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Abstract. Strophoids are defined as plane circular cubics with a node
and orthogonal node tangents. These rational curves are characterized
by a series of properties. Of fundamental importance is their role as
generalizations of Apollonian circles (Theorem 1). We also focus on
quadratic transformations which keep strophoids invariant. At almost
all properties a symmetric relation of points on the cubic is important.
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1 Introduction

Definition 1. An algebraic curve in the Euclidean plane is called circular
if it passes through the absolute circle-points. A circular curve of third
degree is called strophoid if it has a double point (= node) with orthogonal
tangents. An irreducible strophoid with an axis of symmetry is called right
and otherwise oblique (see [9, p. 515] or [12, pp. 37–39]).

N

Q′

QT

t

G

G′

g

F

F̃

G̃

G̃′

F ′

T̃

TP

FP

H

H

S

P

K

a
sy
m
p
to
te

m

t1

t2

x

y

Figure 1: The irreducible strophoid S is the pedal curve of the parabola
P and inverse w.r.t. the circle K to the equilateral hyperbola H.



In a cartesian coordinate frame with the two tangents t1, t2 at the
node N as x- and y-axes (see Figure 1), the equation of the cubic can be
set as

S : (x2 + y2)(ax+ by)− xy = 0. (1)

In fact, the origin N as a point of intersection between S and the x-
or y-axis has the multiplicity 3, and for all other lines through N the
multiplicity 2. On the other hand, the two complex conjugate points of
intersection of S with the line at infinity are (0 : 1 : ±i), when we use
homogeneous coordinates (x0 : x1 : x2), which for finite points satisfy
(x, y) = (x1/x0, x2/x0). Hence, the cubic S is circular. The real point of
S on the line at infinity is F ′ = (0 : −b : a).

It means no restriction to assume that the constant coefficients a, b ∈ R

satisfy

a ≥ b ≥ 0. (2)

The strophoid with the constants (a,−b) is the reflection of S in the x-
axis. The strophoid with constants (b, a) instead of (a, b) can be obtained
by reflection of S in the line x = y.

In the case a = b the strophoid S in (1) is symmetric with respect
to (‘w.r.t.’ in brief) the line x = y. There are two types of reducible
strophoids: For a > b = 0 the curve (1) splits into the y-axis and a
circle passing through the origin and with the center (0, 1

2a
). In the case

a = b = 0 the projective cubic consists of the two coordinate axes and the
line at infinity (note Table 1).

Table 1: Types of affine strophoids

type coefficients comments

oblique strophoid a > b > 0

right strophoid a = b
irreducible

circle + diameter a > b = 0

orthogonal lines a = b = 0
reducible

The line through N with inclination angle ϕ intersects S in the point

X =

(
sinϕ cos2 ϕ

a cosϕ+ b sinϕ
,

sin2 ϕ cosϕ

a cosϕ+ b sinϕ

)
. (3)

This yields a parametrization of S. The choice ϕ = ±45◦ gives the points



G and G′ with coordinates

G =

(
1

2(a+ b)
,

1

2(a+ b)

)
, G′ =

(
−1

2(a− b)
,

1

2(a− b)

)
. (4)

In the symmetric case a = b point G′ is at infinity. The pedal point of
the connecting line

[G,G′] : 2bx+ 2ay = 1

w.r.t. to the node N is the focus F of S with the coordinates

F =

(
b

2(a2 + b2)
,

a

2(a2 + b2)

)
.

It can be verified (compare [11, p. 66]) that the tangents to S at the
absolute circle-points intersect at the focus F .

The line m, which connects N with the real point F ′ at infinity is
called the median of S. It is the reflection of the line [N,F ] in the node
tangents t1 or t2 (Figure 1).

The parametrization (3) of S gives rise to the polar equation

S : r(ϕ) =
1

a
sinϕ

+ b
cosϕ

for ϕ ∈
(
0,

π

2

)
∪
(
π

2
, π

)
. (5)

Lemma 1. Each irreducible strophoid S is inverse to an equilateral hy-
perbola H w.r.t. any circle centered at the node N of S. The strophoid S
is the pedal curve of a parabola P whose directrix passes through N and
whose focus FP is the reflection of N in the focus F of S.

