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ABSTRACT

This paper treats flexible cross-polytopes in the Eu-
clidean 4-space. It is shown that the examples presented
1998 by A. Walz are special cases of a more general class
of flexible cross-polytopes. The proof is given by means
of 4D descriptive geometry. Further, a parametrization
of the one-parameter self-motions of Walz’s polytopes is
presented.
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1. INTRODUCTION

There is a basic and important question concerning the
geometry of structures: Is a given structure rigid or is it
not? In the engineering world there is a vigorous interest
in rigidity, as bridges, buildings, mechanical gadgets and
countless other things have to be built. This has been
the background for interesting mathematical theories.
And there is still a wide field of open problems left.

A long-standing problem is to prove if a smooth closed
surface can continuously flex, i.e., one can find a contin-
uous family of smooth surfaces each of which is isometric
(in the intrinsic metric) to any other one and is not ob-
tained from the initial surface by a rigid motion. A first
piece-wise linear flexible embedding of the 2-sphere into
the Euclidean 3-space was constructed by R. Connelly
(Connelly (1978)). Two years later a simplified “flex-

ing sphere” was presented by K. Steffen (see Dewdney
(1992)). Both flexible polyhedra are based on Bricard’s
octahedra (Bricard (1897), compare Stachel (1987)).

A milestone in the theory of flexible polyhedra was re-
cently the progress with the “bellows conjecture”. This
conjecture stated by R. Connelly says that any continu-
ous flex that preserves the edge lengths of a closed trian-
gulated polyhedron preserves its volume. A first proof
in E

3 was given by I. Sabitov (1995). A second proof
by R. Connelly et al. (1997) followed two years later.

If a polyhedron admits a continuous flex then it admits

also an analytical flex, i.e., for each vertex the trajectory
under the flex can be expressed as an analytic function
of the time t. One can weaken the continuous flexibil-
ity by limiting the Taylor series, i.e., by requiring that
the edge lengths stay constant up to a given order of t,
only. In this sense, flexibility of first order means that to
each vertex a velocity vector can be assigned such that
these are compatible with constant edge lengths. Ad-
ditionally one must demand that these velocity vectors
do not originate from a motion of the whole structure
like a rigid body. When also acceleration vectors can
be assigned then we get second order flexibility, and so
on. Geometric characterizations of octahedra which are
infinitesimally flexible of the orders 1 or 2 are given in
Stachel (1999).

2. FLEXIBLE CROSS-POLYTOPES

In the Euclidean n-space E
n the analoga of octahedra

are called cross-polytopes Cn: These polytopes have 2n
vertices coupled into pairs (pi1,p

i
2) for i = 1, . . . , n. The

4
(
n
2

)
= 2n(n − 1) edges of Cn are pij1p

k
j2

for i 6= k and
j1, j2 ∈ {1, 2}. The 2n hyperfaces of Cn are the simplices
p1
j1
p2
j2
. . .pnjn for any j1, . . . , jn ∈ {1, 2}.

2.1 A. Walz’s flexible cross-polytopes in E
4

Let a1, a2, . . . ,d2 be the eight vertices of a four-
dimensional cross-polytope C4. We partition the set of
24 edges into the edges of the quadrangles (= C2)

Q := a1b1a2b2, Q := c1d1c2d2,

and the bipartite framework

F := { pp | p ∈ Q, p ∈ Q}.

In 1998 at a conference in Canada1 A. Walz pre-
sented a class of continously flexible cross-polytopes in
E

4. Following Walz, we visualize this polyhedron using
two complementary orthogonal projections of E 4 onto

1”Canadian Mathematical Society Winter 1998 Meeting” held
at Queen’s University and the Royal Military College, December
13-15, 1998. See http://www.cms.math.ca/Events/

winter98/w98-abs/node20.html .
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planes: Each point x = (x, y, z, t) ∈ E
4 is mapped

onto its “top view” x′ = (x, y) and the “front view”
x′′ = (z, t), thus representing E

4 as E
2×E

2 (compare
Stachel (1990)). Obviously, for any two points x,y ∈ E

4

the distance is given by

‖x− y‖2 = ‖x′ − y′‖2 + ‖x′′ − y′′‖2. (1)

