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On the Tetrahedra in the Dodecahedron

Dedicated to Prof. Gerhard &&sE at the occasion of his  right vertices ofC; form aright tetrahedrorR;, the left ver-
70" birthday tices aleft tetrahedror.;. And of course botlh; andR; are
inscribed inC;j and therefore irD.

O tetraedrima u dodekaedru \

~E/ N
SAZETAK i A n
I g I N
60 bridova od 10 tetraedara upisanih u pravilan do- | } »1 \*\
dekaedar €ine tzv. GRUNBAUMOVU mreZu. Poznato je da ~' C } E £ >~
je ta struktura fleksibilna. Postoje jednoparametarska ‘ . )\\,f' i v
gibanja koja €uvaju simetriju s obzirom na os stranice } N’ A AL
ili na os koja prolazi vchom. Rad se bavi analitickim A N
reprezentacijama takvih gibanja. Osim toga dokazano B — — ff*' A
je da se oba gibanja mogu spojiti u dvoparametarska T /‘/‘
gibanja koja ne €uvaju simetriju. —
On the Tetrahedra in the Dodecahedron Fig. 1: DodecahedrorD with one inscribed cubeC.
PointsA andE areright vertices,B is aleft ver-

ABSTRACT
tex of C.

The 60 edges of the ten tetrahedra inscribed in a regular
pentagondodecahedron form the so-called GRUNBAUM
framework. It is already known that this structure is

Another way to identify two verticeAE of D as endpoints
of an edge of any inscribed tetrahedron is as follows: There

flexible. There are one-parameter motions which pre- must be a path from to E along three edges @ — via.
serve the symmetry with respect either to a face axis or the 'roof’ displayed in Fig. 2. If at the first crossing point
to a vertex axis. The paper treats analytical represen- you take thelght edge and at the second vertex the left one,
tations of these motions. Furthermore it is proved that thenAE belongs to aight tetrahedron The left choice at
both motions can blend into two-parametric motions the first vertex and the right one afterwards results in an
which do not preserve any symmetry. edge of a left tetrahedron.

MSC 1994: 53A17, 51M20

1 Introduction ~— 1 ~_
E | ‘
ince ancient times it is known that with the vertices : 1
of a regular pentagondodecahedione can build C i !
ive cubesCy,...,Cs. It was BEUCLID’S strategy ! |
(cf. [3], p. 69) for constructing a dodecahedron by adding N D L |
‘roofs’ to each face of a cube (see Fig. 2). The edges of ~l___ | __~ gy

( 9. 2) g <~— [A

such an inscribed cubg; are diagonals of the faces bf
With respect td we can distinguish between right and left
vertices ofC; depending on whether the edges through any
vertexA are the right or the left diagonals Bfin the faces
throughA, if seen from outside (see Fig. 1). For each edge Each vertex oD is a left vertex of any inscribed culfg,

of C; the two endpoint#\, B are of different type. So, the therefore vertex of; and at the same time vertex of any

Fig. 2: Constructing a dodecahedidDiy adding roofs on
a cubeC.
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right tetrahedroikj. We have # j asL; andR; are com-
plementary tetrahedra of the cuBe In the sequel we de-
note each vertex ob by the ordered pairj of different

L4 remains in a plane orthogonal fo The resulting one-
parameter motion of 1 turns out to split into two rational
motions of order 4. By iterated 72otations abouf these

indices of the left and the right tetrahedron meeting there. motions ofL; are transformed into those dfy,...,Ls,
Suppose the tetrahedra are solids. Then the union of thd €SP provided the notation is specified according to Fig. 3.
right tetrahedra as well as the union of the left ones are well The motions oRy, ..., Rs are obtained by reflecting those
known stellated icosahedra (see [2], note cover page of [8]).0f L1 in €1,..., &5, respectively.

They are mirror images from each other which surprisingly Let (x,y,z) be Cartesian coordinates in the moving frame

share all vertices and all oriented planes spanned by their— attached td_; — and let(xo,Yo0,2) be coordinates in

faces (see [7]). Also the union of all ten tetrahedra is a stel-

lated icosahedron.
Let us now focus on wire-frame models of the tetrahedra:

The ten tetrahedra can be seen as the links of a kinematic(

chain. Each link_; (R;j) is connected with fouR; (L;),

i # j, by a spherical joint at the common vertgx Due

to [4] this structure is called &INBAUM framework Sur-
prisingly it is finitely movable, though the structure formula
gives—6 as the degree of mobility. We start with represent-
ing the well known one-parameter motions of types | and Il
of GRUNBAUM's framework.

