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Abstract

It is shown that polynomial (or rational) parametric surfaces with a linear field of normal vectors are dual to
graphs bivariate polynomials (or rational functions). We discuss the geometric properties of these surfaces. In
particular, using the dual representation it is shown that the convolution with general rational surfaces yields again
rational surfaces. Similar results hold in the case of curves.
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1. Introduction

The notions ofconvolution surfaces and Minkowski sums in two and three dimensions are used in
various fields of geometric applications, e.g., mathematical morphology, computer graphics, convex
geometry and computational geometry, and there is a close connection between the two concepts of
convolution surfaces and Minkowski sums. Given two sétand B in R?, their Minkowski sum is the
set formed by the sums of all pairs of vectors in the Cartesian praduct3. On the other hand, the
convolution surface of the two surfaces consists of the sums of all pairs of vectors with parallel surface
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Fig. 1. (a) Minkowski sum of two planar domains and the convolution of their boundaries. (b) Minkowski sum of a ball and a
cube.

normals. The boundary surface of the Minkowski sum is contained in the convolution surface of the two
original boundary surfaces, provided that they have a well-defined normal everywhere.

Fig. 1(a) illustrates these notions in the planar case. The convoldtie® of the two boundaries
A = 0dA andB = 9B contains the boundary of the Minkowski sufre B. It consists of two components,
generated by points with parallel normals having the same (solid curve) and the opposite (dashed curve
orientation, respectively. Fig. 1(b) shows the Minkowski sum of a ball and a cube. The boundary consists
of segments of spheres and cylinders and planar patches.

In the curve case, various algorithms for computing Minkowski sums exist (Kaul and Farouki, 1995;
Kohler and Spreng, 1995; Lee et al., 1998a, 1998b; Ramkumar, 1996; Farouki, 2003). The main issue
is to trim away those parts of the convolution curve that do not contribute to the outer boundary of the
Minkowski sum. Another important problem consists in finding an exact description of the convolution.
Though the set of algebraic curves and surfaces is closed under convolution, this result is of little practical
value, since the resulting degrees are far too high to be useful. Also, one is often interested in curves anc
surfaces that admit a rational parametric representation, since they can easily be fed into standard CAL
systems.

As an important special case, offset surfaces (convolutions with spheres) have thoroughly been dis-
cussed, where certain rational surfaces are equipped with rational offset surfaces. For instance, this i
true for surfaces which degenerate to space curves, and for quadrics (Landsmann et al., 2001; L, 1994
Peternell and Pottmann, 1998; Schicho, 2000; Schicho, 1998; Sendra and Sendra, 2000).

Rational convolution surfaces of more general surfaces did not receive much attention so far. A first
approach was studied recently by Seong et al. (2002), while Mihlthaler and Pottmann (2003) have an-
alyzed the case of two ruled surfaces. Convolutions between paraboloids and general rational surface
were analyzed by Peternell and Manhart (2003).

In this paper, we generalize the latter result to the case of convolutions between surfaces with linear
normals (LN surfaces) and general rational surfaces. LN surfaces, which were studied in (Juttler and
Sampoli, 2000) have sulfficient flexibility to model smooth surfaces without parabolic points. Convolution
of LN surfaces have been studied by Sampoli (2005). Here, we will show that the convolution of LN
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surfaces with general parametric surfaces have explicit parametric representation, which are even rational
for rational surfaces.

This paper is organized as follows. The first three sections are devoted to LN surfaces, their dual repre-
sentation, and the available constructions. Then we discuss the so-called relative differential geometry of
these surfaces. Sections 6 and 7 discuss Minkowski sums, convolution surfaces, and the parameterizatior
of convolution surfaces. Finally, we conclude this paper.

2. Preliminaries
This section gives an introduction to LN surfaces and discusses some important geometric properties.

Definition 1. Consider a polynomial (or, more general, a rational) surfaaev). This surface is said to
be anL N surface, if its normal vectors admit a linear representation of the form

N(u, v) = du + bv + 8 (1)
with certain constant coefficient vectdisb, ¢ € R3. More precisely, it satisfies the equations

P, v) - N(u, v) = p, (u, v) - N(u, v) =0, )
wherep, (u, v) = (3/9u)p(u, v), p,(u, v) = (3/3v)p(u, v).