At Walz’s example the quadranglesQ and Q are located
in two totally-orthogonal planes, say, the xy-plane and
the zt-plane, respectively. Therefore we obtain the true
size of Q in the top view, the true size of Q in the
front view, and we have c′1 = . . . = d′

2 = (0, 0) and
a′′

1 = . . . = b′′

2 = (0, 0) (see Fig. 1). The quadrangles Q
and Q are antiparallelograms2 with their circumcenter
at the origin (0, 0, 0, 0). Let ρ, ρ denote the radii of the
circumcircles. Then due to (1) all edges of F have the
same length r =

√
ρ2 + ρ2.
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Figure 1: A. Walz’s four-dimensional flexible cross-
polytope C4 represented in top view and front view.

Suppose that both antiparallelogramsQ,Q flex simulta-
neously like four-bar linkages in their planes such that
for the circumcircles the centers remain fixed and the
radii ρ, ρ obey the condition

r2 := ρ2 + ρ2 = const. (2)

Then all edges of C4 preserve their lenghts. Since all
2-faces of C4 are triangles, the planar motions define a
continuous selfmotion of the cross-polytope.3

For obtaining an analytic representation of this flex, we
translate the coordinate frame such that

a1 = (−α, 0, 0, τ), b1 = (α, 0, 0, τ),
c1 = (0, η,−γ, 0), d1 = (0, η, γ, 0)

with α, γ > 0. We keep the top views of a1 and b1 fixed
as well as the front views of c1 and d1. Hence α and γ

2These are nonconvex quadrangles with opposite sides of equal
lengths. Antiparallelograms have always a line of symmetry. If
the four vertices are not aligned, there is a circumcircle.

3When we replace the condition (2) either by cos ρ cos ρ =
const. or by cosh ρ cosh ρ = const., we obtain flexible cross-
polytopes in the elliptic or hyperbolic 4-space, respectively.

are constant4 while the coordinates η and τ vary.

Let
2β := ‖b2 − a1‖ = ‖b1 − a2‖ > 2α,
2δ := ‖d2 − c1‖ = ‖d1 − c2‖ > 2γ.

It is well known (e.g. Wunderlich (1970)) that in any
position of the four-bar linkage Q in the xy-plane the
coupler a2b2 is the image of the frame link a1b1 under
the reflection in any tangent line l of the ellipse e (=fixed
polode) with focal points a1,b1 and semi-axes β and√
β2 − α2 (see Fig. 2).
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Figure 2: The antiparallelogram-motion as a symmetric
rolling of ellipses.

Let in the xy-plane the tangent line l touch the ellipse
e at the instantaneous pole(

β sinϕ,
√
β2 − α2 cosϕ

)
. (3)

Then l intersects the minor axis (x = 0) at the point
(0, η) with

η =
√
β2 − α2/ cosϕ. (4)

This point is the center of the circumcircle of Q. There-
fore the radius obeys

ρ2 = β2 + (β2 − α2) tan2 ϕ ≥ β2.

In the same way the flexes of Q in the zt-plane are ob-
tained under a symmetric rolling of ellipses with semi-
axes δ and

√
δ2 − γ2. We set

(
δ sinψ,

√
δ2 − γ2 cosψ

)
. (5)

Hence the center of the circumcircle of Q is (0, τ) with

τ =
√
δ2 − γ2/ cosψ, (6)

4Under these conditions the hyperface S1 := a1b1c1d1 of C4 is
still movable in E

4. It performs an elliptic motion parallel to the
yt-plane. The trajectories of the vertices a1, . . . ,d1 are located
on straight lines.
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and the radius

ρ2 = δ2 + (δ2 − γ2) tan2 ψ ≥ δ2.

The necessary condition (2) implies

r2 − β2 − δ2 = (β2 − α2) tan2 ϕ+

+(δ2 − γ2) tan2 ψ ≥ 0.
(7)

This condition for ϕ and ψ gives rise to a closed one-

parameter flex of C4: We set for 0 ≤ t < 2π

ϕ = arctan
(√

r2−β2
−δ2

β2
−α2 cos t

)
,

ψ = arctan
(√

r2−β2
−δ2

δ2−γ2 sin t
)
.

