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ABSTRACT: This is a brief summary of a paper presented at the 5th Japan-China Joint Conference on

Graphics Education in Osaka 2001.

1. INTRODUCTION

At Austrian universities the courses on Descriptive
Geometry are not only confined to pure graphical
methods, but they offer a visually based introduc-
tion to spatial geometry. Furthermore, it is an
Austrian tradition that the lectures on the “The-
ory of Mechanisms” for students of mechanical en-
gineering are held by the same persons who teach
Descriptive Geometry. As a consequence, in De-
scriptive Geometry emphasis is also laid on kine-
matical aspects. However, on has to be aware that
in Kinematics not only graphical methods but also
some mathematics are necessary, in particular ba-
sics of Linear Algebra and Differential Geometry.

One advantage of this combination of Descriptive
Geometry and Kinematics in Austria is that my
institution, the Institute of Geometry at the Vi-
enna University of Technology is frequently faced
with real world problems presented by different
Austrian companies. Recently we were involved
into the design of a swab folding machine and a
needle punching machine. In both cases the in-
tention to speed up the production process caused
kinematical problems. This is always a challenge
for the stuff and inspiring for their scientific work.
And these problems offer the chance to make the
lectures and exercises in Descriptive Geometry as
well as in Kinematics more vivid and perhaps
more motivating for students. Needless to say that
in any of these consulting activities computer sup-
port is necessary, either with professional CAD-
software of — in most of the cases — software de-
veloped at our insitution.

In the following a very few examples will be pre-
sented where Descriptive Geometry in the more
general sense as explained above is most useful
or even inevitable for the understanding of mech-
anisms or for the solution of engineering design
problems.

2. PARALLEL MANIPULATORS

Product development — e.g. in the high volume
production processes within the automotive in-
dustry — affects the current production technolo-
gies dramatically. Especially function integration
in so-called “integral components” leads to more
complex geometries and to the need of improved
task oriented solutions for the entire production
processes. In the last decades the concept of
frame-construction with a serial arrangement of
axes (serial roboters) has been developed.! How-
ever, a substantial disadvantage of these struc-
tures are the bending forces and the large amount
of moved masses. It is a characteristic property
of serial machines that drives have to carry the
mass of other drives and axes which reduces the
system’s ability of dynamic movement.

A promising chance for improving the dynamics
of machine tools is particularly seen in the de-
sign of parallel-kinematics based on a bar linkage,
the so called Hexapod-concept. Various different
parallel-kinematics are on the market, those with
lenght-variable legs — e.g., Stuart-Gough-platform
(Fig. 1), or others with legs of fixed length. An
example for the latter type is a machine tool
for drilling and milling operations with three-axes
parallel kinematics (Fig.2) available at the Insti-
tute of Production Engineering, TU Vienna. Here
the translatory movement of the end-effector is
controlled by three joints which run on three par-
allel lines.

The simplest geometric model of this special tool
(see the detail in Fig. 3) consists of three edges of
given lenghts which meet at a common point, the

1From the educational point of view it is very useful
to let students analyse the geometric structure of serial
robots, the relative motions between adjacent systems, and
the workspace. An interesting problem is also to determine
on how many different ways one given position of the end-
effector can be reached. One of these examples has been
presented in FUHS and STACHEL (2).



Figure 1: Example of a parallel manipulator

tool center point TCP, which can be seen als the
apex of a three-sided pyramid. The base triangle
of this pyramide is variable; the three vertices can
be specified on three parallel lines, respectively.

This model allows immediately to analyse this ma-
nipulator from the geometric point of view: The
problem of em forward kinematics, i.e., find the
position of the TCP for given positions of the
three base joints, is equivalent to the intersection
of three spheres. It is evident that no “singular
positions” with two coinciding solutions can ap-
pear. This geometric model makes it also rather
easy to define the workspace or to solve the prob-
lem of inverse kinematics, i.e., for a given location
of the TCP find the base joint positions.

Figure 2: A three-axes version of a parallel
manipulator for translatory movement

However, production and mounting tolerances ef-
fect that the real machine corresponds only partly
to the ideal geometric model. Hence there are
many problems left when this machine tool needs
to improve its positioning precision, e.g., down to
0.01 mm, when the length of the legs is about 1 m.

