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The bisector surface B of two smooth input objects P

and Q is the locus of centers of spheres which are tan-

gent to P and Q, respectively. This definition already

indicates that methods from sphere geometry, in partic-

ular Lie-sphere geometry apply nicely to the construc-

tion of these surfaces. The computation of bisector

surfaces of general input surfaces results in the solution

of a system of nonlinear equations. We show that if

both surfaces are canal surfaces or if one surface is a

Lie-sphere, the construction is elementary.

1 Introduction

Given two geometric objects P and Q in Euclidean 3–

space R3, their bisector B is defined as locus of equidis-

tant points from P and Q. Since distances are measured

orthogonal to both objects, the bisector B is the set of

centers of spheres touching both P and Q. We do not

require that the distance from B to P and Q is min-

imal and discuss only the untrimmed bisector, see [8].

The objects P and Q shall be points, smooth curves and

surfaces.

A possible method to study bisectors in R3 from a

sphere-geometric point of view uses concepts from La-

guerre geometry. A detailed description of the planar

case is given in [11], general monographs on sphere ge-

ometry are for instance [2, 4] and a brief introduction

and some details are given in [13]. Within Laguerre ge-

ometry one still distinguishes between oriented spheres

and oriented planes. Lie-sphere geometry provides a uni-

fying concept to deal with all these elements and this

will be applied in the following.

A Lie-sphere is defined to be either an oriented sphere

or an oriented plane or a point in R3. We will use a

quadric model L where Lie-spheres are represented as

points and oriented contact between two elements is

determined by the conjugacy relation with respect to

the quadric L. Envelopes of one-parameter family of

Lie-spheres are called Lie-canal surfaces. This class of

surfaces consists of canal surfaces, together with curves

and developable surfaces, as one parameter families of

points and oriented planes. All other smooth surfaces

are denoted by general surfaces, from the sphere geo-

metric point of view.

The computation of the bisector surface of two input

surfaces is difficult in general and results in a system

of nonlinear equations. We show that if both input

surfaces are Lie-canal surfaces or one input surface is

a Lie-sphere, the construction of the bisector is either

linear or quadratic and we call this an elementary con-

struction. Several results about geometric properties of

bisector surfaces can be found in [5, 6, 8, 12].

2 The quadric model of Lie-sphere

geometry

Let R3 be the real Euclidean 3–space. We identify points

in R3 by their coordinate vectors x = (x1, x2, x3)
⊤ with

respect to a Cartesian coordinate system. The canonical

Euclidean dot product is denoted by x⊤ · y and for the

squared norm ‖x‖2 of vectors we use also x2.

An oriented sphere S : (x − m)2 − r 2 = 0 in R3 is

uniquely determined by its center m = (m1, m2, m3)
⊤

and its signed radius r . Thus there is a bijective corre-

spondence between points M = (m1, m2, m3, r )
⊤ in R4

and oriented spheres in R3. We make the arrangement

that positive radii shall represent spheres with normal

vectors pointing outwards. Points x = (x1, x2, x3) in R
3

are considered as spheres of zero radius.

Two spheres S1, S2 with centers m1,m2 and radii r1, r2
respectively, are in oriented contact if

(m1 −m2)
2 − (r1 − r2)

2 = 0. (1)

An oriented plane E in R3 is determined by an equation

e0 + x1e1 + x2e2 + x3e3 = 0. We also use the notation

e0+e
⊤ ·x = 0 and assume the normalization e⊤ ·e = 1,

which makes the description unique. An oriented plane

E : e0 + e
⊤ · x = 0 is in oriented contact to an oriented

sphere S : (x−m)2 − r 2 = 0 exactly if

e0 + e
⊤ ·m+ r = 0, with e⊤ · e = 1. (2)
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Points and spheres or points and planes are said to be

in oriented contact in case of incidence.

A bijective mapping is called a Lie-transformation if

it maps Lie-spheres to Lie-spheres and preserves ori-

ented contact. These transformations are not neces-

sarily point-preserving, but they can map points to ori-

ented spheres. While R4 can be considered as model

of Laguerre geometry, where points represent oriented

spheres, a point model of Lie-sphere geometry is given

by a quadric L of index 1 in R5, where the index de-

notes the largest dimension of subspaces contained in

the quadric.

Let P 5 be the projective extension of R5. Points in

P 5 are denoted by capital bold face letters X and are

identified with their homogeneous coordinate vectors

X = (X0, . . . , X5)R. The Lie quadric L is determined

by the quadratic equation

L : 2X0X5 +X
2
1 +X

2
2 +X

2
3 −X

2
4 = 0. (3)

The correspondence between Lie-spheres X in R3 and

points X ∈ L ⊂ P 5 is given by the mapping λ,

sphere (m, r ) 7→M = (1,m, r,− 12(m
2 − r 2))R,

point (p) 7→ P = (1,p, 0,− 12p
2)R,

plane (e0, e) 7→ E = (0, e,−1, e0)R, with ‖e‖ = 1.
(4)

Points x ∈ R3 have λ-images X in X4 = 0, while ori-

ented planes E are mapped to points E ∈ X0 = 0.