(8)

Then by reflecting a1,b1 in the tangent line l of the
ellipse e at the pole (3) we obtain

a2 =

(
−α+ 2(β2

−α2) sinϕ
β−α sinϕ ,

2β
√
β2−α2 cosϕ

β−α sinϕ , 0, τ

)
,

b2 =

(
α+ 2(β2

−α2) sinϕ
β+α sinϕ ,

2β
√
β2−α2 cosϕ

β+α sinϕ , 0, τ

)
.
(9)

In the same way (5) results in

c2 =

(
0, η,−γ + 2(δ2−γ2) sinψ

δ−γ sinψ ,
2δ
√
δ2−γ2 cosψ

δ−γ sinψ

)
,

d2 =

(
0, η, γ + 2(δ2−γ2) sinψ

δ+γ sinψ ,
2δ
√
δ2−γ2 cosψ

δ+γ sinψ

)
.
(10)

The reflection of the xy-plane in the tangent line l can
be extended to a reflection of the 4-space in a hyperplane
L being orthogonal to the xy-plane and passing through
l. As l contains the top views c′i = d′

i for i = 1, 2, the
4D-reflection maps

a1 7→ a2, b1 7→ b2, ci 7→ ci, di 7→ di.

In the same way the reflection of the zt-plane leads to a
reflection of E 4 in a hyperplane L mapping

ai 7→ ai, bi 7→ bi, c1 7→ c2, d1 7→ d2.

L ist orthogonal to L. Hence in any position of the flex-
ing cross-polytope the two complementary hyperfaces
S1 = a1b1c1d1 and S2 = a2b2c2d2 of C4 are mirror
images with respect to a plane L ∩ L.

2.2 Generalizing A. Walz’s flexible cross-polytopes in
E

4

It turns out that Walz’s polytopes are special cases in a
larger class of flexible cross-polytopes:

Theorem 1: Let C4 be a cross-polytope with the vertices

a1, . . . ,b2 in the hyperplane z = 0 symmetric with re-

spect to x = 0, and c1, . . . ,d2 in x = 0 symmetric with

respect to z = 0, i.e.,

a1,2 = (±α1, α2, 0, α4), b1,2 = (±β1, β2, 0, β4)
for α1, β1 > 0 and |β2 − α2|+ |β4 − α4| 6= 0,

c1,2 = (0, γ2,±γ3, γ4), d1,2 = (0, δ2,±δ3, δ4)
for γ3, δ3 > 0 and |γ2 − δ2|+ |γ4 − δ4| 6= 0.

Then C4 can flex while the vertices remain in their hy-

perplanes and the symmetries are preserved.

Remark 1: The vertices a1, . . . ,b2 in the 3-space z = 0
form a planar antiparallelogram Q because of the sym-
metry with respect to x = 0. Without loss of generality
the affine span of Q can be defined as xy-plane. This
implies α4 = β4 = 0 in Theorem 1.

Remark 2: Also Q := c1d1c2d2 is an antiparallelogram.
Its affine span within x = 0 is orthogonal to the affine
span of Q but needs not be totally orthogonal as it is
the case at Walz’s example. Total orthogonality is char-
acterized by

(β2 − α2)(δ2 − γ2) + (β4 − α4)(δ4 − γ4) = 0.

Proof of Theorem 1: We prefer a constructive proof
based again on top view and front view. In the sense of
Remark 1 we specify α4 = β4 = 0. Hence, the top view
shows Q in true size and a′′

i = b′′

k for all i, k ∈ {1, 2}.

C4

a1

b1

a2

b2

c1

d1

c2

d2

x

z

Figure 3: The flexible cross-polytope C4 of Theorem 1,
orthogonally projected into the xz-plane.

There are eight edge lengths to distinguish at C4 (see
Fig. 3):

lab := ‖ai − bi‖, lab := ‖ai − bj‖,
lcd := ‖ci − di‖, lcd := ‖ci − dj‖,

i 6= j,

lac := ‖ai − ck‖, lad = ‖ai − dk‖,
lbc := ‖bi − ck‖, lbd := ‖bi − dk‖. i, k ∈ {1, 2}.

