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Introduction 

Buckminster Fuller's Jitterbug consists of eight equilateral triangles. Each 
vertex represents a spherical joint b~tween two triangles (see [1], [2]). At the 
HEUREKA-polyhedron1 these twelve spherical joints are replaced by joints 
with degree 2 of freedom. Buckminster Fuller had already studied the one­
parametric motion Mo of the Jitterbug that converts a regular octahedron 
via a regular icosahedron into a cuboctahedron (Fig. 2). This motion Mo 
is now constrained for the HEUREKA-polyhedron. The proof for this fact 
reveals that this polyhedron allows also a second one-parametric motion 
MT (Fig. 8). At the Jitterbug this motion recently has been recognized by 
H. F. Verheyen [3]. It converts a twofold covered regular tetrahedron via a 
truncated tetrahedron into a regular octahedron. 

1 A 15 m high model of this polyhedron was exhibited at the national research 
exposition of Switzerland 1991 in Zurich. 
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Definition of the one-parametric motion Mo 

Let a regular octahedron 0 be given with edges of length 1. In each face 01 
o we inscribe an equilateral triangle in such a way that on each edge ther€ 
is a common vertex for the triangles inscribed in the two neighbouring faces 
(Fig. 1). All these twelve new vertices divide their edges in the same ratio. 

the lengths of the two segments are denoted by t and (1 - t), then thE 
. . of the inscribed triangles reads 

let) = V3t2 - 3t + 1. 

of each inscribed tri angle against the original facE 

2 -3t 
cos r = =-~ir=~=~ 

2v3t2 - 3t + 1 ' 

tv'3 
tanr=--. 

2 - 3t 

Additionally we transform this figure by a dilation with dilatation factor 
Ijl(t). Then the sides of all eight inscribed triangles have unit length. 

Figure 1. Octahedron 0 and HEUREKA-polyhedron H 
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Figure 2. The one-parametric motion Mo 

While the parameter t is varying from 0 to 1 the kinematic chain H 
formed by these triangles of side length 1 performs a one-parametric motion 
Mo (Fig. 2). The dihedral angle cp between two neighbouring faces remains 
unchanged. We calculate 

tan~ = /2, sin~ = VI, ~ = 54,73 .. °, coscp = -~, cp = 109,47 .. °. 

In the initial position and in the end position the triangles cover the faces 
of O. We obtain for t = 0,5 the triangular faces of a cuboctahedron. For 
t = (J5 - 1)/2 = 0,6180 .. (golden section) or for t = (3 - J5)/2 = 0,3819 .. 
the convex closure of the triangles is a regular icosahedron; the dilatated 
octahedron 0 is one of the five regular octahedra that can be circumscribed 
about this icosahedron. 

In half of the faces of 0 the increasing t defines a clockwise rotation, if 
it is seen from outside. In this case the included faces of H will be called 
positive; their planes define a regular tetrahedron drcumscribed to Hand 
O. The other faces of H are called negative. 

Let So denote the symmetry-group of the octahedron O. In order to 
preserve the set H of inscribed triangles, a direct motion 8 E So has to 
transform the positive faces again into positive faces. In this case 8 maps 
each circumscribed tetrahedron onto itself. The indirect motions of So that 
preserve H have to commute the two tetrahedra. 
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Hence for t -::j:. 0,5 the symmetry-group SH of H is isomorphie to the 
group So / { id, (j}, provided (j E So is the reflection in a plane perpendieular 
to one edge of O. Group SH contains eight 120°-rotations about the face­
axes of 0, three 180°-rotations about vertex-axes and the identity together 
with the products of each of these isometries with the reflection in the 
center of O. The symmetry operations contained in SH induce just the even 
permutations of the four face-axes of O. 

The HEUREKA .. polyhedron 

The defined one-parametric motion Mo of H preserves the dihedral angle 
between each two neighbouring triangles. Therefore this structure will still· 
be flexing, if the lines perpendicular to the corresponding planes at the 

. common vertex are linked together by a connecting sector outside of 0 with 
center angle (1[" - 'P). The perpendieular lines are the axes of rotation of this 
rigid sector against the adjacent triangles thus forming the special joints 
used at the HEUREKA-polyhedron (Fig. 3). This completed structure 
shall again be denoted by H. 

