Sphere-geometric aspects of bisector surfaces

Martin Peternell

The bisector surface B of two smooth input objects P and Q is the locus of centers of spheres which are tangent to P and Q, respectively. This definition already indicates that methods from sphere geometry, in particular Lie-sphere geometry apply nicely to the construction of these surfaces. The computation of bisector surfaces of general input surfaces results in the solution of a system of nonlinear equations. We show that if both surfaces are canal surfaces or if one surface is a Lie-sphere, the construction is elementary.

1 Introduction

Given two geometric objects P and Q in Euclidean 3– space \mathbb{R}^3 , their *bisector* B is defined as locus of equidistant points from P and Q. Since distances are measured orthogonal to both objects, the bisector B is the set of centers of spheres touching both P and Q. We do not require that the distance from B to P and Q is minimal and discuss only the *untrimmed bisector*, see [8]. The objects P and Q shall be points, smooth curves and surfaces.

A possible method to study bisectors in \mathbb{R}^3 from a sphere-geometric point of view uses concepts from *Laguerre geometry*. A detailed description of the planar case is given in [11], general monographs on sphere geometry are for instance [2, 4] and a brief introduction and some details are given in [13]. Within Laguerre geometry one still distinguishes between oriented spheres and oriented planes. *Lie-sphere geometry* provides a unifying concept to deal with all these elements and this will be applied in the following.

A *Lie-sphere* is defined to be either an oriented sphere or an oriented plane or a point in \mathbb{R}^3 . We will use a quadric model \mathcal{L} where Lie-spheres are represented as points and oriented contact between two elements is determined by the *conjugacy relation* with respect to the quadric \mathcal{L} . Envelopes of one-parameter family of Lie-spheres are called *Lie-canal surfaces*. This class of surfaces consists of canal surfaces, together with curves and developable surfaces, as one parameter families of points and oriented planes. All other smooth surfaces are denoted by *general surfaces*, from the sphere geometric point of view.

The computation of the bisector surface of two input surfaces is difficult in general and results in a system of nonlinear equations. We show that if both input surfaces are Lie-canal surfaces or one input surface is a Lie-sphere, the construction of the bisector is either linear or quadratic and we call this an *elementary construction*. Several results about geometric properties of bisector surfaces can be found in [5, 6, 8, 12].

2 The quadric model of Lie-sphere geometry

Let \mathbb{R}^3 be the real Euclidean 3–space. We identify points in \mathbb{R}^3 by their coordinate vectors $\mathbf{x} = (x_1, x_2, x_3)^{\top}$ with respect to a Cartesian coordinate system. The canonical Euclidean dot product is denoted by $\mathbf{x}^{\top} \cdot \mathbf{y}$ and for the squared norm $\|\mathbf{x}\|^2$ of vectors we use also \mathbf{x}^2 .

An oriented sphere $S : (\mathbf{x} - \mathbf{m})^2 - r^2 = 0$ in \mathbb{R}^3 is uniquely determined by its center $\mathbf{m} = (m_1, m_2, m_3)^{\mathsf{T}}$ and its signed radius r. Thus there is a bijective correspondence between points $M = (m_1, m_2, m_3, r)^{\mathsf{T}}$ in \mathbb{R}^4 and oriented spheres in \mathbb{R}^3 . We make the arrangement that positive radii shall represent spheres with normal vectors pointing outwards. Points $\mathbf{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 are considered as spheres of zero radius.

Two spheres S_1 , S_2 with centers \mathbf{m}_1 , \mathbf{m}_2 and radii r_1 , r_2 respectively, are in *oriented contact* if

$$(\mathbf{m}_1 - \mathbf{m}_2)^2 - (r_1 - r_2)^2 = 0.$$
 (1)

An oriented plane E in \mathbb{R}^3 is determined by an equation $e_0 + x_1e_1 + x_2e_2 + x_3e_3 = 0$. We also use the notation $e_0 + \mathbf{e}^\top \cdot \mathbf{x} = 0$ and assume the normalization $\mathbf{e}^\top \cdot \mathbf{e} = 1$, which makes the description unique. An oriented plane $E : e_0 + \mathbf{e}^\top \cdot \mathbf{x} = 0$ is in *oriented contact* to an oriented sphere $S : (\mathbf{x} - \mathbf{m})^2 - r^2 = 0$ exactly if

$$e_0 + \mathbf{e}^{\top} \cdot \mathbf{m} + r = 0$$
, with $\mathbf{e}^{\top} \cdot \mathbf{e} = 1$. (2)

Points and spheres or points and planes are said to be in oriented contact in case of incidence.