Egs. (2) can be seen as linear constraints on the space of polynomial or rational parametric surfaces,
and this approach has been used by Jiittler and Sampoli (2000) for generating LN surface patches match-
ing given Hermite boundary data. In this paper, we will study the geometrical properties by using the
so-called dual representation of these surfaces, where the surface is seen as the envelope of its tanger
planes.

Remark 2. (1) If the three vectors, b, c are linearly dependent, then the surfage, v) describes a
general cylinder, since the unit norma{ls(||N|| are contained in a great circle on the unit sphere. In
particular if all three vectors are proportional, the surface is simply a plane.

(2) In the remainder of this paper we assume that the three vectors are linearly independent. Without
loss of generality we may then assume that

a=(1,0,0", b=(0,107, ©€=(.017, 3)

i.e., N(u, v) = (u, v, 1)T. This situation can be achieved as follows. Firstly, we scale the normals such
that the plane (1) spanned by them has distance 1 from the origin of the coordinate system. Secondly, we
rotate the LN surface around the origin, such that the plane spanned by the normals becomes the plane
z = 1. Finally, we apply a linear parameter transformatiog u (u’, v'), v = v(u’, v’) to the surface, in

order to get a normal field (1) satisfying (3).

Proposition 3. Under the assumptions of Remark 2(2), the tangent planes of an LN surface have the
equations

Tu,v): f(u,v)+ux+vy+z=0, (4)
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where f(u, v) = —p(u, v) - N(u, v) isa polynomial or rational function, in the case of a polynomial or
rational LN surface, respectively. On the other hand, given a system of tangent planes of the form (4)
with a polynomial or rational function f (u, v), the envelope surface

P, v) = (= fus —fo. —f +ufu+vf)" (5)
isa polynomial or rational LN surface.

Proof. The envelope surfage= (x, y, z) satisfies the equations

T(u,v): f(u,v)+ux—+vy+z=0,
T,(u,v): fu(u,v)+x=0, (6)
Ty(u,v):  fo(u,v)+y=0,

and the normal vector evaluates to
N(”y U) = (fuufvv - fuzv)(u, v, 1)T O (7)

Remark 4. Due to (7), singular points of the envelope surface (5) are characterizgg iy — 72 = 0.
In addition, the Gaussian curvature of the envelope equals

1
9 8
(fuu foo — u2y)(1_|_u2_|_v2)2 ( )
sinceK = det(H)/det(G) is the quotient of the determinants of the fundamental forms of the surface.
These determinants evaluate to

Ku,v)=

_ f2
detG) = (1+ u? + UZ)(fuufvv - fuzv)z’ det(H) = %

If the envelope surface possesses bgiherbolic (K < 0) andélliptic (K > 0) points, the corresponding
domains are separated by the singular cd@ryerhich is determined by the algebraic curgg f,, — f2 =
0 in the (u, v)-parameter domain.

3. Thedual representation

There exist several interesting relations between the LN-surfaee®) defined by a polynomial or
rational functionf and the associated graph surface

q(u,v):(u,v,f(u,v))T, 9)
since the graph surface is dual to the LN surface in the sense of projective geometry.
The points ofg(u, v) are elliptic, parabolic or hyperbolic, if the sign of
dett (f) = fuufoo = [, (10)

is 1, 0 or—1, respectively. Clearly, the parabolic points either form an algebraic curve, or the entire graph
surface consists of parabolic points only. In the latter cage,v) is a general cylinder surface.

Coroallary 5. Elliptic and hyperbolic points of the graph surface q(u, v) correspond to elliptic and hy-
perbolic points of the LN surface p(u, v). Parabolic points of the graph surface q(u, v) correspond to
singular points of p(u, v).
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Proof. These facts are consequences of (7), (8) and (10).

Remark 6. Graph surfaceg(u, v), which aregeneral cylinders, correspond to singular surfage@:, v),
which degenerate into planar curves. More precisely, the fungtioan be assumed to take the form

fu,v)=du+ g(v) (12)

with a real constard and a rational functiog(v). The envelope surface (5) degenerates into the planar
curve

(—d, —g' (), —g() +vg' (). (12)

If the envelope surface has a self-intersection (i.edpwble line), then its points correspond to pairs
of points ofqg(u, v) with coinciding tangent planes. Consequentlyfiis a convex function, then the
envelope does not have any self-intersections.

