

= Fis a cone of rot. in the general case.

= F is a parabolic pencil of spheres, if @
(b, b).= 0.

» Fis alineif b,=0 and a, =0.

A cone of rot. is always
determined by the
common tangent planes
of two or. spheres.

S
7050 SN
s sesgn

<

T
b

Al a¥
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Families of cones of rotation

GEOMETRIE

» Let G:a(u)+vb(u) be a ruled surface in R?,,
consisting of a one-par. family of lines L(u).

= Since any line L(u) corresponds to a cone of
revolution L(u)7, the cyclographic image G”
in R3is envelope of a one-par. family of
cones of revolution L(u).

= The axes of the cones L(u)” lie on the ruled

surface G’, the orthogonal projection of G
onto R3:x,=0.
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q Other Models of Laguerre Geometry
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TU Blaschke model - 3D case,1
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= A point S¢=(m,,m,, ms,r) is mapped to
the 3-space SP:r +m x;+...+msx;+x,=0
in 4-space R?;.
mapped to the point EP = (e,,e,,e5,8,), with
e,’+e+ e?=1.

= Image points E? of planes E are contained in
the Blaschke cylinder B:x,2+x,°+x57=1.

= Parallel planes E:e,+nx=0,F: f,+nx=0 have
image points EP,F? in a generating line of B.

= Laguerre trafos T appear as automorphic linear
(projective) transformations of B.
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Blaschke model - 3D case, 2

» The cross sections of B:x;?+x,°+x5°=1 with

hyperplanes x,=const. are copies of the unit
sphere.

B

E

= All planes E tangent to a sphere S correspond
to the points E?, lying in the intersection B1S?.
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Blaschke model - 3D case, 3

GEOMETRIE

= A non-developable surface F considered as
envelope of its 2-par. family of tangent planes
E(u,v):ey(u,v)+e(u,v)x=0,
corresponds to a surface
Eb(u/ V): (elle2/e3/e0)(u/ V)/ e(ulv)2:1
in the Blaschke cylinder B.

= A developable surface F considered as
envelope of its 1-par. family of tangent planes
E(t):e (t)+e(t)x=0,
corresponds to a curve
Eb(t) (81,82,63,80)(t), e(t)2=1/
in the Blaschke cylinder B.
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TU Isotropic model - 3D case
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Applying a stereographic projection to B with
center Z=(0,0,1,0) and image space x;=0 yields
the isotropic model I3. The 3-space I° is spanned
by the coordinate vectors x;=y;,xX>=y,,Xx,=Vy5.

A pOint Eb:(e1/e2/e3/e0)
maps to the point

E'= 1/(1-e3)(ey,€2€p)
in I3. E'is called isotropic
image of E.

The stereographic

projection and its inverse é >
‘ Y >

are rational 72
transformations.
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TU|  Models of Laguerre geometry
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Sphere Plane
R3 S:(x-m)*-r=0 E: eo+ exi+...+esx3=0,
e’=1
Point Hyperplane

E°: eptexi+...+esxz+x4=0,

CM SC=(m1,m2,m3,l’)
e’=1

Hyperplane Point E® = (e;,e5,e5,€ep),
SPrr +myx 4. Amsxs+x,=0 e’=1

BM
Paraboloid in I’ Point

M | sty HyP)(rms)+ E' = 1/(1-e3)(es,€z€0)

2y1m1 +2y2m2+r-m3:0

Parallel planes E,F have image points E,F in I3
which lie on y3-parallel lines.
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Rational Offset Surfaces
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Rational offset surfaces, 1

GEOMETRIE

= A surface F is called rational offset surface if it
possesses a parametrization f(u,v) and unit
normal vectors e(u,v) such that its offset
surfaces F;admit rational parametrizations
f(u,v)+de(u,v).

= Let E(u,v):ey(u,v)+e(u,v)x=0 be F's tangent
planes. Then e(u,v) is a rational
parametrization of F’s spherical (Gaussian)
image. The offset surfaces F, of F are

envelopes of the translated planes
E (u,v):(ey(u,v)+d)+e(u,v)x=0. §E 1 ‘
d\\ ~ Fq
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Rational offset surfaces, 2

s Let E(u,v), E,(u,v) be tangent planes of F and
F,. Their Blaschke images E? and E,f are
Eb(u/ V): (elle2/e3le0)(ulv)/ e(ulv)2=11
Edb(u/ V): (e1/e2/e3/e0+d)(ulv)/ e(u, V)2=1'
» EP and Ef are rational surfaces and Ef is a
translated version of E? in x,-direction.
= The isotropic images of F and F, are
Ei(_u/ V) = 1/(1 _e3)(elle2/eO)(u/ V)I
Ed’(U,V) = 1/(1 -e3)(e1/e2/eO+d)(u/ V)-
These are rational surfaces in I°.
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Offsets of paraboloids, 1

GEOMETRIE

From an arbitrary rational parametrization f(u,v)
it is not always clear if F is a rational offset
surface. Reparametrizations are often necessary.