A bijective mapping is called a *Lie-transformation* if it maps Lie-spheres to Lie-spheres and preserves oriented contact. These transformations are not necessarily point-preserving, but they can map points to oriented spheres. While \mathbb{R}^4 can be considered as model of Laguerre geometry, where points represent oriented spheres, a point model of Lie-sphere geometry is given by a quadric \mathcal{L} of index 1 in \mathbb{R}^5 , where the index denotes the largest dimension of subspaces contained in the quadric.

Let P^5 be the projective extension of \mathbb{R}^5 . Points in P^5 are denoted by capital bold face letters **X** and are identified with their homogeneous coordinate vectors $\mathbf{X} = (X_0, \ldots, X_5)\mathbb{R}$. The *Lie quadric* \mathcal{L} is determined by the quadratic equation

$$\mathcal{L}: 2X_0X_5 + X_1^2 + X_2^2 + X_3^2 - X_4^2 = 0.$$
 (3)

The correspondence between Lie-spheres X in \mathbb{R}^3 and points $\mathbf{X} \in \mathcal{L} \subset P^5$ is given by the mapping λ ,

sphere
$$(\mathbf{m}, r) \mapsto \mathbf{M} = (1, \mathbf{m}, r, -\frac{1}{2}(\mathbf{m}^2 - r^2))\mathbb{R}$$
,
point $(\mathbf{p}) \mapsto \mathbf{P} = (1, \mathbf{p}, 0, -\frac{1}{2}\mathbf{p}^2)\mathbb{R}$,
plane $(e_0, \mathbf{e}) \mapsto \mathbf{E} = (0, \mathbf{e}, -1, e_0)\mathbb{R}$, with $\|\mathbf{e}\| = 1$.
(4)

Points $\mathbf{x} \in \mathbb{R}^3$ have λ -images \mathbf{X} in $X_4 = 0$, while oriented planes E are mapped to points $\mathbf{E} \in X_0 = 0$. The point $\mathbf{Z} = (0, 0, 0, 0, 0, 1)\mathbb{R}$ does not occur as λ -image of spheres, planes or points of \mathbb{R}^3 but is considered as λ -image of the 'point' ∞ , which is used to compactify \mathbb{R}^3 in the sense of Möbius geometry (one-point compactification). The quadratic cone $X_0 = 0, X_1^2 + X_2^2 + X_3^2 - X_4^2 = 0$ consists of the λ -images of oriented planes and is often referred to as *Blaschke cone (cylinder)*. The quadric $\mathcal{L} \cap X_4 = 0$ is projectively equivalent to S^3 and is a point model of the *Möbius geometry* in \mathbb{R}^3 .

The group of Lie-transformations is represented by the bijective projective transformations $\kappa: P^5 \to P^5$ which map \mathcal{L} onto itself. It is a 15-parametric group and contains the groups of Laguerre transformations and Möbius transformations as subgroups. Laguerre transformations preserve oriented planes and Möbius transformations preserve points.

The mapping λ is quadratic. The projection

$$\pi: \mathcal{L} \to P^3: X_4 = X_5 = 0, \tag{5}$$

with 'center' $\mathbf{Z} \lor (0, 0, 0, 0, 1, 0) \mathbb{R}$ onto P^3 maps a finite point \mathbf{X} with $X_0 \ne 0$ to the center $(X_1/X_0, X_2/X_0, X_3/X_0)$ of the corresponding Liesphere X. This fact shall motivate the special choice of the coordinate system, although the classical literature [1] often uses a different normal form of \mathcal{L} .

The stereographic projection from **Z** onto $X_5 = 0$ leads to a point model of Laguerre geometry not considering the images of oriented planes. We note that \mathbb{R}^4 is considered as Lorentz space with (+++-) as the signature of the corresponding scalar product.

The oriented contact of Lie spheres is determined by the bilinear form

$$\langle \mathbf{X}, \mathbf{Y} \rangle = X_0 Y_5 + X_5 Y_0 + X_1 Y_1 + X_2 Y_2 + X_3 Y_3 - X_4 Y_4,$$
 (6)

with respect to the Lie-quadric \mathcal{L} (3). It is not difficult to show that two Lie-spheres X, Y are in oriented contact exactly if $\langle \mathbf{X}, \mathbf{Y} \rangle = 0$. We note that any oriented plane is in oriented contact with ∞ and oriented spheres or points are never in contact with ∞ .