We illustrate these observations by a first example of an LN surface, see Fig. 2. The fyhistiequal
to u® — v3, and the LN surface has the parametric representation) = (—3u?, 3v?, 2u® — 203 7. The
parabolic lines (marked with P) on the graph surfaceuate0 andv = 0. The associated LN surface
has 2 edges of regression (E), which intersect in the g0irit, 0). Each of them is a planar cubic curve
with a cusp (i.e., equivalent to Neil’s parabola). In addition, it has a double line, which corresponds to
the double tangent planes along the cusve v, since the tangent planes @t «) and (—u, —u) are
identical.

Fig. 2. Graph surface (left) of a cubic polynomial and the associated LN surface (center and right).
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4. Construction of LN surfaces

We summarize two constructions of LN surfaces via Hermite interpolation. For both of them, the input
consists of three pointg € R® with associated normal vectaiis € R3 (i =0, 1, 2). The normal vectors
are not assumed to be normalized.

4.1. The problem

Let us consider the problem of finding an LN surface patch that interpolates three given points (ver-
tices)v; e R3 along with the associated normal vectdyss R3. Both constructions generate a triangular
surface patclp(u, v), whose parameter domain is a triangle- R2. The parameter pair®, v) € A are
described by their barycentric coordinatess, #) with respect to the domain triangle, i.e.,

(u,v) =rwy +swp +1tws, satisfying r+s+r=1 (13)

wherew;, Wy, Ws € R? are the vertices oA.
The patchp(u, v) is either a triangular Bézier patch (cf. (Farin et al., 2002)) or a collection of such
patches, which interpolates the given three points, i.e.,

p(wW;) =V;. (14)
In addition, in order to produce a patch of an LN surface, the normal at ap@int) is to be parallel to

N(r,s,t):rn1+sn2+tn3, (15)
where(r, s, t) are the barycentric coordinates(@f, v), cf. (13). This implies the conditions
0 - d >
—p -N@,s,t) = —p N, s,t) =0. (16)
ou dv

(u,v)=rwi+swo+rw3z (u,v)=rwi+sWo+1rw3s

4.2. Two constructions
Both constructions consists of two steps.

(1) Construction of boundary curves. For any pair of pointsy;, v;, i < j, we construct a polynomial
boundary curve; (1), t € [0, 1], of the triangular surface patch. In order to obtain patches which
can be joined to form a globalkg* surface, the boundaries should be fully determined by the points
v;, v; and vertex normalg;, fi;.

The boundar; ; is to satisfy

XijO=vi, x;Q=v;, X ;@0)-[d-0h+10i;] =0, 17)

wherex’ = (d/dr)x. These conditions lead to linear equations for the coefficients of the polynomial
curve, which are solvable, provided that the degree is sufficiently high. The remaining degrees of
freedom are used to minimize a suitable energy functional, sugfgll(ag)zdt.

(2) Filling in a patch. In the second step, we generate a triangular surface patch whose boundary curves
are given byx; ;(¢), and satisfy (16); this leads to a system of linear equations.
It turns out that it is generally not possible to fill in a single patch, due to compatibility conditions at
the vertices (similar to the vertex enclosure problem). Two solutions to this problem are proposed:
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()

Fig. 3. LN surfaces interpolating three points with associated normal vectors (a), (b) and their control nets (c), (d). The surfaces
have been generated using singularly parameterized surfaces (a), (c) and Clough—Tocher splits (b), (d).

(a) One may use a single patch with singular points at the vertices. This has to be taken into account
already during the construction of the boundaries, which should then satisfy

X ;(0) =X (1) = 0 (18)

in addition to (17). This approach leads to patches of degree 6. See (Juttler, 1998) for details.

(b) Alternatively, in order to avoid potential problems with singular points, one may apply the
Clough-Tocher split, by filling in a surface patch composed of three triangular surface patches.
This leads to three patches of degree 4. This technique is described in (Juttler and Sampoli,
2000).

