
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2005 ACM 1-59593-203-6/05/0005 $5.00

A geometric idea to solve the eikonal equation

Martin Peternell∗

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Tibor Steiner†

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Abstract

Given a closed plane curve c(t) = (c1,c2)(t) ∈ R
2 and associated

function values g(t) we present a geometric idea and an algorithm to
solve the equation ‖∇ f‖ = a = const. with respect to the boundary
values g(t) along the boundary c(t). This is equivalent to finding
a developable surface D of constant slope a = tanα through the
spatial curve C determined by (c1,c2,g)(t). The presented method
constructs level curves of the surface D. We put some emphasis on
the treatment of the singularities of the solution which are D’s self
intersections.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; J.6 [Computer–Aided Engineering]: Computer–
Aided Design—(CAD)

Keywords: developable surface, distance function, eikonal equa-
tion, level curves.

1 Introduction

This article presents geometric ideas to solve the eikonal equation
‖∇ f‖ = a = const. for given boundary data. These data consist of
a closed plane curve c = (c1,c2)(t) ∈ R

2 and function values g(t)
along c.

The eikonal equation is a well studied subject in numerical analysis.
The fast marching [Sethian 1999] and fast sweeping [Osher and
Fedkiw 2003] methods are probably the most famous techniques
in this context. Often the eikonal equation ‖∇ f‖ = a = const. is
solved for given boundary data consisting of an interface in the form
of a curve c ∈ R

2 and g = 0 along c. The construction of a solution
is equivalent to evaluate the distance function of the curve c, which
is in fact a planar problem.

The solution to the eikonal equation is known in advance, or more
precisely, the solution f (x,y) determines a developable surface D
of constant slope a, where D is represented by the graph surface
(x,y, f (x,y)). Since geometric properties of developable surfaces
of constant slope are quite well understood, we present a technique
motivated by the constructive geometric properties of these sur-
faces. We will discuss the special case of boundary values g = 0
along the boundary curve c, but this paper focuses on the more
general case where these values g(t) are not constant. Thus, D is
a surface of constant slope through the spatial curve C given by

∗e-mail: martin@geometrie.tuwien.ac.at
†e-mail: tibor@geometrie.tuwien.ac.at

(c1,c2,g)(t). The function γ(t) = ġ(t)/‖ċ(t)‖ along the boundary
curve c is the slope of the spatial curve C, i.e. the slope of its tan-
gent lines. Real solutions exist exactly if |γ(t)| ≤ a holds for all t.
Particular emphasis will be laid on the treatment of the singularities
of f which are represented by the self intersections of D.

The proposed method computes level curves of the developable sur-
face D at prescribed heights. Each surface strip of D which lies be-
tween two adjacent level curves is represented as a triangular mesh.
This idea is a generalization of a scan-line algorithm and uses a
moving horizontal plane instead of the line. The horizontal level
curves will be trimmed. This leads to a smoothing of the singulari-
ties of the surface D, and finally we study methods to improve the
shape of D near these self intersections.

This research has been motivated by a project with a civil engi-
neering company for the planning of artificial terrain of roads and
excavations. The primary problem has been the following: Con-
sider a digital terrain model and a curve or a polygon C. We want
to construct a developable surface D of constant slope (with respect
to the horizontal planes) which passes through the given curve C.
Thereby, C is considered as the boundary of a road or of an exca-
vation. The surface D has to be represented by a triangulation and
the intersection of D and the given terrain has to be computed. If
the slope γ of C is small, like for the boundary of a road, one can
use a modification or correction of the method for horizontal input
curves c (evaluation of the distance function).

The paper is organized as follows: In section 2 we briefly recall
some geometric properties of developable surfaces. Sections 3 and
4 describe the practical implementation issues for horizontal and
general input curves, respectively. Finally, section 5 deals with the
handling of global self intersections.

2 Some mathematical background

The discussion of geometric properties of developable surfaces of
constant slope distinguishes between horizontal boundary curves
(g = 0) and general boundary curves C with g(t) 6= 0. Throughout
the paper we assume that C’s slope satisfies |γ(t)| ≤ a with a > 0.