3 Bisector Constructions

Let *P* and *Q* be two general parametrized oriented surfaces in \mathbb{R}^3 whose λ -image surfaces are parametrized by $\mathbf{P}(u, v)$ and $\mathbf{Q}(s, t)$. A Lie-sphere *X* is tangent to *P* and *Q* if its image point **X** satisfies the linear conjugacy relations

where partial derivatives $\partial F/\partial t$ of a function F are denoted by F_t . Additionally $\langle \mathbf{X}, \mathbf{X} \rangle = 0$ holds, since \mathbf{X} is λ -image of a Lie-sphere. If $X_0 \neq 0$ then the center of the Lie-sphere X is contained in the bisector B of P and Q.

In general the computation of *B* amounts to the problem of eliminating the parameters *u*, *v* and *s*, *t* from the equations (7). This leads to a system of two equations $F(\mathbf{X}) = 0, G(\mathbf{X}) = 0$. Together with $\langle \mathbf{X}, \mathbf{X} \rangle = 0$ this defines a two-dimensional manifold **B** in \mathcal{L} . The projection $B = \pi(\mathbf{B})$ of **B**, $B_0 \neq 0$ onto \mathbb{R}^3 is the bisector surface of the two input surfaces *P* and *Q*.

Consider rational input surfaces P and Q, the elimination leads to rather complicated equations $F(\mathbf{X}) = G(\mathbf{X}) = 0$ even for simple input surfaces. Moreover it is difficult to understand geometric properties of the solution.

3.1 Offset-invariance of the bisector surface

Let P and Q be two surfaces in \mathbb{R}^3 and let B be their bisector surface. We consider offset surfaces P_d and Q_d which are the envelopes of oriented spheres with radii dcentered at P and Q, respectively.

B is the locus of centers of spheres S(u, v) which are tangent to *P* and *Q*. By reducing the radius function of S(u, v) by -d and keeping their centers fixed one obtains a family of spheres tangent to the offset surfaces P_d and Q_d . Thus *B* is also the bisector surface of P_d and Q_d .

The offset surfaces P_d and Q_d are images of P and Q under a Lie-transformation (Laguerre transformation) δ which increases the radius of oriented spheres by d.

3.2 Bisector surfaces of Lie spheres

Let *P* and *Q* be two Lie-spheres $\neq \infty$ in \mathbb{R}^3 which are not in oriented contact. The λ -image **B** of their bisector *B* is the intersection of \mathcal{L} with the 3-space $\langle \mathbf{P}, \mathbf{X} \rangle =$ $\langle \mathbf{Q}, \mathbf{X} \rangle = 0$. In general *B* is a quadric of index 0, but for certain configurations *B* is a plane considered as set of points. This happens if *P*, *Q* are points or spheres with equal radii or if *P*, *Q* are oriented planes.

We consider three Lie-spheres P, Q and R which are not touching each other and compute the set of all Liespheres touching them. The image points **P**, **Q**, **R** define a plane $E \in P^5$ which intersects \mathcal{L} in a conic **C**. The family of spheres C corresponding to **C** envelop a Dupin cyclide Φ in general. The conjugacy conditions

$$\langle {f P}, {f X}
angle = \langle {f Q}, {f X}
angle = \langle {f R}, {f X}
angle = 0$$

define a plane F, the polar plane of E with respect to \mathcal{L} . The conic $\mathbf{D} = F \cap \mathcal{L}$ corresponds to a family of spheres touching the same Dupin cyclide, since Φ admits two generations as canal surface. If P, Q and R are oriented planes in general position, the oriented planes C envelope a cone of revolution Φ and D is the family of spheres touching Φ with centers at Φ 's axis.

4 Lie canal surfaces

One-parameter families of Lie-spheres C(u) correspond to curves $\mathbf{C}(u)$ on \mathcal{L} . We assume sufficient smoothness.

Figure 1: Dupin cyclides

The tangent lines of **C** are $\mathbf{T}(u_0) = \lambda \mathbf{C}(u_0) + \mu \dot{\mathbf{C}}(u_0)$, where $\dot{\mathbf{C}} = d\mathbf{C}/du$.