Example: F:z-x?-cy?=0 is a paraboloid with
parametrization f(u,v) = (u,v, u?+cv?) and
normal vectors n(u,v)=(-2u,-2cv,1).
The unit normals of F have to be a
parametrization of part of the unit sphere S2.
Thus, n has to be a multiple of

e(s,t) = (cos(s)cos(t), sin(s)cos(t), sin(t)).
We obtain the condition

n(u,v)=41e(s,t).
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Offsets of paraboloids, 2

GEOMETRIE

With the reparametrization
u = -cos(s)cos(t)/(2 sin(t)),
v = -sin(s)cos(t)/(2c sin(t)),
we obtain the representation
pd(s/t) = f(slt) + de(slt)

This parametrization can
be _Converted into a _ inner and outer offset of
rational representation. a hyperbolic paraboloid

inner and outer offset of )
an elliptic paraboloid
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TU| Rational offset surfaces, general

Wien concept

= Let e =(e,,e,,e5) be a rational parametrization of
the unit sphere S?, with polynomials a,b,c in u
and v:
e;=2ac/N, e, = 2bc/N, e;=(a?+b?-c?)/N,
with N=(a?+b2+c?). Let h(u,v) be an arbitrary
rational function.
= The envelope F of the two-par. family of planes
E(u,v): h(u,v)+ e;x;+ e;x,+ e3x3 =0 is a
rational offset surface.
= The offsets F, of F are envelopes of the planes
E (u,v): (h+d)+ e x;+ e;x,+ esx; = 0.
» If a,b,c are polynomials in t and h(t) is a rational
function, F and F, are developable.

GEOMETRIE
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Parabolic Dupin cyclide

Example: Let a=u, b=v, c=1. Then
e;=2u/N, e, = 2v/N, e;=(u?+v2-1)/N,
with N=(u2+v2+1).

We choose h(u,v)=q(u,v)/N where g(u,v) is an
arbitrary quadratic polynomial and we obtain

E(u,v): q(u,v) + 2ux+2vy+(u?+v3-1)z = 0.
The isotropic image of the planes E(u,v) is the
paraboloid E(u,v) = (u,v,q(u,v)).

The envelope F of planes E(u,v) is
a parabolic Dupin cyclide
(alg.order 3) and all its offset
surfaces F, are of the same type.
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Cones and cylinders of rotation

= Let a(t), b(t), c(t) be linear polynomials in t.
The spherical image e=(e,, e,, €;) with
e;=2ac/N, e, = 2bc/N, e;=(a?+b?-c?)/N and
N=(a?+b?+c?) is a circle.

= We choose h(t)=q(t)/N where g(t) is an
arbitrary quadratic polynomial and we obtain

E(t): q(t) + 2acx+2bcy+(a?+b2-c?)z = 0.
The isotropic image E/(t) of E(t) is a (special)
conic, a planar section of a paraboloid of rot.
= The envelope F of planes E(t) and all offset
surfaces F, are cones or cylinders of rotation.
The direction of the generators is ex e;, the
vertex of the cone is EN E; 1N Ey.
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TU Rational offset surfaces and the
isotropic model

H

GEOMETRIE

Considering tangent planes
E(u,v):ey(u,v)+e(u,v)x=0

of a surface F. Their isotropic images are
EI(UIV) = 1/(1 -e3)(elle2/eO)(u/V)'

Theorem:

Let Y(u,v)=(y; 2 ¥3)(u,v) be an arbitrary
rational surface in 3. The corresponding family
of planes in R3 is
E(u,v): ep+ e x;+ e,x, + esx; =0, with
(80181162163)=(2y3/ 2y1/ 2y2/ y12+y22_1)/N/
and N = (y,2+y,2+1).
Its envelope is a rational offset surface.
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TU Developable rational offset
wien|  surfaces and the isotropic model

GEOMETRIE

Theorem:

Let Y(t)=(y4, ¥, y3)(t) be an arbitrary rational
curve in I3. The corresponding family of planes in
R3is
E(t): ep+ ex;+ e5x, + e3x3 =0, with
(eOIeJIeZIe3):(2y3/ 2y1/ 2y2/ y12+)/22'1)/N,
and N = (y/2+y,°+1).
Its envelope is a developable rational offset
surface.
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Rational canal surfaces

= The family S(t):(x-m(t))?-r(t)?=0 is called
rational, if m(t) is a rational curve and r(t)? is
rational function.