2.1 Plane input curve

Let C be a given horizontal curve, lying in a plane E : z = z0, and
let D be the developable surface of constant slope a = tanα passing
through C. The slope of D’s tangent planes equals a and so D can
be generated as the envelope of planes with slope a passing through
the tangent lines of C. The surface D is the graph of the function

f (x) = z0 ±dist(x,p′) tanα, (1)

where x = (x,y,0) is an arbitrary query point in the xy-plane,
p = (p1, p2,z0)∈C is the closest point to x and α with 0 < α < π/2
is the angle between D’s tangent planes and the xy-plane. The pro-
jection of p ∈C onto z = 0 is denoted by p′ = (p1, p2,0) ∈C′. The
function f (x) satisfies

‖∇ f‖ = tanα. (2)

43

For α = π/4, (2) is called eikonal equation. This can always be
achieved by an appropriate scaling of the function values. Because
of the occurring singularities, f is a solution in the weak sense.

The surface D consists of two sheets D−,D+ which are given by
the different signs in (1). Concerning the applications, we are only
interested in one of these two solutions and denote it by D.

Fig. 1 shows a strip of a developable surface of constant slope
through a closed curve C.

PSfrag replacements

C p

p′
x

D

C′ α

PSfrag replacements

Cp
p′

x
D
C′

α

Figure 1: Left: Developable surface through an ellipse C, eval-
uation of the distance function of C′ at x. Right: Ellipse with
untrimmed interior offset curves.

The geometric properties of developable surfaces are well known,
and can be found in many textbooks, see for instance [Pottmann
and Wallner 2001]. We list some important facts:

• The developable surface D of constant slope a through C is
the envelope of cones of revolution G with slope a, whose
vertices move along C, see Fig. 2.

• The surface D is the envelope of a one-parameter family of
planes which are tangent to D and G along the generating lines
of D. Thus, D is also generated by these lines.

PSfrag replacements

C

K− D−

K+

D+

PSfrag replacements C

K−
D− K+

D+

Figure 2: Top view and axonometric view of the developable sur-
face through a horizontal curve, tangent cone and tangent planes
along two generators.

• The vertical projections of the contour lines of D onto the xy-
plane are offset curves of the projection of the input curve C′.
The singularities of the untrimmed offset curves are located at
the evolute C∗ of C′.

• The evolute C∗ is the vertical projection of the singular curve
S of D onto the xy-plane.

• The medial axis M of C′ is the orthogonal projection of those
parts of the self intersection S of the surface D onto the xy-
plane which are visible from above.

• The normals of the curve C′ are the vertical projections of the
generating lines of the surface D. These normals envelope the
projection S′ of the singular curve S of D.

2.2 Spatial input curve

Let C be a spatial curve, parametrized by (c1,c2,g)(t) and let D be
a developable surface of constant slope a through C. In order to

obtain real solutions for D, it has to be required that |γ| ≤ a, where
γ = ġ(t)/‖ċ(t)‖ denotes C’s slope and c(t) = (c1,c2)(t).

The surface D is represented as graph (x,y, f) of a function f =
f (x,y) which solves the eikonal equation ‖∇ f‖ = a and satisfies
the boundary condition f (c1,c2) = g for all points (c1,c2) on the
projection C′ of C.

PSfrag replacements

CK− D−

K+

D+

PSfrag replacements C

K−

D−
K+

D+

Figure 3: Developable surface through a space curve C with level
curves K+, K− of the two sheets D+, D−. Tangent cone and tangent
planes along two generators.

Fig. 3 shows a top view and an axonometric view of the two sheets
D+, D− of a developable surface through a general space curve C.
The level curves in the plane H are denoted by K+, K−. We observe
the following properties of D:

• The developable surface D of constant slope a through C is
the envelope of cones of revolution G with slope a, whose
vertices move on C.

• The surface D is the envelope of a one-parameter family of
planes of slope a which pass through C’s tangent lines. These
planes are tangent to D along its generating lines, and are tan-
gent to the cones G, too. Thus, D contains a one parameter
family of lines with constant tangent planes along them.

• The generating lines are tangent to the singular curve S of D,
their orthogonal projections are tangent to the projection S′,
see Fig. 4.

• The generating lines are orthogonal trajectories of D’s level
curves.