Both approaches lead to systems of linear equations, and the remaining degrees of freedom can be

used to minimize suitable fairness measures.

Two examples are shown in Fig. 3. Note that both constructions may produce surfaces which have sharp
edges (singular curves), since the prescribed normal field limits the shape of the surface. According to
our experience, the surface behaves nicely for boundary data which have been taken from an existing
surface without parabolic points, provided that the distances between the sampled points are sufficiently
small. This could even be proved for the boundary curves generated in the second construction (Juttler
and Sampoli, 2000).

5. Relations between LN-surfaces and the unit paraboloid
In this section we point to some properties of LN-surfaces in connection with paraboloids. It will turn

out that LN-surfaces are in some sense generalizations of paraboloids. This property applies also to the
computation of convolution surfaces in Section 7.
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We recall the parameterizatiqnu, v) = (= fu, — fo, —f + ufu + vf,)" of an LN-surface® and
that its normal vectors are given N(u v) = (u,v,1)". Additionally we consider the paraboloid,
represented by

-
y(u,v) = <u,v,%(l—u2—v2)) :(u,v,y(u,v))T. (29)

Unlike Eg. (9), which is a dual representation, describing a set of tangent planes, the par&bisloid
given as a set of points (“primal” representation).
Up to a normalizationy’s normal vectors

1
N

agree with those ob. Obviously this implies tha®’s tangent planes are parallel to thoserof

Two pointsp of @ andy of Y are calleccorresponding, if their normal vectord\ andN are parallel.
Thus, this correspondence is realized by equal (surface) parameterB Section 7, thls correspon-
dence applies to the construction of convolution surfaces.

Euclidean differential geometry investigates the unit normal vectors of a surface considered as parame:
terization of the unit spher§?. The shape operator or Weingarten mapping w : p, —N,, Py —N,
is the differential of the mapping(u, v) — —N. At each poinp(u, v), w is a linear mapping in the tan-
gent plane. The eigenvalues and eigenvectotis afe theprincipal curvatures andprincipal curvature
directions of @ atp.

By substitutingS? by the ‘unit’ paraboloidy, or in other words, according to the normalizatiorhof

by

N, (i, v) = w,v, )7

Kl(u, v) = (u, v, y(u, v)) =y(u,v) = (u, v, %(1 —u?— v2)>, (20)

N is considered aselative normalization with respect tar. Expressing the second fundamental form of
@ with respect tdQ, one obtains

71 __ fuu fuv 7 1 |:fvv _fuv:|
= |:fuv fvv:|’ and H = fuufvv_fuv Suv Suu ’

H is the coordinate matrix of theslative shape operator

=—(1,0, —u),
_(0’ 17 _U)v

w: Pu = (_fum _fuva ufuu + Ufuv) = —

—N,
pv:(_fuvv_fvvvufuv"i_vav)}_) N
with respect toN. Analogously to the Euclidean case, the eigenvalues and eigenvecfémreprincipal
curvatures andprincipal curvature directions, with respect to the operatar. SinceY is strongly convex,
the eigenvalues and eigenvectors are always real. The concept of relative curvature theory is applied tc
computing generalized offset surfaces in (Pottmann, 1997). More information on this topic can be found
e.g.in (Lietal., 1993).
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6. Convolution surfaces and Minkowski sums

Given two sets4 andB in R4, theMinkowski sum of these sets is defined as
A®B={a+b,ac Aandb e B},

see Fig. 1 for examples. In particular, algorithms for computing the Minkowski sum of closed (convex)
polygons in the plane and polyhedral objects in space have been studied in computational geometry,
see (Bajaj and Kim, 1989; Ramkumar, 1996; Kohler and Spreng, 1995). Applications include motion
planning for polygonal objects in the presence of polygonal obstacles.

Later, these concepts have been generalized to arbitrary shapes in the plane and in space, see (Le
et al., 1998a, 1998b; Kaul and Farouki, 1995; Muhlthaler and Pottmann, 2003; Peternell and Manhart,
2003), where the notion of trenvolution of two (not necessarily convex) objects has been introdticed.

Now we consider two regular surfacdasand B in three-dimensional space, which are given by para-
metric representatiors(u, v) andb(s, r) with parameter domaing, v) € 2,4 € R? and(s, 1) € 25 €
R?, respectively.