» If S(t) possesses a real envelope F, it is proved
that any real component of F admits a rational
parametrization.

= If additionally r(t) is rational,
Sc(t):(m1/m21m3/r)(t) iS a
rational curve in R4 and F is
a rational offset surface.

= Fis (part of the) envelope of

a rational family of cones of
revolution.
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Envelopes of quadratic cones
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s Let S;(t):(x-m;(t))?-r(t)’=0, i=1,2, be two
rational families of or. spheres.

= The common tangent planes of S; and S,
envelope a cone of rot. D. We call D(t) a
rational 1-par. family of cones of rotation.

= The isotropic images of the tangent planes of
S,(t) and S,(t) are two paraboloids of rotation
D,: 2y 3+ (y 2 +y2)(ri+my3)+2y,m; +2y,m;+r, -m;3=0,
Dy 2y 3+ (Y 2y 2 )(ry+my3)+2y 1My +2y M+, -my3=0.

= The intersection d(t) of @,(t) and @,(t) is the
isotropic image of the tangent planes of D(t).

= The curves d(t) are planar sections of
paraboloids of rot (&,, ®,) = isotropic circles.
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Envelopes of quadratic cones

= The family of curves d(t) is the isotropic image
of the envelope F of the cones D(t).

= A parametrization of d(t) is a dual
parametrization of F (as set of tangent planes).

= The orthogonal projection d’(t) of d(t) onto the
y;V--plane is a family of circles

d'(t): (v, +y?)(R+Ms)+2y,M,+2y,M,+R-M5=0,

where M=m,-m,, and R=r,-r,. The circles d’(t)
have rational centers
n(t)=1/(R+Ms) (M;,M>)
and rational squared radii
s(t) = (M#2+ MA2+M$2-R?) /(R+M;)2.
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TU Rational parametrizations of

wien|  envelopes of quadratic cones, 1

= We show that any real component of the
envelope F of a rational family of cones of rot.
D(t) admits real rational parametrizations.

= The envelope is real if s(t) is not negative.

= Then we compute a decomposition

S(t) = s,(t)*+s,(t)?,
with rational functions s,(t) and s,(t) .
= Since s(t)=s,(t)/(s,(t)?), where s (t) is a
polynomial, we only have to decompose s,(t).
= This leads to

soO=] | s0(t2)(7)=(g 4 (e, )

GEOMETRIE
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TU Rational parametrizations of
wiew) envelopes of quadratic cones, 2

GEOMETRIE

= With s,=g,/s,, s,=9,/5,, we
obtain at first a solution
f(t)=(n,+s,;,n,+s,) such that
f(t) satisfies d’(t) for all t.

= Then a global parametrization
f(t,u) which satisfies d’(t)
identically for all t and v is
computed.

s With -2y,=(y,2+y,2)(r;+m;3)+2y,m;,+2y,m ,+r, -m;s,
we compute a parametrization of the surface
d(t) in I3, This is a dual parametrization of the
envelope of D(t). m
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Corollaries

GEOMETRIE

= The envelope F of a rational one-par. family of
cones of rotation D(t) is a rational offset surface.

» The offsets F, of rational non-developable ruled
surfaces F are rational and all its Laguerre
transforms T(F,).

= The offsets F, of rational canal surfaces F admit
real rational parametrizations.

= The offsets of non-
developable quadrics
(ellipsoids, hyperboloids,
paraboloids) and its Laguerre >
transforms admit real rational Ellipsoid of rotation and
parametrizations. outer offset surface
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Classical geometric methods for the
computation of Minkowski sum
q boundary surfaces
|

67

Contents

GEOMETRIE

Definition and properties of the
Minkowski sum

Parametrizing the convolution
surface of two ruled surfaces

Parametrizing the convolution
surface of two canal surfaces

Further research

www.geometrie.tuwien.ac.at 68




Definition and properties of the
q Minkowski Sum
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The Minkowski sum

GEOMETRIE

= We are given two
objects A and B in R3

= Their Minkowski sum is
defined as the set
M=A®®&B:=
{a + blacA, beB},
aand b ... coordinate
vectors of arbitrary
points in A and B