Proof. (a) The inversion T 7→ T̃ in the circle K with radius R centered at
N transforms the strophoid S with the polar equation (5) into the curve
H with the polar equation

H : r =
aR2

sinϕ
+

bR2

cosϕ
for ϕ ∈

(
0,

π

2

)
∪
(
π

2
, π

)
.

This is an equilateral hyperbola since it satisfies the cartesian equation

H : (x− bR2)(y − aR2) = abR4.

It passes through N , and its asymptotes are parallel to the tangents t1, t2
of S at N (see Figure 1). Due to properties of inversions, each asymp-
tote of H is inverse to the circle of curvature of S at N for one of the
two branches. The centers (0, 1

2a
) and ( 1

2b
, 0) of these circles are the

intersections of the line [G,G′] with the tangents t1 and t2 (Figure 1).



The inverse images G̃, G̃′, F̃ ∈ H of the points G,G′, F ∈ S form
together with N a rectangle symmetric w.r.t. the axes of H (Figure 1).

(b) In order to prove the second part of Lemma 1, we select any point
T ∈ S and determine the line t through T orthogonal to [N, T ] (Figure 1).
If the line [N, T ] has the slope k then we obtain from (1) or (3)

T =

(
k

(1 + k2)(a+ bk)
,

k2

(1 + k2)(a+ bk)

)
(6)

and

t : x+ ky =
k

a+ bk
.

The homogeneous line coordinates of t,

(u0, u1, u2) =

(
−k

a+ bk
, 1, k

)
;

satisfy the homogeneous quadratic equation

au0u1 + bu0u2 + u1u2 = 0. (7)

This is the tangential equation of a parabola P , since the polynomial
on the left-hand side is irreducible and contains the zero (u0, u1, u2) =
(1, 0, 0). Also the homogeneous line coordinates (0 : 1 : 0) and (0 : 0 : 1)
of the y- and x-axis are zeros of this equation. We obtain the point-
equation of P by inverting the symmetric coefficient matrix of (7):

P : b2x2 + a2y2 − 2bx− 2ay − 2abxy + 1 = 0.

The parabola P contacts the line at infinity at the point (0 : a : b). Hence,
the axis of P is orthogonal to the median m. Since N is the intersection
point of two tangents of P , i.e., the coordinate axes, the median m is the
directrix of P . After some computations we obtain the parabola’s focus
FP and the vertex SP as

FP =

(
b

a2 + b2
,

a

a2 + b2

)
, SP =

(
b3

(a2 + b2)2
,

a3

(a2 + b2)2

)
.

The focus F of S is the midpoint between N and FP and therefore a point
of the parabola’s tangent at the vertex SP . The parabola P is polar to
the hyperbola H w.r.t. the circle K (Figure 1).



2 Associated points

Definition 2. Given a strophoid S, two real or complex conjugate points
Q,Q′ ∈ S, both different from the node N , are called associated if and
only if the lines [Q,N ] and [Q′, N ] separate the two node tangents t1 and
t2 harmonically. In the case of two real points (Q,Q′), the tangents t1
and t2 are the angle bisectors of [Q,N ] and [Q′, N ].

The harmonic position of the lines [Q,N ] and [Q′, N ] w.r.t. the tan-
gents at the node can be used to define associated points on each cubic
with the node N . In the following lemma we list some of the projective
properties of associated points. Proofs are given in [1, 144–145].

Lemma 2. 1. Two points Q,Q′ of a cubic C with a node N are associated
if and only if the tangents to C at Q and Q′ intersect at a point S which
lies again on C. This point S is associated to the remaining point S′ of
intersection between C and the line [Q,Q′].

2. For each point P ∈ C \ {N}, the connecting lines with a pair (Q,Q′)
of associated points are harmonic w.r.t. the line [P,N ] and the line where
the contact points of the tangents drawn from P ′ to C are located.

3. For each quadrangle formed by pairs of associated points (P, P ′) and
(Q,Q′), the diagonal points R = [P,Q]∩ [P ′, Q′] and R′ = [P,Q′]∩ [P ′, Q]
lie again on C, and they are associated, too. Hence, three collinear points
{P,Q,R} ⊂ C \ {N} together with their associated points {P ′, Q′, R′} are
the six vertices of a complete quadrilateral.