Figure 3: The skeleton of this manipulator

For this purpose, on the one hand precise mea-
surements for the precisely determining the mis-
placement of the end effector in different positions.
On the other hand, one has to develop strategies
to compensate these erros. In particular one must
figure out which deviations of the ideal model are
most responsible for the misplacements in differ-
ent areas. This needs sophisticated methods from
Linear Algebra and in particular the Jacobi trans-
formation which maps the derivations of the input
parameters (coordinates of the base joints) onto
the instantaneous movement of the end-effector.
This is part of a contemporary joint project where
I am involved.

3. THE UNIVERSAL JOINT

The second example has to do with the transmis-
sion of rotations about nonparallel axes a1¢, a2o.

Figure 4: The cardan joint

In STACHEL (1) I presented a cardan joint
(Fig. 4) as an example where basic Descriptive Ge-
ometry methods (auxiliary views and right-angle-
theorem) allow to grasp easily why this transmis-
sion is not uniform, to say, that the ration be-
tween output and input angular velocity is not
constant. This is the reason why in motor cars for
driving the wheels another type of transmission is
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Figure 5: The geometric structure of the unversal joint



used, the universal joint. Actually, this is not a
recent development but dates back to inventions
bei C.W. WEISS (1925, US.pat.no. 1,522.351) and
AH. RZEPPA (1935, US.pat.no. 2,010.899).

Though there is much interesting geometry in-
cluded, this kind of transmission seems to be
rather unknown in the scientific community of
graphics educators.

Figure 6: The condition for uniform transmission

How to obtain a wuniform transmission from the
input rotation about the axis aig to the output
rotation about asg? Suppose, these are the axes
of cylinders of revolution with the same radius
r (Fig.6). On these cylinders, take the genera-
tors ey, es, respectively, both located in the plane
spanned by the two axes. Then these genera-
tors intersect at a point of a bisector plane o of
a1p and agg. And under a uniform transmission,
i.e., both cylinders rotate through the same angle
Y20 = @10, the generators are permanently inter-
secting and the point S of intersection remains in
the plane o of symmetry.

S traces an ellipse. Therefore S is neither attach-
able to in the input system >; nor to the output
system Xo. Furthermore, all these points of inter-
section do not belong to a common rigid system
as their mutual differences change (see auxiliary
view in Fig. 7).

Another formulation of the condition for uniform
transmission reads:

At any instant the radial planes puy = ajper and
e = agpes must intersect in a line of 0.

At the unversal joint (Fig. 5)? this condition is met
by (six) steel balls with centers remaining in the
plane o and preserving the distance p to the point
O = ajpNasgg of intersection. Hence the centers of
these spheres are located on a circle with radius
p. The spheres can be combined by a sort of ball
bearing ¥3. In Fig. 5 this ball bearing is displayed
with a quarter section.

The centers of the steel balls remain with respect
to X1 in planes 1 D a1g9. Therefore they are mov-
able on circles. This is materialized by longitudi-
nal grooves at the end of the input part. The
output part Yo is designed as a hollow sphere em-
bracing the end of ¥; and all balls in ¥3. Again,
toroidal grooves — this time on the inside of 3o
— guarantee that the centers of the steel balls are
held in radial planes ps with respect to Xo.

2 This figure has been produced with the 3D-modelling
software CAD-3D developed at the Institute of Geometry,
Vienna.

Figure 7: Auxiliary view showing the bisector plane o in true size



One has to note that the centers of the steel balls
do not run with constant speed on their circular
path in the bisector plane o. The auxiliary view in
Fig. 7 reveals that the regular spacing shown in the
side view is affinely distorted in o. The distances
between any two spheres vary during the motion.
This results in the fact that the openings in the
ball bearing >3 must have a longitudinal shape in
order to permit this variation of mutual distances.
(This can be also be observed in the top view of
Fig. 5). Tt is an easy but interesting exercise to
compute the maximal and minimal distance which
can appear between adjacent steel ball centers in
dependence of the angle 8 made by a1 and agp.
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