Definition 7. The convolution surface of two surfacasand B is the set of points
AxB={a+blaeA,beBandM@]|N(b)},

whereM @ andN(b) are the normal vectors of and B at the pointa € A andb € B, and| denotes
parallelism.

Remark 8. If one is interested in the boundaries of Minkowski sums, one may modify the definition by
requiring—in addition to property of parallel normal vectors—that the vectors have the same orientation,
M (a) = A(a)N(b), with some positive factot(a). On the other hand, the original version of the definition

has the advantage of acting within the set of algebraic surfaces, since the convolution of two algebraic
surfaces is again an algebraic surface. For instance, the two-sided offsets of conic sections are algebraic
curves, while the one-sided offsets are generally not.

The sum of the coordinate vectors is computed only for those points whose normal vectors are parallel.
The definition requires differentiability and regularity of the input surfagdeand B, since otherwise
normal vectors do not exist. A more general definition—which is beyond the scope of this paper—could
be given by considering ‘completed’ normal fields.

While Definition 7 uses normal vectors, the convolution surfaeeB is invariant under affine trans-
formations of the objectd and B. This is due to the fact that affine mappings preserve the parallelism
of the tangent planes.

Note that there is a close relationship between convolution surfaces and Minkowski sums: the bound-
ary of the Minkowski sum of two setd, 5 is contained in the convolution surface of the two boundary
surfaces,

I(A®B) S (0A) » (9DB). (21)

1 This notion should not be confused with the convolution of two functigrend g, which represents roughly spoken, the
overlap of f and a reversed and translated versiog.of
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Fig. 4. Kinematic generation of convolutions in the curve case.

The convolutionA « B admits the followingkinematic interpretation.? Consider the surfacg together
with the origin O as a moving syster’ and let B be fixed, and letd’ and O’ denote the different
positions ofA and O. The systemx’ is moved translatory (without any rotational part) such that the
point O’ travels on the second surfaBe The convolutionA x B is generated as the envelopedfunder
this two-parameter translational motion. The curve case is visualized in Fig. 4.

In particular, if the surfacet is a sphere with radiug, centered ap, then the convolution surface
A » B becomes the (untrimmed) offset surfaceBoét distancei.

7. Parameterization of convolution surfaces

After discussing the general case, we compute convolution surfaces of general rational surfaces anc
LN surfaces.

7.1. Computation of convolution surfaces

Consider again two surfaces and B, which are given by parametric representatias, v) and
b(s, r) with parameter domain€,, $25. Let M (u, v) andN(s, ¢t) be their normal vectors, and

M (u, N(s, t
M@v) sy = NS
M (u, v) | INCs, D)l
the corresponding unit normal vectors. In order to find the convolution surface, we have to construct a
reparameterization

G 25— 24:(s,1) > (u(s, 1), v(s, t)) (23)

which is defined for a certain subset; C §25, such that the normal vectohﬁo(u(s, 1), v(s, 1)) and
No(s, t) are parallel.

Mo(u, v) = (22)

2 A slightly different kinematic generation of « B has been discussed by Mihlthaler and Pottmann (2003).
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The setf2}; should be chosen as the maximal subse®gf such either the Gaussmn |ma|§jg(.(2
or the reflected Gaussian |mageNo(.Q*) of B is contained in the Gaussian |malgb)(.(2A) of A. In
addltlon we assume that the unit normals of the first surfhge:, v) define a bijective mapping, —

Mo(£24), andM 0(£24) is contained in an open hemisphere of the unit sphéheder these assumptions,
the reparameterization exists and it is unique.

Then,

:a(u(s,t), v(s,t)) +b(s, 1) (24)

is a parametric representation of the convolution surfact et a(¢ (£25)) andB* = b(£2}). For general
rational surfacegl and B, this reparameterization cannot be written down explicitly.

7.2. Convolution of LN surfaces and rational surfaces

In this section we want to investigate parameterizations of the convoldtie® of an LN-surface
A and a rational surfac8. We may assume that the coordinate system has been chosen such that the
LN-surfaceA is given by a parameterization

a(u,v) = (_an _fv’ _f + ufu + va)-

As observed earlier in Section 2, the normal vedwbrof A is proportional toM (u,v) = (4,0, 1) at
regular points (which are characterized By f,, — f.. # 0). In this case, the unit normdmo(u v) are
contained in the upper hemisphere.