Though the following lemma remains valid also after a projective gen-
eralization, we restrict ourselves to the particular case of a strophoid S:

Lemma 3. If two different real or complex conjugate points Q and Q′ of
a strophoid S are associated then their connecting line [Q,Q′] is tangent
to the parabola P, which is the negative pedal curve of S w.r.t. its node N .
Conversely, on each tangent t of P the remaining points of intersection
between t and S, besides the pedal point of t w.r.t. N , are associated.

Proof. Let k be the slope of the line [N,Q]. Then, for the associated point
Q′ the connection with N has the slope −k, and by virtue of (6) the line
t = [Q,Q′] has the homogeneous coordinates

(u0, u1, u2) =
(
k2, −bk2(1 + k2), −a(1 + k2)

)
,

which satisfy the quadratic equation (7) of the parabola P . The third
point of intersection between t and the strophoid is the pedal point

T =
(
(a2 + b2k4)(1 + k2) : bk4 : ak2

)
.



On the line t, the harmonic conjugate of T w.r.t. Q and Q′ is the point
of contact TP =

(
2ab(1 + k2)2 : a : bk4

)
with the parabola P , since the

slopes kT of [N, T ] and kP of [N, TP ] satisfy the condition kT · kP = −k2.
Only in the case k3 = a/b the pedal point T coincides with Q, and we
obtain a point of contact between the strophoid S and its negative pedal
curve P .

Conversely, let t be a tangent of P not passing through the node
N , and let T be its pedal point w.r.t. N . If Q is a remaining point of
intersection between t and S, i.e., Q 6= T , then, by virtue of the first part
of the proof, its connection with the associated point Q′ ∈ S is tangent
to P . Therefore, [Q,Q′] is either coincident with t or normal to [N,Q].
However, in the latter case Q coincides with the pedal point of this line
w.r.t. N , which has been excluded.

The connecting line of two real associated points Q and Q′ contacts
the parabola P within the arc which is terminated by the points of contact
between P and the two node tangents t1 and t2. The terminating points
lie on the polar of N w.r.t. P . This polar is parallel to g = [G,G′] and
passes through FP (Figure 1).

One point of each pair (Q,Q′) of associated points belongs to the finite
loop of S, while the other lies outside. The focus F is associated to the
real point F ′ at infinity. The connections of F ′ with pairs of associated
points are symmetric w.r.t. the median m = [F ′, N ]; consequently, the
midpoints of all finite pairs of associated points lie on m.

A further pair of associated points is (G,G′) on the line g through
F orthogonal to [N,F ]. Also the absolute circle-points are associated,
since the isotropic lines through N separate the node tangents t1 and t2
harmonically. In accordance to this, (a) the connecting line of the absolute
circle-points, the line at infinity, is tangent to the parabola P , and (b) the
tangents at the absolute circle-points intersect at F . As a limit, the node
N can be called self-associated.

The inversion between S and the hyperbolaH transforms pairs (Q,Q′)

of associated points of S into pairs (Q̃, Q̃′) of opposite points of H. When
S splits into a circle and its diameter line, associated points on the circle
are symmetric w.r.t. the diameter.

Lemma 4. A strophoid is uniquely defined by its node N and a pair
(Q,Q′) of associated points, provided that the three points are not
collinear.

Proof. We use the inversion w.r.t. any circle centered at N : The inverse
points of Q and Q′ define a diameter of an equilateral hyperbola H whose
asymptotes are parallel to the angle bisectors of [N,Q] and [N,Q′]. Thus,
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Figure 2: Left: A strophoid S is uniquely defined by its node N and a
pair (Q,Q′) of associated points (Lemma 4). Right: Constructing points
X ∈ S and the tangents through A′.

the hyperbola and consequently its inverse, the wanted strophoid, are
uniquely defined.

As an alternative, we can also look for a parabola P as the negative
pedal curve of the strophoid. P is given by the following four tangents:
the angle bisectors t1, t2 of the lines [N,Q] and [N,Q′], the normal t to
[N,Q] through Q and the normal t′ to [N,Q′] through Q′. No two of
them are parallel, no three of them are concurrent. Therefore there exists
exactly one parabola P which contacts them. PointN lies on the directrix
of P , since the tangents drawn through N to P are orthogonal.