Fig. 4 shows a top view and an axonometric view of a devel-
opable surface of constant slope passing through a (non-horizontal)
parabola C.

PSfrag replacements

C
S S D

PSfrag replacements

C

S

S

D

Figure 4: Developable surface D through a space curve C. The sin-
gular curve S (curve of regression) is displayed in dotted linestyle.
Generating lines and level curves are shown.

3 The practical implementation for hori-

zontal input curves

Now we go into more detail concerning the practical implementa-
tion. Given a horizontal input curve C, lying in the plane E : z = z0,

44

we want to compute the developable surface D of constant slope
a = tanα passing through C. We assume that C is given by a list
of (ordered) data points pi = (xi,yi,z0), i = 1, . . . ,M. This sam-
pling has to be dense enough to represent all important features of
the curve. For convenience we describe the construction for simple
closed input curves only.

The algorithm consists of three main steps:

• Define a domain U for the evaluation of the function f which
determines the surface D.

• Define query points x = (x,y) to evaluate the distance function
of the curve C′ and compute f .

• Represent D by a triangular mesh with points (x,y, f (x,y)) as
vertices. The boundary curves of U are constraints for the
triangulation.

3.1 Details of the implementation

Domain U: The shape and the size of the domain U are mainly
determined by the application. If no requirements are made,
U can be bounded by C′ and a trimmed offset curve C′

d of C′

for a suitably chosen distance d.

Query points: The query points x ∈ U are chosen as points on a
regular grid. The grid size shall not exceed the average seg-
ment length of C. We propose to start with a dense sampling
of the input curve C, since the number of input data points is
much smaller than the number of grid points x for evaluation
of the distance function. By refining the grid it is possible to
improve the accuracy of the representation of the surface D.

Evaluation of the distance function: Assume we have chosen N
query points x ∈U , we evaluate the distance dist(x,p′) where
p′ is the closest point to x on C′. The function f which defines
D, evaluates to

f (x) = z0 −dist(x,p′) tanα. (3)

The closest point p′ is computed as nearest neighbor to the
query point x. For this, one may use the implementation of
D. Mount [Arya et al. 1998].

Constrained triangulation: The surface is represented by a con-
strained triangular network TD which shall contain also the
list of segments of the boundary curves C and Q as edges of
the triangulation. Here, Q is the intersection of the vertical
cylinder through C′

d with D. The z-values of Q are computed
by z0 − d tan α . Our test implementation uses the program
Triangle by J.R. Shewchuk, see [Shewchuk 1996; Shewchuk
2002].

PSfrag replacements

C

Q

D
C′

C′
d

PSfrag replacements

C
Q
D

C′

C′
d

Figure 5: Left: Triangular representation of the developable surface
through a horizontal curve C. Rigth: Projection C′ and trimmed
offset curves C′

d for different distances.

Fig. 5 shows an axonometric view of the developable surface D of
constant slope a = 1 through the curve C. The domain of evaluation
U is bounded by the top view C′ of the input curve C and a trimmed
offset C′

d at a certain distance. The right hand side figure shows
different trimmed offset curves C′

d of the top view C′ of the input
curve C.

What we did not discuss so far is the trimming operation of offset
curves. An approach which is based on triangulations and which
works well in our framework will be discussed in the next section.

3.2 Trimming of offset curves

We are given a discretized input curve C′ by a list of points pi, i =
1, . . . ,M which form a simple polygon. The trimmed offset curve
C′

d at signed distance d is to be computed and has to be free of self
intersections.

To trim the offset curves we apply a triangulation based approach.
For all segments pipi+1, with i = 1, . . . ,M we compute the paral-
lel segment qiqi+1 at oriented distance d with qi = pi + dni and
ni as unit normal of the i-th segment. The end points of the trans-
lated segments do not conincide in general but these segments will
intersect or there will be gaps between them, see Fig. 6.

Instead of translating segments one can move the vertices pi to po-
sitions qi = pi + dni, where ni is the average normal of adjacent
segments of pi. Trimming of the offsets is necessary in both cases.

PSfrag replacements
pi

qi

C′

C′
d

PSfrag replacements

pi

qi

C′

C′
d

Figure 6: Parallel segments in convex and non-convex regions of
the input curve C′.