2 Motionsof typel

Theorem 1 (R. CONNELLY et al.,, 1991) For each
face axisf of the regular dodecahedr@nthere is a one-
parameter motion cBRUNBAUM s framework preserving
the five-fold symmetry abotit.
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Fig. 3: Motion of type I: The vertices 12,.,15 of L1
move in the planes,, ..., &5 of symmetry.

According to R. @NNELLY et al. [1] (compare also [6])
the motion of one tetrahedron, say, is defined as fol-
lows: Letes, ..., &5 be the five planes of symmetry through
the face axid (see view in direction of in Fig. 3). Then
the vertices 12, 13, 14, 15 &f; move withingy, €3, €4, €5,
respectively. The trivial translation in direction éfcan

be ruled out by the additional condition that the center of

the fixed frame. Then we can set up the motioh pfis

Xo u a1 a2 a3 X
Yo |=| Vv |+| a1 axn ax y 1)
Z w az1 432 az3 z

with an orthogonal matrixa;j). For the representation of
(aij) we use quaternions: Each nontrivial homogeneous
quadruplgqp, . . .,q3) defines an orthogonal matrix accord-
ing to

1
()= 2)
5+ 02 + 05+ a3
BB BB 2(q% —dods) 2(duds+GoG)
2(n+0ots) G5—05+03—05  2(Co0s — Godh)

2(n0s— o)  2(003+0o01) G5—02—G3+03

and vice versa.

With regard to the fixed frame, we specify thgaxis onf
and thexp-axis ing;. By the conditionw = O the origin of
the moving frame remains in thgyop-plane.

The vertices of the moving tetrahedrbpnwith edge length
2v/2 can be setup as

14
15

= (_1, 1, _1)7

—(-1-1 1) (3)
Now for j = 2,...,5 the vertex 1 is supposed to move in
the planegj of symmetry. According to (1) this results
in four linear equations for the coordinat@sv,0) of the
translation vector and the entriag of the orthogonal ma-

trix. Setting

. 2T 2iTt .
S :=sin—, ¢ :=cos— for i=1,2 (4)
5 5

we obtain

S(U+a11—a2—az)+

+ Cz(V-l— a1 — apo — a23) =0,
—sp(U+ai1+a12+a13)+

+C1(V+ a1+ a2+ az3) =0, 5)

si(U—a11+a12—a13)+

+c1(v—azi+axp—az) =0,
—S(U—ar1—ap+az)+

+Co(v—ap1—ap2+aps) =0.
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We eliminateu, v by multiplying the equations in (5) either obeying
with —s1, —S, S, &1 or with —cg, ¢, €2, —Cy, resp., and
summing up. This gives two linear equations G=-  Go=0,
4 _ G=-% Og=0o

S1C1a12+ 2C1a21 —ap3= 0 (6)
4s1C1a11 + 251213 — a2 = 0 switches the two factors in (8) while (9) is preserved. On
the other hand the first two rows in the orthogonal matrix
(2) change signs. So a 18fotation about they-axis trans-
42+ 26— 1=0, +s=1, forms the one-parameter motion represented in (12) and
$1C2+ 51 = —, $I1C2 — $C1 = —S1, (13) into that stemming from the first factor in (8).

S = 281Cy, C1C2 = —%,
4248 —1) = (1—2c1)(2+2¢) = 1.

when we pay attention to the identities

(7)

Now we substitute in (6) the representation (2) of #ye
By settingk := 1 — 4s;¢; we obtain

[2¢1(1=281)q0 0] [2€1(1+281) 01 — 03] = O, (8)

[kao — (251+2) 0] [kqp — (251 —2) 2] —

~[(251+2)0 + ko) [(251—2)t + ket =0. ©

We start with the second factor in (8) and express in (9)
gs in terms ofqg;. This results in a quadratic equation for

(Qo:01: Q)

[kap — (251 +2)ap] [kap — (251 — 2) 0] + (10)
+4(8c1 — 4s; + 16s1¢1 — 3)g7 = 0.