By the same token, the parabola P is also tangent to the line [Q,Q′]
(Lemma 3). We prove this in the following way (see Figure 2, left): Let
the tangents t1 and t2 intersect t in the points 1, 2 and t′ in the points
1′ and 2′, respectively. Then the triangles N12 and N1′2′ are similar.
The feet Q and Q′ of the altitudes through N are corresponding in this
similarity. Hence, the lines t1 = [1, 1′], t2 = [2, 2′] and [Q,Q′] together
with t and t′ must be tangents of a parabola, and this is P .

3 Strophoids as a geometric locus

Strophoids show up as the locus of points at various geometric problems
in the Euclidean plane (see, e.g., [1, 10, 11]): Here we focus on one of the
main properties and on a few consequences.

Theorem 1. For given non-collinear points A,A′ and N , the locus of
points X such that the line [X,N ] bisects the angle between [X,A] and
[X,A′] is a strophoid S with the node N and with associated points A,A′

(Figure 3). The strophoid S has this property w.r.t. all its pairs (A,A′) of
associated points, and this property holds also when A is at infinity. The
respectively second angle bisectors are tangent to the parabola P, which is



the negative pedal curve of S w.r.t. the node N .

The strophoid S splits if and only if NA = NA′. In this case the requested
locus of points X consists of the circumcircle of AA′N and the diameter
line orthogonal to [A,A′].
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Figure 3: The strophoid is the locus of points X such that the line [X,N ]
bisects an angle between the lines [X,A] and [X,A′].

Proof. By virtue of Lemma 2, 2., the lines connecting any point X ∈
S \ {N} with all pairs of associated points belong to an involution with
one fixed line passing through the node N . Since the absolute circle-points
are associated too, the two fixed lines of the involution are orthogonal,
i.e., the involution is the symmetry w.r.t. [X,N ]. And this holds for all
pairs (A,A′) of associated points of S.

Conversely, on each line l throughN there is at most one pointX with this
property: We obtain this point by intersecting l with the line connecting
A′ with the reflection of A in l (Figure 2, right).1 This reflection cannot
coincide with A′, except the case with N being equidistant to A and A′.
Since the strophoid S has one remaining point of intersection with l, there
are no other points than those of S.

Due to Theorem 1, the strophoid generalizes the Apollonian circle,
which has the requested property in the case of collinear points {A,A′, N}
(Figure 4, left). Then the complete locus of points X with [X,A] and
[X,A′] being symmetric w.r.t. [X,N ] includes also the line [A,A′]. In the

1This defines between the line pencils with carriers A and A′ a 2-1-correspondence
which generates the strophoid S as the locus {X} of intersection points.



case of N at infinity, but neither aligned with A and A′ nor orthogonal to
[A,A′], the analogue locus is an equilateral hyperbola (Figure 4, right).
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Ñ

A A′

X

S

S

N

A

A′

X

S

Figure 4: In the case of collinear points {A,A′, N} (left) the Apollo-
nian circle together with [A,A′] is the locus of points X , as requested in
Theorem 1, while for N at infinity (right) an equilateral hyperbola with
diameter AA′ is the result, provided that N is not orthogonal to [A,A′].

When X tends to A ∈ S, then the line [X,A] tends to the tangent tA
to S at point A. This reveals that [A,N ] bisects the angle between tA
and [A,A′]. The analogue holds for the tangent tA′ to S at A′. Hence,
the tangents tA and tA′ together with [A,A′] determine a triangle AA′B,
for which the node N is the center either of the incircle or of one of the
excircles (Figure 3).

Figure 5 illustrates two consequences of Theorem 1 (see [7, p. 101] or
[9, p 515, footnote 235], and [7, p. 120, footnote 417], respectively).
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Figure 5: The strophoid and conics (Corollaries 1 and 2)



Corollary 1. The foci of all conics in the pencil, which is defined by two
given line elements (T1, t1) and (T2, t2) in admissable position, are located
on a strophoid S with the node P := t1 ∩ t2 and with (T1, T2) as a pair of
associated points. For each included ellipse or hyperbola the two real foci
as well as the two complex conjugate foci are associated points of the focal
curve S.

