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RECALLING IVORY'S THEOREM 

Hellmuth Stachel 

Vienna University of Technology 
 stachel@dmg.tuwien.ac.at 

Abstract 

Ivory's Theorem states that in each curvilinear quadrangle of a confocal net of conics the two 
diagonals have the same lengths. This theorem is valid not only in the Euclidean plane, but also in 
planar hyperbolic, spherical and pseudo-Euclidean (or Minkowski) geometry, and similar statements 
hold in all dimensions. Recent publications on this theorem and its generalizations on surfaces are the 
reason to focus again on this topic and to show a few algebraic consequences. 

Keywords: Ivory's Theorem, confocal conics, incircular net, Poncelet grid.  

1  INTRODUCTION 

Ivory's Theorem [11] states that in each curvilinear quadrangle PP'Q'Q of a confocal51 family of conics 
the two diagonals have the same lengths d(PQ') = d(P'Q) (Fig. 1). This theorem is valid not only in the 
Euclidean plane, but also in hyperbolic, spherical and pseudo-Euclidean (or Minkowski) geometry. 
Similar statements are valid in all dimensions (see, e.g., [4, 8, 10, 11, 12, 14, 15]). A converse of the 
Euclidean version is proved in [13]. 

    

Fig. 1.  Ivory's Theorem in the Euclidean and hyperbolic plane, d(PQ') = d(P'Q),  d(PR') = d(P'R) 

Due to recent publications [1, 12] we focus again on this topic and show a few consequences. While 
[12] presents a differential-geometric approach, which is also valid for Liouville and Stäckel nets on 
surfaces, we emphasize algebraic aspects. 

Two confocal central conics of the same type in the Euclidean plane can be represented as  
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where λ, μ ϵ ℝ \ {0,1} and С = const. The affine transformation (x, y) ↦ (x', y') = (λx, μy) maps c onto c'. 
Confocal parabolas can be represented as  

                                                      
51 Conics with a center (central conics, in brief) are called confocal when they share the two focal points. Two parabolas are 
confocal if they share the focal point and the axis. 
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where p  0 and μ  0,1. Here the affine transformation (x, y) ↦ (x', y') = (x+p, μy) takes c onto c'. In both 

cases a straight forward computation shows that for any two points P = (x₁, y₁)  c and Q' = (x₂’, y₂’) 
c' their distance equals that between the image P' = (x₁’, y₁’) of P and the preimage Q = (x₂, y₂) of Q'.52 

In the case of confocal conics with the center O we can confirm similarily that 

d(OP) ² + d(OQ')² = d(OP')² + d(OQ)², 

and for the dot product of vectors  

vec(OP) · vec(OQ') = vec(OP') · vec(OQ). 

More general, for any coaxial conic d holds: P and Q' are conjugate with respect to (‘w.r.t.’ in brief) d if 

and only if P' and Q are conjugate w.r.t. the conic d. This means in the case d = c' : If Q,R  c lie on 

the tangent to c' at P' then Q', R' c' are the points of contact of the tangents drawn from P c to c' 
(Fig. 1, right). By the same token, these tangents have common angle bisectors with the lines 
connecting P with the focal points (see, e.g., [9, p. 42]). 

If a conic of a given confocal family serves as absolute conic c a  in the Cayley-Klein model of a 
hyperbolic geometry (Fig. 1, left) then the conics c and c' are also confocal in the hyperbolic sense, 

i.e., they share the (complex conjugate) common tangents with the absolute conic c a . Therefore (e.g., 
according to [15]) there are equal cross ratios (PQ'U₁U₂) = (P'QU₁'U₂') with the respectively collinear 

absolute points U₁, …, U₂'. In the limiting case U₁ = U₂ we obtain a result, which is cited in [2, p. 153], 
but probably has been known earlier: 

Lemma 1. In each Ivory quadrangle the two diagonal lines are tangent to the same conic c₀ of the 
confocal family (Fig. 1, left). 

2  SOME CONSEQUENCES 

Ivory's Theorem and Lemma 1 can be used to reprove a theorem recently published. 

   

Fig. 2.  All billiards consisting of tangents to c₀ are closing ‘within’ PP'Q'Q 

Theorem 2. (Izmestiev, Tabachnikov [12])  Given a confocal family of conics, in each Ivory quadrangle 
PP'Q'Q with diagonals tangent to c₀ all billiards with sides being tangent to c₀ are closing and have 
equal lengths (Fig. 2). 

 Proof: Let c, h₁, c', h₂ be the conics carrying the curved sides of the Ivory quadrangle PP'Q'Q (Fig. 3). 