Figure 3. Joints of the HEUREKA-polyhedron 

Let us fix one triangle A 1A2A3 of Hin a horizontal position (Fig. 1). 
Then the opposite triangle A 1A2A3 performs a pure translation in vertieal 
direction. Any remaining vertex of H will be denoted by Aij provided this 
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Figure 4. Top view of point paths under Mo 

point is endpoint of edges through Ai and A j respectively. In the following 

we discuss the path of Aij: 

The triangle AlAl2Al3 is symmetrie to the fixed triangle A l A 2A 3 with 
respect to the plane Xl bisecting the angle between the corresponding planes. 
The plane Xl through Al has a constant inclination. Therefore Xl is tangent 
to a cone lJ!~ of revolution with the vertex Al and with the half-vertex-angle 
(7r - <p) /2. Any plane tangent to lJ!~ is a possible mirror plane unless it 
contains interior points of the base triangle A l A 2A 3. We can produce the 
motion o~ the triangle AlAl2Al3 around point Al by rolling a cone lJ!l on 
the fixed cone lJ!~, where lJ! 1 is congruent to lJ!~. U nder this rolling of cones 
the point Al3 traces a spheric trochoid al3 on the unit sphere ~l with center 
Al. al3 can also be obtained by reflecting A 2 in admissible tangent planes 
of lJ!~. The lines joining A2 and Al3 have the constant inclination (7r - <p) /2 
and they intersect ~l in A2 and Al3 . Between each two vertical planes 
through A2 the intersecting circle with ~l and the line A2Al3 make similar 
figures. Hence we get the top view a~3 of al3 by transforming the equator 
of ~l under a dilatation with center A2 and with the dilatation-factor 

cos2 (7r - <p) = sin2 Cf = ~. 
2 2 3 
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a~3 is a 2400 -degree circular are with radius 1/3 (Fig. 4). al3 is part of a 
quartic of the first kind with one node. 

In a co ordinate system with vertical z-axis, with Al = (0,0,0) and 
A2 = (O,-Q, 0) the path al3 reads 

2 . 2 x = 3 SIn T, 
1 2 

Y = 3 + 3 COS 2T, 
2V2 . 

z = -3-s1nT, 
271' 

0< T <-. - - 3 

Analogously the path al2 of A l2 has a circular top view a~2' In each position 
the two lines A2A13 and A3A12 are perpendicular to Xl and therefore parallel 
to each other. Due to the theorem of the circumference-angle we conclude 
that the image points A~3 and A~2 in the top view are running along their 
circular paths a~3 and a~2 with the same velo city at each moment. This 
could also be confirmed using the parameter equations of a12 and a13. The 
symmetry operations of H reveal that the velocities of all image points A~j 
are equal. 

The one-parametric motion Mo of H is constrained 

The degree of freedom of the HEUREKA-polyhedron H is F ~ 1. We show 
F = 1 for all positions that can continuously be obtained from positions 
of Mo. This is done by proving that in this case the faces are located in 
the planes of a regular octahedron O. Hence each vertex of H is lying on 
an edge of 0 and this characterizes Mo. But there are still other motions 
without any bifurcation to Mo. 

Let any position of the completed structure H with 8 triangles and 
12 sectors be given. We begin our discussion by defining the spherical 
component of the motion: Each face is represented by a perpendicular unit 
vector pointing to the outside where the joining sectors are situated. The 
endpoints of these vectors define a graph with 8 knots and 12 bars on the 
unit sphere ~ (Fig. 5). The knots are seen as turning points between the 
bars. All bars have the same spherical length (71' - r.p) and they enclose six 
spherical quadrangles QI, ... , Q6·2 

2 The interior of these spherieal quadrangles is unique by the definition that it 

eontains the shorter ares of the spherieal diagonals. 
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Figure 5. Spherical component 0/ Mo. 