The focal curve S remains the same when T1 and T2 are replaced by any
other pair of associated points of S, while P is fixed.

Proof. Let F be a focal point of any conic included in this pencil. Then,
due to Desargues’ involution theorem, the lines [F, T1] and [F, T2] are
symmetric w.r.t. [F, P ] (Figure 5, left). Hence, by virtue of Theorem 1,
F is a point of the strophoid with node P and associated (T1, T2) (see [1,
Fig. 5] or [11, Fig. 6]).

If the conic is an ellipse or hyperbola with the real foci F1 and F2, then
the lines [F1, P ] and [F2, P ] share with t1 and t2 the axes of symmetry
(Figure 5, left). By virtue of Definition 2, the points F1 and F2 are
associated. As a consequence of Lemma 2, 3., also the two imaginary foci
are associated points of S, since the absolute circle-points are associated
as well.

Corollary 2. Let C be a conic, whose foci are associated points of the
strophoid S mentioned in Corollary 1. For each conic C′ confocal with
C, the points of tangency of the tangents from the node P to C′ are also
located on S. Moreover, S is the locus of pedal points N of normals drawn
from P to all conics C′.

Proof. Let T be a point of tangency (Figure 5, right). If F1 and F2

are the two real foci of C and C′, then the lines [T, F1] and [T, F2] are
symmetric w.r.t. [T, P ]. Hence, by virtue of Theorem 1, T is a point of a
strophoid with node P and associated (F1, F2) (see [11, Fig. 7]). By virtue
of Lemma 4, this strophoid coincides with the strophoid S of Corollary 1.
The negative pedal curve P of S w.r.t. P coincides with Chasles’ parabola
of P w.r.t. all confocal families (see [8, p. 342]).

Besides C′, there is a second conic C′′ out of the confocal family passing
through the point T of tangency. Since confocal conics form an orthogonal
net, the line [T, P ] is orthogonal to C′′; hence, T is a pedal point of C′′

w.r.t. P .

By the same token, the points of tangency of tangents from a generic
fixed point P to all conics of a given pencil are located on a curve of
degree 3. This can be proved by representing the equations of the conics
as linear combinations. Then also the equations of the polar lines of P



are linear combinations, and the points of tangency are common solutions
of corresponding pairs of equations.

A third consequence of Theorem 1 is the equicevian property, which
is stated in the following Corollary. It has been discussed in more detail
in [1, 2]. But already O. Bottema has noted in [5] that the equicevian
property characterizes a circular cubic.
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Figure 6: X is equicevian ⇔ AAX = BBX ⇔ [X,N ] bisects ∠AXB.

Corollary 3. Let N be the node and A,B be associated points of a
strophoid S. We focus on the triangle ABC with C being the reflection
of N in the midpoint of AB (Figure 2, right). The two cevians AAX and
BBX of a point X have equal lengths if and only if X is a point of S.

Proof. The proof is based on the equivalence between the equality of dis-
tances AAX = BBX and the symmetry of the lines [X,A] and [X,B]
w.r.t. [X,N ].
Because of AX ∈ [B,C] ‖ [N,A] the triangles ANAX , ANB and analo-
gously also BNBX have areas equal to that of ABC. Consequently, the
distances AAX and BBX are equal iff the altitudes of N in the triangles
NAAX and NBBX are equal. On the other hand, the lines [A,AX ] and
[B,BX ] contact a circle with center N iff [N,X ] is an angle bisector of
these lines (Figure 6).

In Figure 6 three other points X ′, Y, Y ′ ∈ S are depicted for which the
cevians through A and B have the same length as that of X .