We choose a point A₁  c within the curved side PQ and denote with h₃ the second confocal conic 

                                                      
52 To be precise, Ivory's Theorem (Euclidean version) is valid only for curvilinear quadrangles PP'Q'Q where opposite sides 
(‚arcs semblables‘ according to [6]) are corresponding under an affine transformation which fixes the axes of the confocal 
conics. In this case we speak of an Ivory quadrangle. 
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passing through A₁. If D₁ is a point of intersection between h₃ and the diagonal PQ' then there is a 

sub-quadrangle PA₁D₁A₂ with A₂  h₁ and one diagonal tangent to c₀. Hence, by virtue of Lemma 1, 
also the line A₁A₂ contacts c₀. 

The second confocal conic c'' through A₂ intersects P'Q at D₂, and thus we obtain a second sub-

quadrangle P'A₂D₂A₃ with diagonals tangent to c₀. Similarily we find a point D₃ PQ' and furtheron A₄ 
 h₂. Finally, the quadrangle A₁D₄A₄Q reveals that the line A₁A₄ is tangent to c₀, too. 

We infer from Ivory's Theorem that 

d(A₁A₂) + d(A₂A₃) + d(A₃A₄) + d(A₄A₁) = d(PD₁) + d(P'D₂) + d(D₃Q') + d(D₄Q) 

         = (d(PQ') - d(D₁D₃)) + (d(P'Q) + d(D₂D₄)) = 2d(PQ'). 

On the other hand, the focal properties yield equal angles at A₁, ..., A₄, as indicated in Fig. 2, left. This 

confirms that A₁... A₄ is a closing billiard within the Ivory quadrangle PP'Q'Q.  

Figure 2 shows on the right hand side that for Ivory quadrangles, which cross an axis, the billiard A₁... 
A₄ can look quite different. This calls to mind that the construction of the billiard for given A₁, as listed 
above, is ambiguous, since the point of intersection between a line and a conic is not unique. Only the 
respective fourth vertex of a curved Ivory quadrangle is unique because of the affine transformations 

mapping one side on the opposite side.                                                                                                  

 

Fig. 3.  The sides of the billiard and the diagonals of the bounding quadrangle PP'Q'Q 

In [12] the authors reprove in a differential-geometric way (note Section 3) the following theorem (see 
Fig. 4). 

Theorem 3. If the tangents drawn from any two points A₁, B₁ of a conic c₁ to a confocal conic c₀ form 
a quadrilateral then each other pair of opposite vertices (A

i
, B

i
), i = 2,3, belongs to the same conic c

i
 

of the confocal family. The quadrilateral is ‘incircular’, i.e., it has an incircle. 

This theorem has already been published by Chasles [6, p. 841] and later by Böhm in [3, p. 221]. The 
same theorem was studied recently in [1]. A projective version of this statement is given below in 
Theorem 4 and proves at the same time the properties of Poncelet grids (see, e.g., [9, p. 412]). 

The second part of Theorem 3, which is also discussed in [5], can be concluded from Ivory's Theorem, 
as shown in Fig. 4: The respectively second confocal conics through A₁, B₁, A₂, and B₂ define four 
Ivory quadrangles. The diagonals passing through the common vertex S must be aligned, since by 
Lemma 1 they are tangent to c₀. Thus we can immediately figure out that in the quadrangle A₁A₂B₁B₂ 
the sums of lengths of opposite sides equal d(PQ'). 

In the sequel, the term ‘conic’ stands for regular conics, seen as set of their tangent lines, as well as 
for pairs of line pencils and for single line pencils with multiplicity two. Expressed in terms of 
homogeneous line coordinates, the corresponding quadratic forms have rank 3, 2 or 1, respectively. 
Moreover, we use the term range for a pencil of dual conics, i.e., a pencil in line coordinates. The term 
net denotes a 2-parametric linear system of dual curves of degree 2. Obviously, conics and ranges 
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included in a net can be seen as points and lines of a projective plane. Any two ranges in a net must 
have a conic in common (compare with [7, Théorèmes I – IV]). 

 

Fig. 4.  An incircular quadrangle A₁A₂B₁B₂ of tangents (Theorem 3) 

Theorem 4. Let c₀ be any conic and A₁, B₁ two points such that the tangents t₁, ..., t₄ drawn from A₁ 
and  B₁ to c₀ form a quadrilateral. Its remaining pairs of opposite vertices are denoted by (A

i
, B

i
)  for   

i = 2,3 (Fig. 5). 

(i) For any conic c₁ passing through A₁ and B₁ there exist conics c
i
 through A

i
 and B

i
 such that c

i
 

belongs to the range R
c
 spanned by c₀ and c₁. 

(ii) If R
c
 includes pairs of line pencils with carriers (E

j
, F

j
),  j = 1,..., then there exist conics d

j
 tangent 

to t₁,...,t₄ and passing through E
j
 and F

j
. 