The point Z = (0, 0, 0, 0, 0, 1)R does not occur as λ-

image of spheres, planes or points of R3 but is con-

sidered as λ-image of the ’point’ ∞, which is used to

compactify R3 in the sense of Möbius geometry (one-

point compactification). The quadratic cone X0 =

0, X21 + X
2
2 + X

2
3 − X

2
4 = 0 consists of the λ-images

of oriented planes and is often referred to as Blaschke

cone (cylinder). The quadric L ∩ X4 = 0 is projectively

equivalent to S3 and is a point model of the Möbius

geometry in R3.

The group of Lie-transformations is represented by the

bijective projective transformations κ : P 5 → P 5 which

map L onto itself. It is a 15-parametric group and

contains the groups of Laguerre transformations and

Möbius transformations as subgroups. Laguerre trans-

formations preserve oriented planes and Möbius trans-

formations preserve points.

The mapping λ is quadratic. The projection

π : L → P 3 : X4 = X5 = 0, (5)

with ’center’ Z ∨ (0, 0, 0, 0, 1, 0)R onto P 3 maps

a finite point X with X0 6= 0 to the cen-

ter (X1/X0, X2/X0, X3/X0) of the corresponding Lie-

sphere X. This fact shall motivate the special choice of

the coordinate system, although the classical literature

[1] often uses a different normal form of L.

The stereographic projection from Z onto X5 = 0 leads

to a point model of Laguerre geometry not considering

the images of oriented planes. We note that R4 is con-

sidered as Lorentz space with (+++−) as the signature

of the corresponding scalar product.

The oriented contact of Lie spheres is determined by

the bilinear form

〈X,Y〉 = X0Y5+X5Y0+X1Y1+X2Y2+X3Y3−X4Y4, (6)

with respect to the Lie-quadric L (3). It is not difficult

to show that two Lie-spheres X, Y are in oriented con-

tact exactly if 〈X,Y〉 = 0. We note that any oriented

plane is in oriented contact with∞ and oriented spheres

or points are never in contact with ∞.

3 Bisector Constructions

Let P and Q be two general parametrized oriented sur-

faces in R3 whose λ-image surfaces are parametrized by

P(u, v) and Q(s, t). A Lie-sphere X is tangent to P

and Q if its image point X satisfies the linear conjugacy

relations

〈P,X〉 = 0, 〈Pu,X〉 = 0, 〈Pv ,X〉 = 0,

〈Q,X〉 = 0, 〈Qs ,X〉 = 0, 〈Qt ,X〉 = 0,
(7)

where partial derivatives ∂F/∂t of a function F are de-

noted by Ft . Additionally 〈X,X〉 = 0 holds, since X is

λ-image of a Lie-sphere. If X0 6= 0 then the center of

the Lie-sphere X is contained in the bisector B of Pand

Q.

In general the computation of B amounts to the prob-

lem of eliminating the parameters u, v and s, t from the

equations (7). This leads to a system of two equations

F (X) = 0, G(X) = 0. Together with 〈X,X〉 = 0 this

defines a two-dimensional manifold B in L. The projec-

tion B = π(B) of B, B0 6= 0 onto R
3 is the bisector

surface of the two input surfaces P and Q.

Consider rational input surfaces P and Q, the elimi-

nation leads to rather complicated equations F (X) =

G(X) = 0 even for simple input surfaces. Moreover

it is difficult to understand geometric properties of the

solution.
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3.1 Offset-invariance of the bisector sur-

face

Let P and Q be two surfaces in R3 and let B be their

bisector surface. We consider offset surfaces Pd and Qd
which are the envelopes of oriented spheres with radii d

centered at P and Q, respectively.

B is the locus of centers of spheres S(u, v) which are

tangent to P and Q. By reducing the radius function

of S(u, v) by −d and keeping their centers fixed one

obtains a family of spheres tangent to the offset surfaces

Pd and Qd . Thus B is also the bisector surface of Pd
and Qd .

The offset surfaces Pd and Qd are images of P and Q

under a Lie-transformation (Laguerre transformation) δ

which increases the radius of oriented spheres by d .

3.2 Bisector surfaces of Lie spheres

Let P and Q be two Lie-spheres 6= ∞ in R3 which are

not in oriented contact. The λ-image B of their bisector

B is the intersection of L with the 3-space 〈P,X〉 =

〈Q,X〉 = 0. In general B is a quadric of index 0, but for

certain configurations B is a plane considered as set of

points. This happens if P,Q are points or spheres with

equal radii or if P,Q are oriented planes.

We consider three Lie-spheres P,Q and R which are

not touching each other and compute the set of all Lie-

spheres touching them. The image points P,Q,R define

a plane E ∈ P 5 which intersects L in a conic C. The

family of spheres C corresponding to C envelop a Dupin

cyclide Φ in general. The conjugacy conditions

〈P,X〉 = 〈Q,X〉 = 〈R,X〉 = 0

define a plane F , the polar plane of E with respect to

L. The conic D = F ∩ L corresponds to a family of

spheres touching the same Dupin cyclide, since Φ admits

two generations as canal surface. If P,Q and R are

oriented planes in general position, the oriented planes

C envelope a cone of revolution Φ and D is the family

of spheres touching Φ with centers at Φ’s axis.