4 Invariance against quadratic transformations

Theorem 2. Let S be an irreducible strophoid with the node N , the focus
F and with G,G′ being the remaining points of intersection between S
and the line g through F orthogonal to [F,N ]. Then the inversions w.r.t.
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Figure 7: The strophoid S is self-inverse with respect to the circles KG

and KG′ through N with centers G and G′, respectively. Therefore S is
the envelope of self-inverse circles with centers on confocal parabolas PG

and PG′ with the common focus F .

the two circles KG, KG′ , centered at G and G′, respectively, and passing
through N and FP , map S onto itself.
Hence, S is the envelope of circles being orthogonal to KG and centered
on a parabola PG with focus F and an axis orthogonal to the median m
of S. Similarily, S is also the envelope of circles being orthogonal to KG′

and centered on a parabola PG′ , which is confocal to PG (Figure 7).
In the case of a right strophoid, one of the circles KG or KG′ and one of
the parabolas PG or PG′ degenerates to the axis of symmetry.

Proof. The inversion in the circle K, as mentioned in Lemma 1, trans-
forms the reflections in the axes of the hyperbola H onto the inversions
in the circles KG and KG′ . All circles having a double contact with H are
centered on one of the hyperbolas axes. The inversion in K maps them
onto two families of circles being orthogonal either to KG and KG′ . In [10,
p. 7] it is verified analytically that the centers of these circles lie on two
confocal parabolas. The common axis of the two parabolas is orthogonal
to the median m of S. The directrices coincide with the tangents to S at
G′ and G. Both parabolas are tangent to the negative pedal curve P of
S (see Figure 7).

The product of the reflections in the axes of the hyperbola H is the
reflection in the hyperbola’s center. The inversion in the circle K trans-
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Figure 8: The circles through N and FP intersect the strophoid S in pairs
of associated points. Circles of the orthogonal pencil intersect S in two
pairs of associated points.

forms this point reflection onto a Moebius-involution. Its restriction to S
is the involution of associated points. Since the reflection in the hyper-
bola’s center keeps diameters of H as well as all concentric circles fixed,
we obtain

Corollary 4. The remaining points of intersection between the strophoid
S and circles centered on [G,G′] and passing through N and Fp are asso-
ciated points of S, or there is an osculation at N with one branch of S.
The circles being orthogonal to all circles through N and Fp share with S
two pairs of associated points (Figure 8).

Consequently, whenX is a point of contact between S and a circle with
double contact and centered on KG, then the second point of contact is
Y = [G,X ] ∩ [G′, X ′] with X ′ associated to X (Figure 7). Circles of
different families sharing one contact point have associated second points
of contact. In one of the families there are two circles with a four-point
contact with S. Their contact points V and V ′ are associated as well.

The inversions in KG and KG′ are the only ones which map S onto
itself. This follows also from the fact that a four-point contact between
a curve and a circle is invariant under inversions. Hence, the two points
V, V ′ of S with stationary curvature must either be fixed or they commute
under an inversion which preserves S (Figure 7).

Theorem 3. Let S be an irreducible strophoid with node N , and let ABC
be an inscribed triangle such that N is the center of a tritangent circle of



ABC, i.e., center of the incircle or of an excircle. Then the isogonal
transformation with respect to ABC maps S onto itself. The restriction
of this isogonal transformation to S equals the involution of associated
points (Figure 9).

N
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B
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C′

X

X ′

S

P

Figure 9: The isogonal transformation X 7→ X ′ w.r.t. the triangle ABC
maps the strophoid S onto itself.

Proof. Given a strophoid S with node N , let A,B ∈ S \ {N} be two
non-associated points. By reflecting [A,B] in the lines [A,N ] and [B,N ]
we obtain the side lines [A,C] and [B,C] of a triangle ABC, which has
N as the center either of the incircle or of an excenter. The triangle has
the property that for each vertex the associated point lies on the opposite
side line (Figure 9).

We learned in Theorem 1, that for any two associated points X,X ′ ∈ S
with X,X ′ 6= A,B,C the connecting lines with A, B and C are symmetric
with respect to the respective angle bisectors [A,N ], [B,N ] or [C,N ].
Hence, X ′ is isogonal conjugate to X w.r.t. ABC.

Remark. The product of any two isogonal transformations of the type pre-
sented in Theorem 3 is a birational transformation which fixes all points
of S.

According to Bézout’s theorem, two different strophoids with a com-
mon node N share at most three points besides the absolute circle-points,
since N has an intersection multiplicity ≥ 4. The following theorem re-
veals that these three remaining points form a triangle of the type men-
tioned in Theorem 3.