= Result is independent of
the choice of the origin
(up to a translation)

www.geometrie.tuwien.ac.at 70

Applications

U

= NC tool path
generation

= Robot motion
planning

= Mathematical
morphology

GEOMETRIE

www.geometrie.tuwien.ac.at
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TU Minkowski sum of
WiEn convex objects, 1

GEOMETRIE

= Minkowski sum of two
convex bodies is again
a convex body

= Consider outward unit
normal vectors to the
points on the boundary
surfaces of A and B

= Compute the sum a+b
of those pairs (a,b),
where the unit normal
vectors are the same
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TU Minkowski sum
SR of convex objects, 2

GEOMETRIE

= Smooth case: this yields all
boundary points of the
Minkowski sum M = A @B

= Non-smooth case: a vector n is
called a normal at a point a if it
is normal to a support plane P
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TU Minkowski sum

Wien of non-convex objects

GEOMETRIE

Again: search for point pairs (a,b) with parallel
outward unit normals and compute the vector
sum a+b.

In general, this gives a
superset of the boundary
of M.

= Convolution surface L

Trim away certain parts,
which do not lie on the
boundary of M.
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U Kinematic interpretation

= Let X be fixed, reflect c at
the origin and let -Y be
movable.

= Convolution surface X+Yis a
point trajectory of a
x translatory motion of =Y with
respect to X, where the two
surfaces remain in point
contact.

y = Equivalent: convolution
° surface is a part of the
envelope of Y undergoing a
translatory motion such that
'y a reference point p in the
moving system runs on X

X+y
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Connection to offsets

GEOMETRIE

= General offsets are the convolution surfaces of
an arbitrary surface and a convex surface and
appear in 3-axis sculptured surface machining

= Classical offsets are obtained, if the latter
surface is a sphere.
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Convolution surfaces

GEOMETRIE

= Given two surfaces A and B in implicit or
parametric form with normal vectors n,,
ng.
Points a (in A) and b (in B) are said to be
corresponding, exactly if n,(a) is parallel
to ng(b).

= Construction of the convolution A+B:
Find parametrizations a(u,v) and b(u,v)
over a common parameter domain in a
way that n,(a) = A ng(b).
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TU Convolution of paraboloid and

-

wiew parametrized surface, 1

GEOMETRIE

= Let A be a paraboloid with F,=z-x2-cy2=0, which
admits the parametrization a=(u,v,u?+cv?). Its
normals are n,=(-2u,-2cv,1).

= Let B be parametrized by b(s,t) and let n(s,t) =
(n;, n,, ns3)(s,t) be a normal vector field of B.

= The condition ny(a) = 1 ng(b) gives

(-ZUI_ZCV/'Z):z’ (nll ny, n3)(slt)

and leads to the reparametrization

D :(s,t) > (u(s,t),v(s,t)

-n -n
u(s,t)zz—nl, v(s,t)= 2an )
3 3
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TU Convolution of paraboloid and
Wien parametrized surface, 2

GEOMETRIE

= The determinant of the Jacobian of @ is
det(n,n,,n,) _ A*K

det(JP) =
4eny’ 4eny’

where K is the Gauss curvature and A is the
determinant of the first fundamental form of B.

= The convolution A+B of A and B is given by

2 2
n, cn,” +n,

—n _
a+b)s,t)=|—+b, —=+b,,
( )(5.1) 2n, ! 2cn, g 4cn32

+ b,
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TU Convolution of paraboloid and
wWien parametrized surface, 3

GEOMETRIE

Theorem: The convolution A+B of a paraboloid A
and a rational surface B is rational. If B is
developable, A+B is developable, too.

TS

L

ivss //

Paraboloid (inside) and sum of Cone of revolution and sum of
paraboloid and ellipsoid paraboloid and cone
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Explicit parameterization
of the convolution surface
of two ruled surfaces

81

WTU Ruled surfaces A

GEOMETRIE

Parameterization:
x(u,A) = l(u) + Ar(u)
I(u) ... directrix curve

r(u) ... direction vector of the
generator or ruling

Non-torsal generator: Normal
vectors turn around.

Torsal generator: all its points
have the same tangent plane
and same unit normal

Ruled surface with only torsal  Normals along non-

rulings: developable surface,  torsal generator
otherwise skew ruled surface

Normals along
torsal generator

are parallel
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TU Convolution surface of two skew

WiEn ruled surfaces, 1
= We are given two ruled surfaces
X...x(u,A) = I(u) + Ar(u) n(u,v)
Yo y(v,p) = m(v) + ps(v) s(w)
= Problem: Find reparametrizations
A = ANu,v)
po=puu,v) ©

with the property that the normals in
points x(u,A(u,v)) and y(v,u(u,v))
are parallel.