The end points of the translated segments qiqi+1 are collected to
form a curve C̃d which usually has self intersections. To trim these
self intersections, we perform a constrained triangulation with the
data points pi,qi as input points and the segments of these curves
as constraint segments of the triangulation. The exterior boundary
of the triangular net is then a sufficiently good representation of the
trimmed offset curve C′

d of C′, see right hand side of Fig. 5. The
intersection points of crossing segments qiqi+1 are computed and
inserted as additional data points.

The advantages of this method are its good performance and the fact
that it works for all input curves and offset distances. Obviously,
the point density of C plays an important role and we want to note
that the sampling in highly curved regions of C′ should be dense
enough, to represent all features of the curve. In order to guarantee
a similar point density on the trimmed offset, C′

d can be resampled.

45

4 The practical implementation for spatial

input curves

We have already noted that the developable surface D of constant
slope a through C will be represented by a triangular mesh based
on the level curves of D. The input curve C is given by a list of data
points pi ∈ R

3. The method we propose is a generalization of a
scan-line algorithm. In 2D, a y-parallel line is moved in x-direction
and certain events, like when the moving line touches the object, are
considered. The type of events depends on the type of application.

The basic idea is the following: We consider a horizontal plane
H : z = c and move this plane from above downwards, in several
steps. These planes carry the level curves of D. We start at a level,
where H is entirely above the input curve C, passing by the levels
where H intersects C, and let it move downwards to a level where
H is entirely below C. If H is completely above the curve C, noth-
ing notable happens. If H intersects C, then H also intersects the
developable surface D and K = D∩H is a level curve of D. All the
level curves K project to top views K′ which are offset curves of
each other.

Figure 7: Top view and axonometric view of the trimmed level
curves of a developable surface.

Now we consider D as the envelope of its generating lines L. It is
quite obvious that we can replace C by one of the level curves K and
the envelope D will not change. Thus, we can also replace parts of
C by appropriate horizontal curve segments G j ⊂ D being defined
later. In order to represent those parts and self intersections of D
which are visible from above, the level curves will be trimmed, see
Fig. 7.

The basic steps of the algorithm are the following. At first we
choose n + 1 levels z0,z1, . . . ,zn, where zn ≥ zmax. Let F = C be
the input curve. Within a loop over all z-levels starting from zn−1
down to z0, we proceed as follows:

1. Determine those parts A j of F which lie above the current
level H : z = zi.

2. Pass the developable surface patches D j through the curve
segments A j and compute the intersection G j = D j ∩H of
the patch D j and the current level H, see Fig. 8.

3. Trim the horizontal curve segments G j .

4. Replace the curve segments A j in F by the horizontal curve
segments G j and store this collection as curve Ei. Define this
as new input curve F = Ei.

5. Choose the next z-level and restart at 1.

This construction yields a list of curves Ei which are defined during
the above loop. Each curve Ei consists of horizontal components at
the level z = zi and possibly of components lying below the current

level. The components below the level are part of the original input
curve C.

Finally a constrained triangulation is performed with C and Ei, i =
1, . . . ,n− 1 as input. The data points as well as the segments of C
and Ei are considered, in order to represent D’s level curves exactly.

4.1 Details for general input curves

PSfrag replacements

A1

A2

A3

G1
G2
G3

B1

B2

B3

B4

PSfrag replacements

A1

A2

A3

G1

G2

G3

B1

B2

B3

B4

PSfrag replacements
A1
A2
A3
G1
G2
G3
B1
B2
B3
B4

PSfrag replacements
A1
A2
A3

G1

G2

G3
B1
B2
B3
B4

Figure 8: Components A j of C above the current level and corre-
sponding horizontal components G j. Top: top views. Bottom: front
view and axonometric view.

Determine parts of C above H: We compute those curve parts of
C which are above the current z-level Hi : z = zi. The intersec-
tion points C∩Hi are computed and are inserted into the list
of data points pi representing C. Thus, the curve is split into
a list of curve components A1, . . . ,Aa, B1, . . . ,Bb. We store
these curve components in the right ordering, but with flags
telling which component is above the current z-level.