We try to find for C4 a nontrivial flex C̃4 with vertices
ã1, . . . , d̃2, sufficiently near to the initial position. We
start with a position ã1b̃1ã2b̃2 of the antiparallelogram
Q in the xy-plane. The equations
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‖ã′i − c̃
′

k‖2 + ‖ã′′i − c̃
′′

k‖2 = l2ac ,

‖b̃′

i − c̃
′

k‖2 + ‖b̃′′

i − c̃
′′

k‖2 = l2bc

imply together with ã
′′

i = b̃
′′

i

‖ã′i − c̃
′

k‖2 − ‖b̃′

i − c̃
′

k‖2 = l2ac − l2bc . (11)

Suppose that a1 and b1 are kept fixed, i.e., ã′1 = a′

1 and
b̃
′

1 = b′

1. Let c0,d0 denote the pedal points of c′i and
d′

i on the line a′1b
′

1 (see Fig. 4). Due to (1) and

‖a′1−c′k‖2−‖b′

1−c′k‖2 = ‖a′1−c0‖2−‖b′

1−c0‖2

the points c0 and d0 must be also the pedal points of c̃′i
and d̃

′

i, respectively.

x
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Figure 4: Generalized four-dimensional flexible cross-
polytope C4 in top view and front view.
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Figure 5: Flex C̃4 of C4 from Fig. 4

After the top view of C̃4 has been fixed, in the front
view the dimensions of the antiparallelogram c̃

′′

1 d̃
′′

1 c̃
′′

2 d̃
′′

2

as well as the distances ‖ã′′1 − c̃
′′

k‖ and ‖ã′′1 − d̃
′′

k‖ are
defined. Because of γ3δ3 > 0 in Theorem 1 we have
lcd < lcd, hence ‖c′′1 − d′′

1‖ < ‖c′′1 − d′′

2‖ which implies
also ‖c̃′′1 − d̃

′′

1‖ < ‖c̃′′1 − d̃
′′

2‖.

We specify c̃
′′

1 and d̃
′′

1 and determine ã′′1 . As ã
′′

1 has to be
located on the axis of symmetry of the antiparallelogram
c̃
′′

1 d̃
′′

1 c̃
′′

2 d̃
′′

2 , we construct a line l̃ through ã
′′

1 tangent to
the ellipse ẽ, the fixed polode of the antiparallelogram
motion (compare Fig. 2). Continuity guarantees unique-

ness. The reflection in the tangent line l̃ gives c̃
′′

2 and
d̃
′′

2 (Fig. 5).

The limits for this flex C̃4 are much more complex than
that of Walz’s example. On the one hand ã

′′

1 must not
be located in the interior of the ellipse ẽ. On the other
hand all distances showing up in the top view must
not be greater than the corresponding true lengths. A
parametrization of the one-parameter motion of C4 is
omitted here.

3. CONCLUSION

In this paper flexible cross-polytopes in E
4 have been

presented. There are many open problems left around
this topic:

The characterization of first-order infinitesimal flexibil-
ity of cross-polytopes Cn in E

n seems to be similar to
that in E

3: Let P and P be two complementary cross-
polytopes of Cn of types Cn/2 for even n and of type
C(n+1)/2 and C(n−1)/2 for odd n. Then infinitesimal flex-
ibility of order 1 is given if and only if the two com-
plementary substructures P and P are located on the
same quadric, provided P is full-dimensional. However,
a complete proof is open.

The cross-polytopes presented in Theorem 1 seem to
be the only flexible cross polytopes in E

4, and no non-
trivially flexible cross-polytopes are expected for higher
dimensions. However, a proof of these conjectures is left
for future research, too.
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taschenbücher, Band 447, Bibliographisches Institut,
Mannheim.

ABOUT THE AUTHOR

Hellmuth Stachel, Ph.D, is Professor of Geometry, chair
of the Institute of Geometry at the Vienna University of
Technology and editor in chief of the “Journal for Geom-
etry and Graphics”. His research interests are in Higher
Geometry, Kinematics and Computer Graphics. He can
be reached by e-mail: stachel@geometrie.tuwien.ac.at,
by fax: (+431)-58801-11399, or through the postal ad-
dress: Institut für Geometrie / Technische Universität
Wien / Wiedner Hauptstr. 8-10/113 / A 1040 Wien /
Austria, Europe.

372