= Solution: Unit normal of the convolution has to
be orthogonal to r(u), s(v):
n(u,v) = ar(u)xs(u)
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TU Convolution surface of two skew

WiEn ruled surfaces, 2

GEOMETRIE

= The normals n, and n, at points x and y are
ny=(l,+ar,) xr and n,=(m,+us,) xs.

= We obtain the conditions
(l,+ar,) (rxs)=0 and (m +us,)(rxs)=0.

= From that the reparametrizations are

det(l r,s)
)V 9 = - ) ) =
() det(r,,r,s) A y)

_ det(m,r,s)
det(s,,r7,s) .
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Explicit parameterization

GEOMETRIE

= This gives the following explicit
parameterization (x+y)(u,v) of the convolution
surface X+YV:

det(l,r,s) H(w) + m(v) - det(m,r,s)

(x+ y)(u,v)=1(u,v)- det(r.,r5) det(s,,r,s)

s(v).
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Results

GEOMETRIE

= The convolution surface of two ruled surfaces can

be explicitly parameterized.

= Parallel rulings yield straight lines on the

convolution surface.

= If the two surfaces possess the same curve at

infinity, the convolution surface contains a ruled
surface.

= For torsal rulings, only the singular point (cuspidal

point) contributes to the Minkowski sum.

= If the two given ruled surfaces X and Y are

rational, (x+y)(u,v) is a rational parameterization
of the convolution surface X+Y.
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Examples
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TU Convolution surface of two
wWiew hyperbolic paraboloids

GEOMETRIE

= We are given two hyperbolic paraboloids
X ... l(u) = aytau, r(u) = a,+azu
Y...m(v) = by+b,v, s(v) = by,+bsv

= X and Y intersect the ideal plane in lines
e,=asa,, f,= asa,, and e,= bsb,, f,= bsb,.

= By a reparametrisation we
may assume that a,=b;
and 62=b2.
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TU General case

GEOMETRIE

= Since a translation of X(or Y) only results in a
translated convolution X+Y, we let a,=b,=
(0,0,0).

= Further we may choose a,=b, (0,1,0),
a,=b,(1,1,1), a;=(0,0,a) and b;=(b,0,0).

= We obtain the following parametrization of the
convolution X+VY:

(au+bv +abuv)(u+ v(1+bv))
xX+y)(u,v)= ; (au + bv + 2abuv)(u + v)
abuv
(au+bv +abuv)(u(l+au)+v)
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TU Special cases of the convolution
WiEw of hyperbolic paraboloids e

= The surfaces X and Y share a line at infinity
(e,=e,) but have different axes (a5 # bs).

= We may choose a,= (0,0,1),
b1=(1/0/0)/ a2=b2=(0/1/0)/
as=(a,0,0) and b;=(0,0,b), and
obtain the following
parametrization for X+Y:

(au)(bv’ —au®)
(x+y)(u,v)=——| -(au’+bv?)
ab 5 5
bv(au®-bv~)
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Common line at infinity

GEOMETRIE

Depending on whether ab>0 or
ab<0, the convolution surface X+Y
of two hyperbolic paraboloids with a
common line at infinity is
projectively equivalent to the
Zindler conoid or to the Plucker
conoid.

Pliicker conoid

Zindler conoid
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TU Parallel axes and common lines at
WIEN ir].fir1ity GEOMETRIE

\ X+Y, shifted

= Parallel axes (a; = bj3):
Convolution surface is a
paraboloid with parallel axis,
can be elliptic or hyperbolic,
see figure.

» Parallel axis and common
line(s) at infinity: Convolution
surface is a hyperbolic
paraboloid with the same
line(s) at infinity.
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TU Pseudoeuclidean offsets of ruled

WiEn surfaces e
Nz
s Let X:x2+y2-7z2-1=0 be a A\ 74
y N

hyperboloid of revolution. X may be
considered as sphere in
pseudoeuclidean 3-space R3,,
(Minkowski space, Lorenz space).

= Pseudoeuclidean offset surfaces of
skew rational ruled surfaces
possess real rational
parameterizations.

= Euclidean counterpart: Pottmann, L,
Ravani, 1996 more complicated
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TU Euclidean offsets
WiEN of ruled surfaces

GEOMETRIE

= Using the complex extension C3 of Euclidean
space R3, every quadric — especially a sphere
- is a ruled surface.