Developable surface through a curve: For each curve compo-
nent A j the generating lines of the developable surface patch
D j passing through A j are considered. The intersection points
of these lines and the current plane H determine the curve arc
G j = D j ∩H. Since the end points of the components A j are
contained in H, the arcs A j and G j agree in their end points.

Trimming of the horizontal curve G j: G j is stored as a list of
segments, similar to the offset curve construction. These seg-
ments overlap in non convex regions of the input curve A j,
and thus have to be trimmed. The applied procedure is similar
to the one which is used for trimming offset curves.

Replace A j by the horizontal curve G j: We substitute the com-
ponents A j by the trimmed curve components G j and store
the collection as new input curve for the next step in the con-
struction. Fig. 8 illustrates this procedure showing top view
and front views of the curve components.

Constrained triangulation: A constrained triangulation is per-
formed with data points and segments of the input curve C
and level curves Ki as input.

Fig. 9 shows the top views of C and the level curves K1, . . . ,K4
on the left hand side and the axonometric view of the triangulation
representing D on the right hand side. Most of the triangles shown
in Fig. 9 have the correct slope, but close to the self intersection the

46

PSfrag replacements

C

K1K2

K4
K3

PSfrag replacements

C
K1
K2
K4
K3

Figure 9: Top view of level curves and axonometric view of the
triangular representation of the developable surface D.

Figure 10: Triangles of wrong slope of Fig. 9.

triangles are not correct. In Fig. 10 all triangles are shaded whose
slope differs from the required slope a by more than 1◦.

We describe some possibilities to improve the representation of the
developable surface. The first and obvious one is to increase the
number of level curves which are computed in the construction.
We want to note that the level curve computation is costly and it
is always desirable to minimize the number of level curves which
have to be computed. Results on increasing the number of level
curves and the limitations of the currently implemented version are
displayed in Fig. 11. Since the computed level curves are restricted
to possess one component only, relevant parts of them are trimmed.
These parts are denoted by X and Y in Fig. 11. Thus even by in-
creasing the number of level curves, the developable surface con-
tains horizontal triangles in these regions (X and Y). To solve this
problem and to model these features, the method has to be extended
in the way that level curves can consist of more than one compo-
nent.

Alternative methods which increase the number of evaluation points
locally or which try to compute the self intersection, are discussed
in the next section.

5 Handling self intersections

Let T be a triangulation of a developable surface as shown in
Fig. 10. We propose a method to improve the representation of the
surface near self intersections. For that the resolution is increased in
regions containing nearly horizontal triangles. The concept works
as follows:

PSfrag replacements

X Y

PSfrag replacements

X Y

PSfrag replacements

X Y

PSfrag replacements

X Y

Figure 11: Top view of level curves and the triangular representa-
tion of a developable surface.

PSfrag replacements

C

PSfrag replacements

C

Figure 12: Left: Top view of selected grid points. Right: Improved
representation of selected region.

• Find nearly horizontal triangles and mark them. Determine
connected components of the marked triangles at height zi.

• For each connected component we use a fine grid and pick
those grid points which are contained in the component.

• Compute new function values for the chosen grid points. This
is similar to the case of horizontal input curves. Since each
connected component of marked triangles is at constant height
zi, nearly all segments of its boundary are contained in the
level curves Ki of D. Thus, the new function values are
computed as shortest distances from segments of these level
curves, see Fig. 12.

Another method to improve the behavior of the surface close to the
singularities tries to model the self intersections. To perform this
one can proceed as follows:

• Find triangles with wrong slope and mark them. Determine
connected components of the marked triangles.

• For each connected component Ri we determine its boundary
bi. If the shape of component Ri is curve-like, we compute its
medial axis mi. This medial axis can have different branches,
depending on whether Ri is a simple curve-like shape or not.
The boundary bi of Ri consists of parts of level curves and
parts of the given input curve C.

47

• Assume that mi is a simple curve and consists only of one
branch, see Fig. 13. Now we consider vertical planes per-
pendicular to the medial axis mi and denote them as profile-
planes. Each profile-plane intersects the boundary bi of Ri in
at least two points b1,b2. Now we consider lines l1, l2 with
slope a (same slope as the surface) through these boundary
points b1,b2. As these lines lie close to the developable sur-
face D, their intersection point s lies close to the self intersec-
tion of D.