We introduce homogeneous motion paramefgrs) €
R?\ {(0,0)} for this “conic” by setting

2 2 _ 2
[kep — (281 +2)0p] - 3(281 — 1)7 = 0%, Fig. 4: The trajectories of the verticeslof under the mo-
[kap — (251 — 2)02] = (11) tion of type | as defined in Fig. 3 and represented
= 4(—8c; +4sy — 168161 + 3) T2, in (12) and (13).
c1(2s1 — 1)gp = or,
i . Theorem 2: For a given face axié of D the motion of type
and obtain after some simplifications due to (7) the repre- | ¢ any, tetrahedron splits into two rational motions which

sentation can be transformed into each other by a halfturn atiout
go = —(2s1 — 1)0? + 251 (1 + 4s1¢1) T2, Both components are of ord?r 4 and type a) according to
Q= 2(2s —1)oT the classification given b. ROSCHELIn [5].

_ 2, 2 (12)
Qe = — (201 +1)0° + 2% (281 - 2)T5, Fig. 4 shows the trajectories of the verticed afunder the
3= 2(2c,+1)ot. motion with the quaternion representation (12). When the

motion parameteréo : 1) are replaced by—o : 1), then
g1 andgs change signs. The same effect appears when the
moving frame performs a halfturn about thaxis (switch-
ing 12 with 15 and 13 with 14) while at the same time the
(13) fixed frame rotates about tlyg-axis through 18Dexchang-

ing €2 with €5 andeg with €4. This is the reason why the
resulting from (5). trajectories of the vertices 12 and 15 are congruent as well
as that of 13 and 14. The dotted curve in Fig. 4 shows the
trajectory of the center df.

From (2) we get the orthogonal matrix in (1). The transla-
tion vector(u,v,0) is given by

u= —agz2+ci(az1+as2)/s1,
V= —axp+s(a1+az)/c1

Due to the last equation in (7), the involutive projective

transformation N
A real GRUNBAUM framework will not perform the full

(Qo:01:02:03) — (dp: 01 :0h:0s) motion since one vertex can’t move “through” the other.
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But one can dissolve some joints and reassamble the struc-

ture in another positioh.Then one will realize that during
the motion of type | the ten tetrahedra fall apart and form
a ring with a diameter which approximately doubles that of
the initial position in the interior of the dodecahedmn
Fig. 5 shows the extended position in comparison \Bith

Fig. 5. GRUNBAUM’s framework forming a ring during
the motion of type |. Note the size @ (dotted
lines) which encloses the initial position of the
framework.

3 Moaotionsof typell

Theorem 3 (H. S., 1991) For each vertex axig of the

Fig. 6: Motion of type II: The vertices 12, 13 &f; move
in the plane®,, ¢3 of symmetry. 14 and 15 remain
on the cylindeid of rotation.

Then the constraints defined above result in four equations

(uta11v2+a13)v3— (V+ax1v2+ags) =0,
(U—a11v2+a13)v3+ (V—az1v2+aps) =0, (15)
(U+ag2v2—a13)? + (V+agav2—azs)? = §,
(U—ay2v2—ay3)? + (V—ag2v/2—ap3)? = %-

From the two linear equations we obtain

u= azl\@ —a13, v=auv6-ax (16)

We substitute this in the difference and sum of the last two

regular dodecahedron there is a one-parameter motion ofqyations in (15). So we end up with

GRUNBAUM s framework preserving the three-fold sym-
metry abou.

Suppose connects the vertices 45 and 54. Thesa com-
mon axis of symmetry fot 4, R4, Ls andRs. When this
axis v is kept fixed, then the vertices 41, 42, 43, 51, 52,
53, 14, 15, 24, 25, 34 and 35 can only move on a cylinder
@ of rotation with axisv (see view in Fig. 6 showing as

a point). According to [6] we define the motion bf by

the additional condition that 12 and 13 remain in the planes
¢2, ¢3 of symmetry passing through After ruling out the
translations along we again end up with a one-parameter
motion ofL 1.

The movements df ; andL 3 are obtained by iterated 120
rotations about. Reflections indp1,¢2,¢3 transform the
motion ofL ; into those ofR1, R2, R3, resp., provided the
notation is specified as in Fig. 6.