= Computation of complex rational
parameterizations of the Euclidean offsets of a
rational ruled surface.

= The convolution surface of any quadric and a
rational ruled surface admits complex rational
parametrizations. It can be proved that even
real rational parametrizations exist.

= It can be proved that the convolution of two
quadrics admit real (improper) rational
parametrizations.
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Parameterizing the convolution
q surface of two canal surfaces
|
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Minkowski sum of spheres

GEOMETRIE

= Consider two balls
(solid spheres) in R3
with centers m,n and
radii r,s ™ m m+n

+S

= Add pairs of points ar

with parallel outward
unit normal vector

= Minkowski sum is b
again a ball with
center m+n and
radius r+s
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= We only need the boundary spheres
S, T of the balls A,B to compute the

Minkowski sum A®@B
= But: the Minkowski sum S@T is a
different set, bounded by two w
concentric spheres with center m+n
and radii r+s and |r-s|

= Consider oriented surfaces (surfaces
plus normal vector field)

Minkowski sum of spheres

GEOMETRIE
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= The orientation of the spheres will
be represented by the sign of the
radius r:

Oriented spheres

« r>0: surface normal pointing to the
exterior

= r<0: surface normal pointing to the
interior

« r=0: point

= S@T is a sphere with center m+n
and radius r+s

GEOMETRIE

LS

www.geometrie.tuwien.ac.at
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Canal surfaces

GEOMETRIE

= A canal surface A is the envelope of a one-
parameter family of spheres
R(u) :(x-m(u))? - r(u)?=0
with centers m(u) and radii r(u).
= The envelope A consists of the characteristic
circles c(u)=R(u) n R,(u), where R,(u)
denotes the derivative of R(u) w.r.t. u,
R,(u):(x-m(u))m, + r(u)r,(u)=0.
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» Exactly if m2-r,2 >0 holds, the
intersection R(u)nR,(u) is a real
circle c(u). The canal surface A is
tangent to the sphere R(u) in
points of c(u).

= The orientation of the inscribed
spheres R(u) induces an
orientation of the canal surface
A.

» Special case: r(u)=const.:
A is called pipe surface.

Canal surfaces

GEOMETRIE

www.geometrie.tuwien.ac.at
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Convolution of canal surfaces, 1

GEOMETRIE

= Consider two canal surfaces
A... R(u):(x-m(u))? - r(u)?=0
B... S(u):(x-n(v))? - s(v)?=0

= The convolution surface of each pair of
spheres R(u),S(v) is a sphere
T(u,v):(x-(m(u)+n(v)))? - (r(u)+s(v))?=0.

= The envelope of the two-parameter family of
spheres T(u,v) is obtained as solution of the
system of equations
T(u,v) : (x-(m+n))? - (r+s)?=0,
T, (uv): (x-(m+n))m, + (r+s)r,=0,
T(u,v): (x-(m+n))n, + (r+s)s,=0.
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Convolution of canal surfaces, 2

GEOMETRIE

« For fixed (u,v,) the equations of %)
T, T, are linear and represent /

planes and L(u,v)=T, NT,is a
straight line.

= The intersection I=LNT is
contained in the envelope of the
family T(u,v).

» For a fixed (uy,v,) the
intersection I(u,v,) can Vv
consist of 2,1 or O real
points of the envelope. The
figure shows a possible pre-
image of the real part of the
envelope of T(u,v). u

www.geometrie.tuwien.ac.at

102

TU

WIEN

Convolution of canal surfaces, 3

GEOMETRIE

Apply a similarity p which
maps R to T:

p maps R, to T, and
c=R NnR, to a circle
c*=TnNT,.

= The surface normals of R along ¢
are parallel to the surface
normals of T along c*.

= Analogously, the surface
normals of S along d= SnS, are
parallel to the surface normals
of T along d*=TnT,,.

i
o)
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Convolution of canal surfaces, 4

= The unit normal vector of the envelope
surface at each point x of I(u,v) agrees with
the unit normal vector of the canal surface A
at a point a of ¢ and with the unit normal
vector of the canal surface B at a point b of
d.

= aand b are corresponding point pairs for the
generation of the convolution surface.

= a+b lies on the sum-sphere T, thus x=a+b.

GEOMETRIE
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Result

GEOMETRIE

= The convolution surface A+B of two canal
surfaces A and B, which are the envelopes of
the one-parameter families of spheres R(u)
and S(v), respectively, is the envelope of the
two-parameter family of spheres T(u,v).

Thus: A+B can be considered as cyclographic

image.