Theorem 4. Given a triangle NAB, each strophoid passing through A
and B and with node N contains a third point C such that N is the center
of a tritangent circle of ABC.
All strophoids with node N and circumscribed to the triangle ABC be-
long to a linear system. These strophoids are orbits under the isogonal
transformation w.r.t. ABC. Their foci lie on the circumcircle of ABC
(Figure 10).
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Figure 10: Strophoids with node N and circumscribed to the triangle
ABC belong to a linear system. Their foci lie on the circumcircle F of
ABC.

Proof. We rotate the coordinate frame, which was used in (1), and obtain
the general equation of a strophoid with the node at the origin as

(x2 + y2)(cx+ dy) + (ex+ fy)(fx− ey) = 0 (8)

with constant c, d, e, f ∈ R and (e, f) 6= (0, 0). The linear factor in the
cubic term gives the equation of the median, while the quadratic term
describes the two orthogonal node tangents. The original parameters a, b
used in (1) can be computed as

a =
ec+ fd√
e2 + f2

, b =
ed− fc√
e2 + f2

.

Any non-trivial linear combination of two such equations gives again an
equation of this type, since the quadratic terms define a pencil of curves of



second degree, which consist of orthogonal lines. Hence, any two different
strophoids with the node N at the origin and passing through A, B and
C span a pencil of such strophoids.2 Through each point different from
N , A, B, and C passes exactly one strophoid of this linear set.

Conversely, for each strophoid S through ABC and with the node N the
remaining point of intersection with [A,B] must be associated to C. By
virtue of Lemma 4, N and the associated pair (C,C′) define a strophoid
uniquely. Hence, S coincides with the strophoid which is included in the
pencil and passes through C′.

The respective negative pedal curves are parabolas sharing three tangents,
the lines through the three vertices A,B,C, orthogonal to the respective
connections with the node N . These lines are the sides of the triangle
EAEBEC formed by the centers of the remaining tritangent circles of
ABC. By virtue of a wellknown theorem on parabolas (e.g., [8, p. 381]),
the foci of these parabolas lie on the circumcircle of the triangle EAEBEC .
A dilation with center N and factor 1

2
maps this circumcircle onto the

Feuerbach circle F of EAEBEC , which is the circumcircle of ABC and,
by virtue of Lemma 1, the locus of the focal points of the strophoids.

Figure 10 shows some strophoides of the pencil, among them the three
reducible ones, denoted as S1, S4, and S7. The strophoid S2 is right; S6

has its focus at C. For the strophoid S8 the points B and C are associated,
with the respective tangents [B,A] and [C,A].

The inversion in a circle K centered in N maps the pencil of strophoids
onto the pencil of equilateral hyperbolas passing through the vertices of
the triangle ÃB̃C̃ and its orthocenter N .

If the isogonal transformation w.r.t. any triangle ABC is given then there
are four pencils of strophoids which serve as orbits, i.e., which contain
with each point X also its isogonal conjugate X ′. The nodes of these
strophoids are the centers of the tritangent circles. It is a general property
of the isogonal transformation that for any quadrangle consisting of two
pairs (P, P ′) and (Q,Q′) of isogonal conjugates the two diagonal points
R = [P,Q] ∩ [P ′, Q′] and R′ = [P,Q′] ∩ [P ′, Q] are isogonal conjugates,
too (note, e.g., [6, p. 47]). By virtue of Lemma 2, 3., all strophoids of the
four pencils are closed under this operation.

Finally, it must be noted that the family of auto-isogonal cubics stud-
ied in [6] does not include strophoids. The cubics in [6] are defined by
any point P (=pivot) as the locus of isogonal conjugates (X,X ′) which
are collinear with P . These cubics are in general non-rational (see also [4,
p. 1205] or [3]).

2The pencil contains also reducible strophoids, e.g., the circumcircle of ABN to-
gether with the diameter [N,C].



5 Conclusion

Strophoids play an important role in plane geometry. The goal of this
paper was to show how many properties can be derived from the fact that
strophoids generalize Apollonian circles. From this particular property
follows also that the strophoids of four pencils remain invariant under
isogonal transformations with respect to a given triangle.
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