• Build a polygon S from these intersection points s and use
S as a constraint boundary for the final triangulation of the
developable surface D.

We note that this method can be applied to a region Ri whose medial
axis mi consists of several branches. According to our experience
this can become arbitrarily complicated and we propose to use the
previous method (refinement of the region by using a regular grid)
in these cases.

PSfrag replacements

C

PSfrag replacements

C

PSfrag replacements

C

Figure 13: Self intersections of developable surfaces

Conclusion

So far we have presented methods to compute the developable sur-
face D of constant slope a through a curve C. If C lies in a horizontal
plane, the task is simply solved by evaluating the distance function
of the top view C′ of C. In case of general input curves we have
proposed a generalization of scan-line algorithms by stepwise com-
putation of the trimmed level curves of the developable surface D.
By triangulating these level curves we obtain useful models for the
developable surface D.

The test implementation has been performed in Matlab. The con-
strained triangulation and the nearest neighbors are computed with
help of the programs Triangle by J.R. Shewchuk and ANN (approx-
imate nearest neighbor searching) by D. Mount.

In applications it is often required to compute a developement of
a developable surface D or to compute the volume enclosed by D
(represented by f (x,y)) and a horizontal plane. At least the com-
putation of volumes can be carried out in a straightforward man-
ner using the proposed representation of D. The development to a
plane works basically but close to self intersections the developa-
bility condition might not be fulfilled.

Acknowledgements: This work has been carried out partially within
the Kplus competence center Advanced Computer Vision.

References

ARYA, S., MOUNT, D. M., NETANYAHU, N. S., SILVERMAN, R.,
AND WU, A. Y. 1998. An optimal algorithm for approximate
nearest neighbor searching. Journal of the ACM 45, 891–923.

AUMANN, G. 2003. A simple algorithm for designing developable
Bézier surfaces. Computer Aided Geometric Design 20, 8–9,
601–619.

CHALFANT, J., AND MAEKAWA, T. 1998. Design for manufac-
toring using b-spline developable surfaces. Journal of Ship Re-
search 42, 3, 207–215.

CHU, C.-H., AND SÉQUIN, C. 2002. Developable Bézier patches:
properties and design. Computer-Aided Design 34, 7, 511–527.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 1997. Computational Geometry, Algo-
rithms and Applications. Springer, Berlin, Heidelberg.

FREY, W., AND WAMPLER, C. 1999. Boundary triangulations
approximating developable surfaces. Tech. Rep. 8997, GM Re-
search and Development Center.

HOSCHEK, J., AND LASSER, D. 1993. Fundamentals of Computer
Aided Geometric Design. AK Peters, Wellesley, MA.

HOSCHEK, J., AND POTTMANN, H. 1995. Interpolation and ap-
proximation with developable B–spline surfaces. In Mathemati-
cal Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and
L. Schumaker, Eds. Vanderbilt University Press, Nashville, TN,
255–264.

KLEIN, R. 1997. Algorithmische Geometrie. Addison-Wesley,
Bonn.

OSHER, S., AND FEDKIW, R. 2003. Level Set Methods and Dy-
namic Implicit Surfaces. Springer.

PARK, F., YU, J., CHUN, C., AND RAVANI, B. 2002. Design of
developable surfaces using optimal control. Transactions of the
ASME, Journal of Mechanical Design 124, 602–608.

POTTMANN, H., AND WALLNER, J. 1999. Approximation al-
gorithms for developable surfaces. Computer Aided Geometric
Design 16, 539–556.

POTTMANN, H., AND WALLNER, J. 2001. Computational Line
Geometry. Springer, Berlin-Heidelberg-New York.

SETHIAN, J. 1999. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Me-
chanics, Computer Vision, and Materials Science. Cambridge
University Press.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. In Applied Compu-
tational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer
Science. Springer-Verlag, May, 203–222. From the First ACM
Workshop on Applied Computational Geometry.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for tri-
angular mesh generation. Computational Geometry: Theory and
Applications 22, 1-3, 21–74.

48