= The solution of the system
{T(u,v)=0, T,(u,v)=0, T (u,v)=0}
yields an explicit parameterization x(u,v) of
the convolution surface A+B.

TU Convolution of canal surfaces and

T the cyclographic mapping

GEOMETRIE

= Canal surface A enveloped by spheres R(u)

is the cyclographic image of the curve R¢(u)
R4 (A= (R(u))")

= Likewise, B is the cyclographic image of the

curve S¢(v) c R4. (B= (S¢(v))7)

= This implies that the convolution A+B is the

cyclographic image of the translational surface
T¢(u,v) = R(u)+S°(v) c R4
(A+B= (T¢(u,v))r = (R(u)+S(v))").
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TU Two canal surfaces and their U Two canal surfaces and their
WiEw convolution surface WiEw convolution surface, 2

Canal surfaces A and B,
enveloped by spheres R(u)
and S(v) whose centers are
on curves m(u) and n(v).

Translational surface
m(u)+n(v).

s
Yy
L7

e

g
=
e

Convolution surface A+B
enveloped by spheres
T(u,v) whose centers are
on m(u)+n(v).
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Convolution Surfaces and the
q Isotropic Model

109

TU Isotropic image of the

-

WiEn Convolution in I3, 1

GEOMETRIE

» Let A7 a(u,v) and B: b(s,t) be two parametrized
surfaces. We study the isotropic images A/, B/
and (A+B)’ of the surfaces A, B and A+B.

= We consider A and B to be families of tangent
planes E(u,v):e,+ex=0, F(s,t):fy+fx=0, where
e?=1 and f2=1 shall hold.
= Surfaces A and B possess the isotropic images
Al :E'=1/(1-e3)(e, €564), and
B':F'=1/(1-f5)(f1,f5,1).
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TU Isotropic image of the
Wiew Convolution in I3, 2

GEOMETRIE

= Points a and b are corresponding, exactly if
the tangent planes E,, F, are parallel. This
implies that e, =f,, (e,2=f,2=1).

= The convolution C=A+B is formed by a+b,
with respect to corresponding points a, b. The
tangent plane at a+b to A+B is

G: eytfytgx = 0,

with g=e=f and g?= e?=f~=1.

-~ gytfy

= The isotropic image of C=A+B is
G'=1/(1-93)(91,95€0+1p).
» Thus, E,F and G' =E/'+F have o~
identical first and second ‘
coordinate.
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TU

WIEN

Correspondence in I3

GEOMETRIE

= The correspondence between points a and b of
A and B with respect to parallel tangent planes
is realized in I° by the correspondence between
A’ and B’ by vertical lines (y3-parallel).

= The problem of finding
correspondences between
points @ and b of A and B is
translated to the problem of
finding simultaneous
parametrizations of A’ and B’
over the y,y,-plane.
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Line Geometry for 3D Shape

Understanding and Reconstruction
M. Hofer, B. Odehnal, J. Wallner
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T\

WIEN

-

Line geometry, 1

GEOMETRIE

= Describe lines by their Pliicker
coordinates

(9,.9)=(9.px9)

where p is a point of the line G
parallel to the vector g

s Pllicker relation
9-g=0
9=(91,92,93),9 =(94,95,96)-
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TU

WIEN

Line geometry, 2

= Interpret Plicker coordinates (g;,,...,g5) of a
line G as homogeneous coordinates of a point
in projective 5-space

= Yields Klein mapping k from lines in P3 to
points of a quadric M, in P>

p3

B=pencil of lines

C=bundle of lines

D=field of lines

GEOMETRIE
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TU A point model related

WiEN to the Klein model

GEOMETRIE

= Klein model not well suited for the solution of
approximation problems

= Alternative: Introduce the normalization
|l =1 and interpret (;,7)as point in R®
= Results in a mapping from /ines in Euclidean

3-space to points of a four-dimensional
manifold M# in R

= M%is of algebraic order 4: Intersection of the
cylinder S® and the cone I®

S x*=1"=x-x=0
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Metric

GEOMETRIE

= The canonical Euclidean metric in R¢ is used to
define the distance between lines G and H by

d(G,H)=(g~h)*+(g—h)?