For the sake of simplicity, we choos@, = R? throughout this section. The second surfaes
assumed to admit a smooth local parameterization

b:(s,r) € 25 Cc R?— RS

Two pointsa € A andb € B correspond to each other, if the normal vectitsandN at a andb are
linearly dependent,

M(a) = AN(b), A #£0. (25)

Then,a+ b is a point of thg convolution surfagg@ = A x B.
Using the normal vectdX (s, 1) = (n1(s, t), na(s, t), n3(s, t)) of B, the condition (25) can be rewritten
as

(u,v,1) =Ar(ng, n2,n3)(s, 1), (26)
which implies
_nals, 1) _na(s, 1)
u(s,t) = G D) and wv(s,t) = aG.D) 27)

provided thats(s, 1) # 0. The latter condition is satisfied, since the (possibly reflected) Gaussian image
No(.Q ) is assumed to be contalnede(QA)

3 This is the case if and only if there exists a ved@grsuch thaﬂo(u, v) - Zg > 0 holds for all(u, v) € £24.
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C=AxB
A*

Fig. 5. Convolution surfac€ of a triangular patch of an LN surface of degree4) &nd a quadratic triangular paté¢h The
convolution surface is rational surface of degree 12. Only the points contairgddantribute toC.

The parametric representatiats, ) of the convolutionC = A x B is now obtained by applying the
reparameterization (27) té and evaluating the sum
ni(s,t) na(s, 1)
n3(s, 1) na(s, 1)

If B is arational surface, the reparameterizagargs, r) — (u, v) is a rational mapping and the convo-
lution C = A B is a rational surface.

c(s,t)=a< )—i—b(s,t).

Theorem 9. The convolution surface A » B of an LN-surface A and a parameterized surface B has an
explicit parametric representation. If A and B arerational surfaces, their convolution A x B isrational,
too.

An example is shown in Fig. 5, where we visualize the convolution surface of a quadratic triangular
patch with an LN surface of degree 6.

Remark 10. The reparameterizatiop is regular if and only if the determinant of the Jacobiah does
not vanish. This determinant evaluates to

1 .o o
det(J¢) = — det(N, Ny, N,). (28)
na

After some computations one arrives at

1 5 o o 1
det(J¢) = — det(N,N,, N,) = — det(G,)%, (29)
n3 n3

whereG, is the first fundamental form @8, andk, its Gaussian curvature. We mention two special cases
which correspond to a singular Jacobian (28) of the reparameterigation
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e If Bis a plane, the unit normal vectbdly does not depend on ¢, but it is constant. Since (27) gives
a single poin{u, v), there is a single poirdy on A which corresponds to all points &f. Thus,Ax B
is a plane translated by the fixed vectgr

e If B is a developable surface (i.e., its Gaussian curvature vanishesjps the domaif2; C R?
into a curve in therv-plane. Thus, there is in general only a cua¢e) € A which contributes to the
construction ofA = B. Clearly, the convolution surface is again a developable surface.

Remark 11. Points of B with n3(s, ) = 0 have no corresponding point on the LN-surfacdf there is
one point with this property then, in general, there exists even a euevB with n3 = 0 alongc. The
curvec is a shadow boundary @ with respect to an illumination parallel to theaxis. In this case the
convolutionA = B consists of non-connected parts.

8. Conclusion

As the main result of this paper, we identified a class of free form surfaces which have rational con-
volution surfaces with general rational surfaces. To our knowledge, this is the first result on rational
convolution surfaces of surfaces which are capable of modeling general free-form geometries. This result
may serve as the starting point for research on computing Minkowski sums of general free-form objects.
While the case of two convex objects should be relatively simple, the computation of the Minkowski sum
of general objects will need robust methods for detecting and trimming the inner branches of the con-
volution surfaces, which do not contribute to the boundary of the Minkowski sum. While our attention
has been mainly devoted to the surface case, the computation of convolutions of LN-curves and rational
curves can be treated as a simple particular case.
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