There are 3 cases: 

1. These quadrangles cover the whole unit sphere. 

2. None 0/ these quadrangles degenerates, but they don't cover :E. 

3. At least two bars coincide. 

Case 1. If the quadrangles cover the whole unit sphere, then the spherical 
framework is rigid. The eight triangles 0/ H are always parallel to the /aces 
0/ a regular octahedron. 

Proof. Spherical quadrangles of equal side-Iength have two axes of symme­
try. It can easily be proved that the area A of such a quadrangle is maximal 
if and only if the diagonals have the same length. In all positions of our 
one-parametric motion Mo the 8 knots are the vertices of a cube. Then all 
six quadrangles are of maximal area and they just cover :E. Therefore the 
area of each quadrangle is A :::; 2;, and there is only one way to cover the 
whole sphere by six quadrangles of this type. -

We will prove that the planes of the 8 faces form either a regular octa­
hedron or a regular tetrahedron: Let us denote these planes by CI, ... ,CS· 

We suppose that the positive faces are characterized by even indices and 
that the pairs (cl, cs), (c2, c7), (c3, c6), (c4, C5) determine opposite faces. In 
each plane Ci the lines of intersection with the adjacent planes form a reg­
ular triangle that is circumscribed to the face of H. Let the vertices of the 
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face in ci divide the sides of the trace triangle in segments of length ai and 
bio 

We suppose that the faces adjacent to Cl in the positive order are C2, c4, 

c6· From the parallelity to the planes of an octahedron we deduce that also 
the planes C3, C7, es meet Cl in a regular triangle. Fig. 6 shows Cl together 
with the planes C2, c4 and c6 after rotation about their trace into cl (cf. 
Fig. 1). By comparing the segments on the sides of the trace triangle in Cl 

with those in C2, C4 and C6 we deduce the equations 

Using the terms 

we obtain 

B 2l = A 4l , B 4l = A 6b B 6l = A 2l , B 43 = A 23 , B 23 = A S3 , B S3 = A 43 

B6S = Ass, B ss = A 2S , B 2S = A 6S , B47 = A S7 , Bsi = A 67 , B 67 = A 47 , 

Bl2 = A32, B32 = AS2, BS2 = A l2 , Bl4 = A74, B74 = A 34 , B34 = A l4 , 

B l6 = A S6 , BS6 = A 76 , B76 = Ai6, B ss = A 3S , B 3S = A 7S , B7S = Ass· 
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We resolve these equations for Ail and Bil, i E {3, 5, 7}: 

A41 = A 23 = A21 - A 31 :::} A 31 = A 21 - A 41 , 

A21 = A65 = A61 - A51 :::} A51 = A61 - A21, 

A61 = A47 = A 41 - An :::} An = A41 - A61, 

A41 = B43 = B41 - B 31 :::} B31 = A61 - A 41 , 

A 21 = B25 = B21 - B51 :::} B 51 = A41 - A21, 

A61 = B67 = B61 - Bn :::} Bn = A21 - A61. 

By paying regard to these solutions we derive 

455 

B32 = A52 :::} A61 - A 41 - A41 = A 61 - A 21 - A 21 :::} A41 = A 21 , 

B56 = A76 :::} A 41 - A 21 - A 21 = A 41 - A 61 - A 61 :::} A 21 = A61, 

hence 
A:= A 21 = A 41 = A61 , 

B21 = B41 = B61 = A, 

Additionally we find 

A 31 = A 51 = An = 0, 

B31 = B51 = Bn = o. 

B58 = A 52 :::} B51 - BSI = A 51 - A 21 :::} BSI = A. 

We summarize: 

al = a3 = a5 = a7, 

a2 = a4 = a6 = as, 

bl = b3 = b5 = b7, 

b2 = b4 = b6 = bs , 

a2 - al = b2 - bl or d:= al - bl = a2 - b2. 

Finally we take into account that the lengths al, bl and a2, b2 ofthe segments 
on the trace triangles have to define inscribed triangles with unit length.3 

This implies 

ai - albl + bi = a~ - a2b2 + b~ = 1; 

ai - ald = a~ - a2d ==} (al - a2)(al + a2 - d) = O. 