= It is a useful distance measure for lines whose
distance to the origin is not too large

= Region of interest is necessary anyway for a
practical distance measure between lines

www.geometrie.tuwien.ac.at 121

Linear line complex

= A linear complex C = (c;,...,Cg) is a 3-
parameter set of lines whose Pllcker
coordinates (g;,...,gs) satisfy a linear
homogeneous equation

c-g+c-g=
C401 +C592 + C03 + €194 + Co05 + C39s = 0

= Image in R% is a hyperplanar cut of M*

= Intersections of M# with lower dimensional
linear subspaces also possess a simple
geometric meaning (linear congruences, in
particular spread; bundle, field, regulus)

GEOMETRIE

www.geometrie.tuwien.ac.at
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Kinematics

GEOMETRIE

= One-parameter motion in Euclidean 3 -
space

= At each time instant the velocity vector
field is linear in x and computed with

V(X)=C+Cxx
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TU One-parameter motions with
wiew|  constant velocity vector field, 1

1. uniform translation ——
_ P
c=0=v(x)=cC. —

2. uniform rotation
v(x)=c+cxx with ¢c-¢c =0.

Rotation axis A has direction
vector ¢ and passes through
points pwith ¢ =cxp

(c ... moment vector of the axis A)

GEOMETRIE
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TU One-parameter motions with
wien|  constant velocity vector field, 2 £Z1°Y

3. uniform helical motion
v(x)=Cc+cxx with c-c #0.

Helical motion is the composition of
* a rotation about an axis A and .
* a proportional translation parallel to A & L.~
x(t) = x,cos(t) — y, sin(t)
y(1) = x,sin(t) + y, cos(t)

TU Uniform helical motion

GEOMETRIE

A curV generates for pitch p these types of surfaces:

p#0 p=0 p=oo
(helical motion) (pure rotation) (pure translation)

2(t)y=z,+ pt
p... pitch helical surface rotational surface cylindrical surface
www.geometrie.tuwien.ac.at 125 www.geometrie.tuwien.ac.at 126
TU Axis and pitch TU| Linear line complex and surface
wiew of a helical motion wiew normals, 1 £
= Path normals of a helical motion, rotation,
translation

= From the vector C=(c,c)e R® the axis
A=(aa) and the pitch p of the underlying
helical motion are calculated by:
c c-pc __c-C

a=—,a= , p=
fel” e c?

a ... direction vector of axis A
a ... moment vector of axis A

www.geometrie.tuwien.ac.at 127

= Path normals of a helical motion lie in a linear
line complex, i.e. a 3-par. family of lines
whose Pllicker coordinates satisfy the linear
homogeneous equation
c-g+c-g=0
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Linear line complex and surface
WiEn normals, 2

=]
o
-

= The normal lines of a
C! surface lie in a
linear complex if and
only if the surface is
contained in a
cylinder, a surface of
revolution or a helical [
surface. S

helical surface

GEOMETRIE

general cylinder

www.geometrie.tuwien.ac.at
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Rotational and Helical

Recognition and
Reconstruction of

Surfaces

A AV AVASAVA AT,
KRR
RSO

MIDDLE RIGHT

TU Estimation of the generating
WiEn motion of a kinematic surface

GEOMETRIE

Given: Point cloud p;, p,, ..., pyrepresenting a surface

1. step: estimation of 01
surface normal o

%o ° o

vectors n,, n,,..., Ny °©,°

2. step: calculate an appropriate motion with the
velocity vector field v(x) =c¢ +cx x.

~V(p;)

ideally: «; = /2 < normals lie in linear line complex

= approximation problem in line space

www.geometrie.tuwien.ac.at
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Fitting a linear line complex
to surface normals

GEOMETRIE

= Estimated surface normals determine a
cloud C of points on the manifold M4 in R®

= Fitting a 5-dimensional subspace to the
point cloud C yields an approximating
linear complex

= Equivalent to principal component analysis
on C
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Shape info from the spectrum

GEOMETRIE

» The distribution of eigenvalues gives important
information on special shapes:
« Three small eigenvalues (in relation to
extension of data point cloud in R?): surface
is part of a sphere or a plane

« Two small eigenvalues: surface is part of a
right circular cylinder

= One small eigenvalue: surface is part of a
general cylinder, rotational surface or
helical surface (decision based on the axis of
the complex)
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Reconstruction process

GEOMETRIE

» Estimation of surface normals
in the data points.

» Computation of the one

. barameter motion whose path
normals fit the estimated
normals best.

* Reconstruction of the profile curve by moving the data
points into an appropriate plane.

» Reconstruction of the surface by applying the one
parameter motion to the profile curve.
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Examples

GEOMETRIE

= Reconstructed axis and
profile (meridian) curve
of a surface of rotation

= Reconstructed
axis and profile
curve of a
helical surface
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WIEN

GEOMETRIE
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