If $\langle \dot{\mathbf{C}}, \dot{\mathbf{C}} \rangle \ge 0$ holds, these Lie-spheres C(u) envelope a Lie canal surface. This is either a canal surface, a curve in case of $\mathbf{C}_4(u) = 0$ or a developable surface in case of $\mathbf{C}_0(u) = 0$. If $\langle \dot{\mathbf{C}}, \dot{\mathbf{C}} \rangle \le 0$ holds, no real envelope exists.

If $\langle \dot{\mathbf{C}}, \dot{\mathbf{C}} \rangle(u) = 0$ holds identically in an interval, **C** is an *asymptotic curve* in \mathcal{L} . The curve $\mathbf{C}(u) \in \mathcal{L}$ define a one-parameter family of planes E(u) determined by $\mathbf{T} \cap X_0 = 0$ and an incident curve, determined by $\mathbf{T} \cap X_4 = 0$. This is called a *surface strip*.

Lie spheres tangent to C(u) are computed as solutions of

$$\langle \mathbf{C}(u), \mathbf{X} \rangle = 0, \langle \dot{\mathbf{C}}(u), \mathbf{X} \rangle = 0, \langle \mathbf{X}, \mathbf{X} \rangle = 0.$$
 (8)

4.1 Bisector surfaces of two Lie-canalsurfaces

Figure 2: Bisector surfaces of Lie canal surfaces

We are given two Lie-canal-surfaces P and Q with λ images $\mathbf{P}(u)$ and $\mathbf{Q}(v)$ in \mathcal{L} . The bisector surface Bconsists of all centers of oriented spheres X tangent to P and Q. Any solution $\mathbf{B} \in \mathcal{L}$ of

satisfying $\langle \mathbf{X}, \mathbf{X} \rangle = 0$ and $X_0 \neq 0$ projects onto a point $\pi(\mathbf{B})$ of the bisector surface B. For any (u, v) the solution of (9) is a line $\mathbf{G}(u, v)$ in P^5 . Thus we obtain $\mathbf{B}(u, v)$ as intersection $\mathbf{G}(u, v) \cap \mathcal{L}$ which proves

Theorem 1 The bisector surface of two Lie canal surfaces $P, Q \in \mathbb{R}^3$ can be constructed in an elementary way. The parametrization of the bisector B of two Lie canal surfaces is given by square roots. The construction is linear if P and Q are both curves or developable surfaces.

We note that the bisector of two rational developable surfaces or two rational curves is a rational surface since $\mathbf{G}(u, v) \cap \mathcal{L}$ is linear in u, v.

5 Two parametric families of Lie spheres

Two parametric families of Lie-spheres correspond to surfaces $\mathbf{P}(u, v)$ in \mathcal{L} . The tangent space \mathcal{T}^2 is spanned by \mathbf{P} and the derivative points $\mathbf{P}_u, \mathbf{P}_v$. The real intersection $\mathcal{L} \cap \mathcal{T}^2$ can consist of one point, or one or two lines of \mathcal{L} . Of particular interest are the two-dimensional submanifolds $\mathbf{P}(u, v) = (1, \mathbf{p}(u, v), 0, -\frac{1}{2}\mathbf{p}^2(u, v))\mathbb{R}$ of the Möbius-quadric $M = \mathcal{L} \cap y_4 = 0$. Since M is of index 0, \mathcal{T}^2 intersects \mathcal{L} in a single point. This also follows from intersecting $s\mathbf{P}_u + t\mathbf{P}_v$ with \mathcal{L} . Since $\langle \mathbf{P}_u, \mathbf{P}_u \rangle = \mathbf{p}_u^2$, $\langle \mathbf{P}_v, \mathbf{P}_v \rangle = \mathbf{p}_v^2$ and $\langle \mathbf{P}_u, \mathbf{P}_v \rangle = \mathbf{p}_v^\top \cdot \mathbf{p}_v$, we obtain

 $s^2 \mathbf{p}_{\mu}^2 + 2st \mathbf{p}_{\mu}^\top \cdot \mathbf{p}_{\nu} + t^2 \mathbf{p}_{\nu}^2 > 0.$