4 Lie canal surfaces

One-parameter families of Lie-spheres C(u) correspond

to curves C(u) on L. We assume sufficient smoothness.

Figure 1: Dupin cyclides

The tangent lines of C are T(u0) = λC(u0) + µĊ(u0),

where Ċ = dC/du.

If 〈Ċ, Ċ〉 ≥ 0 holds, these Lie-spheres C(u) envelope a

Lie canal surface. This is either a canal surface, a curve

in case of C4(u) = 0 or a developable surface in case of

C0(u) = 0. If 〈Ċ, Ċ〉 ≤ 0 holds, no real envelope exists.

If 〈Ċ, Ċ〉(u) = 0 holds identically in an interval, C is

an asymptotic curve in L. The curve C(u) ∈ L define

a one-parameter family of planes E(u) determined by

T ∩ X0 = 0 and an incident curve, determined by T ∩

X4 = 0. This is called a surface strip.

Lie spheres tangent to C(u) are computed as solutions

of

〈C(u),X〉 = 0, 〈Ċ(u),X〉 = 0, 〈X,X〉 = 0. (8)

4.1 Bisector surfaces of two Lie-canal-

surfaces

P B Q P
B

Q

Figure 2: Bisector surfaces of Lie canal surfaces

We are given two Lie-canal-surfaces P and Q with λ-

images P(u) and Q(v) in L. The bisector surface B

consists of all centers of oriented spheres X tangent to

P and Q. Any solution B ∈ L of

〈P,X〉 = 0, 〈dP/du,X〉 = 0,

〈Q,X〉 = 0, 〈dQ/dv ,X〉 = 0,
(9)

satisfying 〈X,X〉 = 0 and X0 6= 0 projects onto a point

π(B) of the bisector surface B. For any (u, v) the so-

lution of (9) is a line G(u, v) in P 5. Thus we obtain

B(u, v) as intersection G(u, v) ∩ L which proves
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Theorem 1 The bisector surface of two Lie canal sur-

faces P,Q ∈ R3 can be constructed in an elementary

way. The parametrization of the bisector B of two Lie

canal surfaces is given by square roots. The construc-

tion is linear if P and Q are both curves or developable

surfaces.

We note that the bisector of two rational developable

surfaces or two rational curves is a rational surface since

G(u, v) ∩ L is linear in u, v .

5 Two parametric families of Lie

spheres

Two parametric families of Lie-spheres correspond to

surfaces P(u, v) in L. The tangent space T 2 is spanned

by P and the derivative points Pu,Pv . The real intersec-

tion L∩T 2 can consist of one point, or one or two lines

of L. Of particular interest are the two-dimensional sub-

manifolds P(u, v) = (1,p(u, v), 0,− 12p
2(u, v))R of the

Möbius-quadric M = L∩ y4 = 0. Since M is of index 0,

T 2 intersects L in a single point. This also follows from

intersecting sPu + tPv with L. Since 〈Pu,Pu〉 = p
2
u,

〈Pv ,Pv 〉 = p
2
v and 〈Pu,Pv 〉 = p

⊤
v · pv , we obtain

s2p2
u
+ 2stp⊤

u
· pv + t

2p2
v
> 0.

5.1 Lie-sphere and a parametrized surface

We consider a general parametrized surface P = p(u, v)

with λ-image P(u, v) in L and a Lie-sphere Q. The

bisector surface B of P and Q is the projection π(B) of

the surface B ∈ L which is a solution of

〈P,X〉 = 0, 〈Pu ,X〉 = 0, 〈Pv ,X〉 = 0,

〈Q,X〉 = 0.
(10)

Since (10) determines lines G(u, v) in P 5, we obtain

B(u, v) = G(u, v) ∩ L. We can state

Theorem 2 The bisector surface of a parametrized sur-

face P ∈ R3 and a Lie-sphere Q can be constructed in

an elementary way and the parametrization of B involves

square roots. If Q is a point or an oriented plane the

construction is linear. If P is a rational offset surface,

B is rational too.

The bisector surface B of P and an oriented plane E is

an anticaustic of P with respect to parallel illumination

perpendicular to the plane E.

5.2 Lie canal surface and parametrized

surface

Let Q be a Lie canal surface with λ-image L(t) and let P

be a general surface whose λ-image has the parametriza-

tion P(u, v). We consider a fixed oriented sphere L(t0).

The bisector Bt0 ofQ and L(t0) is obtained as projection

of the solution Bt0 ∈ L of

〈P,X〉 = 0, 〈Pu ,X〉 = 0, 〈Pv ,X〉 = 0,

〈L(t0),X〉 = 0.
(11)

Only those points X ∈ Bt0 contribute to B which satisfy

the linear relation

R4(t0) : 〈Lt(t0),X〉 = 0.

Performing this for all t leads to a representation of B.
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