In order to represent the motion of type Il analytically we

define thezg-axis onv and thexp-axis in¢1. We specify the
moving frame(x,y,z) attached td_; by

12:( \/27071), 14= (O, \/27_1)7

13=(-v2,0,1),  15=(0,—v2,~1). (1)

Aap+Bap =0,
A2+ B2+ 2a2,+ 2a2,=§ for

A= az1 % — 2a13, B:= all\/é— 2a23.

7

Together with the orthogonality conditions

2 22 22 a2 a2 a2
aj taptag=astantayg=1
ap1ap1 + agoape + agzapz =0

we have five equations for the six entries in the first two
rows of the matrixai). When in (17) thes;; are replaced
by qo,...,q3 according to (2) we obtain two homogeneous
equations of degree 4.

However, explicit representations for the motions of type Il
have not yet been found.

1 The author thanks ElisabethaZH for producing a model of
GRUNBAUM's framework. This was the key for dedecting the
two-parametric mobility presented in Section 4.
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4 Two-parametric motions of GRUNBAUM'S
framework

During the motion of type | as defined in Fig. 3 the moving
tetrahedror; reaches positions which are symmetric with
respect t@s (see Fig. 7): Sinces bisects the angle between
€ andey4, we can choose 12 €7 and 14¢ g4 in symmetric
position. This implies 135¢ €3, hence 15 f.

Fig. 7: Position of RUNBAUM’s framework with pair-
wise coinciding tetrahedra and two-parametric mo-
bility.

In this particular position the reflection &f; in €3 gives
Rz=L1. The iterated 72rotations abouf and the reflec-
tionsing, i = 2,...,5, reveal that all tetrahedra are pair-
wise concident: We havies =L, Rs=L3, R1=Ly4, and
R, =Ls. All tetrahedra share the vert&=15=21=32=
43=54.

Fig. 8: GRUNBAUM framework seen as a flexing pyramid
with five triangular faces as bases for tetrahedra.

Because of 1423, 25=34, 31=45, 42=51, and 53=12
any two consecutive tetrahedra in the cydleL oL 3L 4L 5)
have an edge throughin common.

So the whole structure can be seen as a five-sided pyramid
built of five regular triangles which are the bases for the
tetrahedra (Fig. 8). Such a pyramid with revolute joints at
its edges flexes with mobility 2 like a spherical pentagon
with hinges at its vertices.

During motions of type | the tetrahedrdn also occupies
positions symmetric with respect & (Fig. 9). This time

14 and 15 are mutual mirror images gp which implies
13€ f. Hence the ten tetrahedra are again pairwise coincid-
ing: L1=Ry L2=R3,L3=R4, L4=Rs5, andL5:R1. The

five tetrahedra share one vertex @34=35=41=>52); any

two consecutive tetrahedra in this closed kinematic chain
with five links L1,...,Ls share an edge, passing through
14=32, 25=43, 31=54, 42=15, and 53= 21, respec-
tively. This time the five-sided pyramid formed by the rev-
olute axes is two-times wound aroufidsee Fig. 9).

Fig. 9: Another position of @UNBAUM's framework
with pairwise coinciding tetrahedra and degree 2
of mobility.

After interchanging 12 with 15 and 13 with 14 we obtain
analogous cases whetg occupies positions symmetric
with respect tee4 or €5, hencel1 =Rz orL1=Rs.

Also the motions of type Il can blend into a two-parametric
mobility: When during the motion displayed in Fig. 6 the
vertex 12 crosses the axiof symmetry, then because of
the given edge length df; the vertices 14 and 15 are lo-
cated on the same circle of the cylinder Hence 13 must
be located on® too. This implies that in this position
L, is symmetric with respect to1, ¢2 andds. We get
Li=Lo=L3=R;=R2=R3(see Fig. 10). Even two of the
remaining tetrahedra, say andRs, coincide withL 1. The
two last coinciding tetraheditas = R4 share a face with ;.
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12=23=31=45

1£=21=34=42=5

54

Fig. 10: In this position of @UNBAUM’s framework a

motion of type Il can blend into two-parametric

flexibility.
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flexes whenever one tetrahedron occupies a position sym. Hellmuth Stachel
Institute of Geometry

metric with respect to any fixed plaseof symmetry. Mo-

tions of type Il can bifurcate into two-parametric mobility

when one vertex df 1 crosses the fixed axisof symmetry.
Then even eight of the ten tetrahedra are coinciding.

It is still open whether these two-parametric motions com-

plete the list of nontrivial flexes of the @&INBAUM frame-
work.
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