5.1 Lie-sphere and a parametrized surface

We consider a general parametrized surface $P = \mathbf{p}(u, v)$ with λ -image $\mathbf{P}(u, v)$ in \mathcal{L} and a Lie-sphere \mathbf{Q} . The bisector surface B of P and Q is the projection $\pi(\mathbf{B})$ of the surface $\mathbf{B} \in \mathcal{L}$ which is a solution of

$$\langle \mathbf{P}, \mathbf{X} \rangle = 0, \quad \langle \mathbf{P}_{u}, \mathbf{X} \rangle = 0, \quad \langle \mathbf{P}_{v}, \mathbf{X} \rangle = 0,$$

 $\langle \mathbf{Q}, \mathbf{X} \rangle = 0.$ (10)

Since (10) determines lines $\mathbf{G}(u, v)$ in P^5 , we obtain $\mathbf{B}(u, v) = \mathbf{G}(u, v) \cap \mathcal{L}$. We can state

Theorem 2 The bisector surface of a parametrized surface $P \in \mathbb{R}^3$ and a Lie-sphere Q can be constructed in an elementary way and the parametrization of B involves square roots. If Q is a point or an oriented plane the construction is linear. If P is a rational offset surface, B is rational too.

The bisector surface B of P and an oriented plane E is an anticaustic of P with respect to parallel illumination perpendicular to the plane E.

5.2 Lie canal surface and parametrized surface

Let Q be a Lie canal surface with λ -image L(t) and let P be a general surface whose λ -image has the parametrization P(u, v). We consider a fixed oriented sphere $L(t_0)$. The bisector B_{t_0} of Q and $L(t_0)$ is obtained as projection of the solution $\mathbf{B}_{t_0} \in \mathcal{L}$ of

$$\langle \mathbf{P}, \mathbf{X} \rangle = 0, \qquad \langle \mathbf{P}_{u}, \mathbf{X} \rangle = 0, \quad \langle \mathbf{P}_{v}, \mathbf{X} \rangle = 0, \quad (11)$$

 $\langle \mathbf{L}(t_{0}), \mathbf{X} \rangle = 0.$

Only those points $\mathbf{X} \in \mathbf{B}_{t_0}$ contribute to B which satisfy the linear relation

$$R^4(t_0)$$
: $\langle \mathbf{L}_t(t_0), \mathbf{X} \rangle = 0.$

Performing this for all t leads to a representation of B.

References

- [1] Blaschke, W.: Vorlesungen über Differentialgeometrie III
- [2] Cecil, Th.E.: Lie Sphere Geometry, Springer, New York, 1992.
- [3] Choi, J.J., Kim, M.S. and Elber, G.: Computing Planar Bisector Curves Based on Developbable SSI, research report, Dept. of Comput. Science, Postech, Korea, 1997.
- [4] Coolidge, J.L.: A Treatise on the Circle and the Sphere, Oxford, Clarendon Press, 1916.
- [5] Dutta, D. and Hoffmann, C.: On the Skeleton of Simple CSG objects, ASME J. Mech. Des. 155, 87-94, 1993.
- [6] Elber, G. and Kim, M–S.: The Bisector Surface of Rational Space Curves, ACM Transactions on Graphics, Vol. 17, No. 1, 32–49, 1998.
- [7] Elber, G. and Kim, M–S.: Rational Bisectors of CSG Primitives Proc. of ACM Symp. on Solid Modeling and Applications, Ann Arbor, Michigan, 1999.
- [8] Farouki, R.T. and Johnstone, J.K.: Computing point/curve and curve/curve bisectors, in *The Mathematics of Surfaces V*, (R.B. Fisher, Ed.), Oxford University Press, 327–354, 1994.
- [9] Kim,D-S., Cho, Y. and Kim,D.: Edge-tracing algorithm for Euclidean Voronoi diagram of 3D spheres, Proceedings of the 16th Canadian Conference on Computational Geometry, 2004, 176–179.
- [10] Krasauskas, R. and Mäurer, Ch.: Studying cyclides with Laguerre geometry, submitted to *Computer Aided Geometric Design* 17, 101-126, 1999.
- [11] Müller, E. and Krames, J.: Vorlesungen über Darstellende Geometrie II, Deuticke, Leipzig und Wien, 1929.
- [12] Peternell, M.: Geometric Properties of Bisector Surfaces, Graphical Models 62, 202–236, 2000.
- [13] Pottmann, H. and Peternell, M.: Applications of Laguerre Geometry in CAGD, *Computer Aided Geometric Design* 15, 165–186, 1998.