(iii) The tangents at A
i
 and B

i
 to c

i
 for i = 1,2,3, as well as the tangents at E

j
 and F

j
 to d

j
 for j =1,... 

meet at a common point T.  

(iv) This result holds also true in the limiting case t₁ = t₂, where the chord A₁B₁ of c₁ contacts c₀ at B₂ 
and coincides with two of the four tangents t₁, ..., t₄. Then all conics d

j
 touch c₀ at B₂ and are tangent 

to t₃ and t₄. 

Figure 5 illustrates Theorem 4 in the particular case where c₀ and c₁ span a confocal range R
c
. Then 

the real focal points and the absolute circle points serve as pairs of points (E
j
, F

j
), as mentioned in (ii) 

and (iii). The latter correspond to the incircle d₂ of the quadrilateral t₁...t₄. This circle has the center T. 

Proof. The conics being tangent to t₁, ..., t₄ define a range R
t
, which includes for i = 1,2,3 the pairs of 

line pencils (A
i
, B

i
) as well as the initial conic c₀. On the other hand, c₀ and c₁ span a range R

c
, which 

contains the pairs of line pencils (E
j
, F

j
). Since both ranges share the conic c₀, they span a net N of 

conics. 

The pair (A₁, B₁) of line pencils spans together with c₁ the range of conics sharing the points A₁, B₁ 
and the tangents there, which meet at point T. This range, which also belongs to N, contains the rank-

1-conic with carrier T. Now each pair of line pencils (A
i
, B

i
), i = 2,3, spans with the pencil T again a 

range within N. This range shares with the range R
c
 a conic c

i
 passing through A

i
 and B

i
 with 

respective tangent lines through T. A similar argument holds for the pair of line pencils (E
j
, F

j
) which 

proves the existence of a conic d
j
 through E

j
 and F

j
 with tangent lines passing through T, which also 

belongs to the range R
c
.  
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All these conclusions remain valid in the case (iv), when R
t
 consists of conics which touch c₀ at B₂ 

and are tangent to t₃ and t₄.                                                                                                                     

 

Fig. 5.  Illustrating Theorem 4 

Remarks. 1) With each net of conics two particular algebraic curves are associated (see [8, Sect. 77]). 
One is the Hessian curve of degree three. It is the envelope of all lines l with an undeterminate pole 
w.r.t. a (singular) conic included in the net. This means that line l either connects the carriers of the 
two line pencils of a rank-2-conic or it passes through the carrier of a rank-1-conic. On the other hand, 
the locus of the carriers of included line pencils is called Cayley's curve of the net. In general it has 
degree six.  

2) In the particular case depicted in Fig. 5  the Hessian consists of the line pencil T and of Chasles's 
parabola p of T w.r.t. the confocal range R

c
. Cayley's curve contains the strophoid s comprising the 

points of contact for all tangents drawn from T to any conic in R
c
 (compare with [9, p. 342, Fig. 7.60]). 

3) Nets of conics, which include a rank-1-conic, are characterized by a reducible Hessian curve. If only 
one rank-1-conic is included the Hessian splits into a regular conic and this singular line pencil. 

In the particular case of Theorem 4 depicted in Fig. 5 with confocal c₀, c₁ the absolute points of the 

Euclidean plane determine one pair (E₂, F₂) of line pencils included in the range R
c
  N. An 

analogous example works in the projective models of the elliptic or hyperbolic plane. Then instead of 

the absolute points (E₂, F₂) the absolute conic c a  is included in R
c
. We note that c a  spans together 

with the pencil T a range of twice touching conics. Hence, d₂ is a conic which contacts c a  at two points 
with tangents passing through T. This characterizes d₂ as a non-Euclidean circle with center T. In the 

hyperbolic case the points of contact with c a  can be real, complex conjugate or coinciding. 
Accordingly, the circle d₂ has either a  center, or it is a hyper- or horocircle. 

Figure 6 shows the spherical model of elliptic geometry and a spherical Poncelet grid starting with a 
closed billiard in c₁ with 9 edges tangent to c₀ (note [16]). The extended sides of the billiard form a grid 
of nine great circles. Any two pairs of adjacent great circles form a spherical quadrangle with an 
incircle, which gives the depicted incircular net [1, 5]. Similarily to the Euclidean case (Fig. 4), the 
existence of an incircle could also be concluded from equal sums of opposite side lengths.  



 

MONGEOMETRIJA 2018, Novi Sad, Serbia 

ISBN 978-86-6022-055-6 

462 

 

 

Fig. 6.  An incircular net of great circles tangent to c₀ on the sphere 

Among the circles depicted in Fig. 6 there are also circles according to the limiting case B₂  c₀, as 
mentioned in Theorem 4, (iv). Point B₂ of contact belongs together with the opposite point A₂ to the 

second confocal conic passing through B₂. We summarize this particular case of Theorem 4. 