The first solution reads al = a2, bl = b2. This means that the planes of the 
eight faces form a octahedron as stated. 

3 Note that this condition is not fulfilled in Fig. 6. 
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Figure 7. Tetrahedron T and HEUREKA-polyhedron H 

The second solution 

gives raise to a new motion MT of the HEUREKA-polyhedron; at thE 
Jitterbug this motion recently has been noticed by H. F. Verheyen [3] 
In this case the pairs of opposite planes (cl, cs), (c2, c7), (c3, c6), (c4, C5 
are coinciding and they form the planes of a regular tetrahedron T (Fig 
7) with dihedral angle 7f' - cp = 70, 52 .. 0 • Therefore the special joints 0 

the HEUREKA-polyhedron are consistent with this situation provided thE 
oriented lines normal to Cl, c3, C5, C7 are pointing to the outside of T ane 
they are opposite to those of C2, C4, C6, cs respectively. 

Similar to the original explanation of the HEUREKA-motion Mo WE 

can define the one-parametrie motion MT by inscribing a symmetrie pair 0: 
regular triangles in each face of T. MT converts a twofold covered tetrahe· 
dron with fourfold edges (ratio r = 0 on the edges of T) into a octahedror 
with a twofold covering of half of the faces and with twofold edges (r = 1 : 1) 
If the vertiees of H make three equal spaces on the edges of T (r = 1 : 2; 

. (position 4 in Fig. 8), then the vertiees of H form a truncated tetrahedron 
the edges of H are diagonals of the four hexagons. 

Theorem. The octahedral motion Mo and the tetrahedral motion MT an 
constrained motions for the HEUREKA-polyhedron H. 
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1 

Figure 8. The one-parametric motion MT 

Case 2. None of these quadrangles degenerates but they don't cover E: 
This case turns out to be impossible on a sphere. 

Proof. Let us assume that there is such a graph. There must be a bar 
b12 whose adjacent quadrangles Q1, Q2 have common interior points (Fig. 
9). At the endpoints K123 and K 124 of b12 the two remaining bars b13 , b23 

and b14 , b24 can be completed to quadrangles Q3, Q4 due to their symmetry. 
Then also the quadrangles Q6, Qs opposite to Q1, Q2 resp. are defined. 

We may .a,ssume that the boundary of the union U of all six quadrangles 
consists of the bars b12, b13 , b3S , bS6 , b46 , b24 . If necessary we first have to 
change the indiees of Q3 and Q4. The vertices K 14S and K 236 are interior 
points of U. 

Let ai, ßi denote the measures of the pairwise congruent angles in Qi. 
Due to NEPER's rule the following equation holds: 

a· ß· 1 
cot -=- cot ~ = cos(1l" - <p) = -3' 

2 2 
We assume that the ß-angles meet at the interior points K 14S and K 236 . 

Then we obtain 
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Figure 9. Spherical graph in case 2. 

ßl = a2 + a3, 

ß6 = a5 + a4, 

This implies 

hence 

ß3 = al +a5, 

ß4 = a6 +a2, 

6 

Lai = 21T. 
i=l 

On the other hand on a sphere we have 

ß5 = a3 +a6, 

ß2 = a4 + al· 

and this leads to the contradiction 2:~=1 ai > 21T. • 

Case 3. At least two bars coincide: 

Let us assume that the quadrangle Ql collapses into a dyad caused by the 
coincidence of the knots K 145 and K 123 . By completing K 145 = K 123 , K 124 
and K 246 to a quadrangle we get Q2 = Q4 and thus K236 = K 456 ; the 
quadrangle Q6 collapses too. We further obtain Q3 = Q5' The graph 
can additionally degenerate, if one of the quadrangles Q2 or Q3 or both 
collapse. In any case the spherical graph allows a two-parametric motion, 
without any bifurcation to the graph of case 1. However until now no 
corresponding motion of the HEUREKA-polyhedron could be found. There 
are some reasons to conjecture that Mo and MT are the only motions that 
can be achieved by H. 
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