Corollary 5. Given a conic c₀ with the tangent t at the point B₂ ϵ c₀. Let t intersect any confocal conic 

c₁ at the points A₁, B₁, and suppose that the second tangents drawn from A₁ and B₁ to c₀ intersect at 

the point A₂. Then for all conics c₁ the locus of points A₂ is a confocal conic c₂ passing through B₂. 

 

Fig. 7.  The crossing points S₁, S₂ lie on the same conic m 

Another consequence of this subcase (iv) is illustrated in Fig. 7. Since P and P' belong to the same 
conic of the family, the opposite vertices S₁, S₂ in the degenerated quadrangle of tangents belong to 
the same conic m, too. Due to properties of Poncelet grids the conic m does not change while P varies 
along c. The same can be concluded by the use of canonical coordinates, as explained in the coming 
section. 

3  CANONICAL COORDINATES 

The elegant differential-geometric proofs in [12] are based on the Arnold-Liouville theorem from the 
theory of completely integrable system. According to this, there exist cyclic canonical coordinates on 
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c₀ with the following property53: If any point X in the exterior of c₀ is parametrized by the canonical 
coordinates (u,v) of the tangency points of the tangent lines from X to c₀ then the lines u ± v = const. 

are located on conics of the confocal family. In [12] c₀ is an ellipse; all curves u – v = const. are on 

ellipses and u + v = const. are on hyperbolas. There is a period p > 0 such that the parameters u and 

u + p define the same point on c₀. 

 

Fig. 7.  On the composition of the correspondances (u,v) w.r.t. d₁ and (v,w) w.r.t. d₂ (Theorem 6) 

Algebraically, each conic d, confocal with c₀, defines a symmetric 2-2-correspondance on c₀ such that 

the tangents to c₀ at corresponding points intersect on d, or in other words, values (u,v) corresponding 
w.r.t. d define an unique point of d. 

Obviously we can compose the correspondences w.r.t. two conics confocal with c₀. Suppose, (u,v) are 

corresponding w.r.t. the conic d₁ and (v,w) w.r.t. the conic d₂. In Fig. 8 d₁ is an ellipse and d₂ is a 

hyperbola. Then u – v = C₁ and v + w = C₂, and consequently u + w = C₁ + C₂ = const. The algebraic 

version is given below and shown in Fig. 8. The points on c₀ in this figure are denoted by their 
parameters, while points in the exterior are labelled by pairs of parameters. 

Theorem 6. Let three confocal conics c₀, d₁, d₂ be given with canonical coordinates on c₀. Suppose 

that (u,v) are corresponding coordinates w.r.t. d₁, i.e., the tangents to c₀ at the related points intersect 

on d₁, and (v,w) are corresponding w.r.t. d₂.Then the points defined by parameters (u,w) are located 

on two conics c₂, c₃ of the confocal range. 

Proof.  Let u₁ and u₂ be corresponding to the coordinate v w.r.t. d₁, and w₁ and w₂ be corresponding to 

v w.r.t. d₂. According to Corollary 5, for any point V  c with coordinate v the two corresponding u-
values (u₁, u₂) w.r.t. d₁ define a point on the second confocal conic passing through V, which is the 

same for the conic d₂. Hence, the points A₁ = (u₁,u₂) and B₁ = (w₁,w₂) satisfy the conditions of 

Theorem 4. Consequently, opposite vertices of the quadrilateral of tangents at u₁, ..., w₂ belong to the 
same conic c₁ (not displayed in Fig. 8). This means that the points (u₁,w₁) and (u₂,w₂) belong to a 

conic c₂ and (u₁,w₂) and (u₂,w₁) to another conic c₃. 

How is this compatible with the local point of view in [12] ? Why are there two conics? Globally, the 
parameters (u,v) of points on d₁ are symmetric; this yields two values u₁, u₂ corresponding to v with u₁ 
                                                      
53 In Fig. 7 is illustrated how on c' such coordinates could be constructed by iterated subdivision, when R' and Q' get the 
respective coordinates 0 and 1. 
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– v = C₁ = v – u₂. Analogously, the two w-values for the same conic d₂ satisfy w₁ + v = C₂ and w₂ + v 
= 2p – C₂. Thus we obtain u₁ + w₁ = C₁+ C₂ and u₂ + w₂= 2p – (C₁ + C₂), and on the other hand u₂ + 
w₁ = C₂ – C₁ and u₁ + w₂ = 2p – (C₂ – C₁). This reveals also that these two conics remain constant 

while the parameter v varies.                                                                                                         
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