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Abstract:  Logarithmic spirals are isogonal trajectories of pencils of lines. From a series of geometric 
consequences, we pick out a few which are relevant for kinematics: When a logarithmic spiral rolls on a 
line, its asymptotic point traces a straight line. Hence, wheels with the shape of a logarithmic spiral can be 
used for a stair climbing robot. When involute spur gears are to be generated by virtue of the principle of 
Camus, the auxiliary pitch curves must be logarithmic spirals. Two congruent logarithmic spirals can roll 
on each other while their asymptotic points remain fixed. A composition of two such rollings gives a two-
parametric motion which allows a second decomposition of this kind. Some of these properties hold 
similarly for the spherical counterparts, the spherical loxodromes. For example, when in spherical 
geometry a loxodrome rolls on a circle, both asymptotic points trace circular involutes. Therefore, 
spherical loxodromes are auxiliary pitch curves for involute bevel gearing. On the other hand, spherical 
loxodromes can also be seen as helical curves in the projective model of hyperbolic geometry, where the 
sphere serves as a Clifford surface. This paves the way for remarkable arrangements of loxodromes on a 
sphere, e.g., a 3-web.     

  
Key words: logarithmic spiral, involute spur gears, two-parametric motion, spherical loxodrome, 
involute bevel gears, hyperbolic screws, 3-web. 

 
 

INTRODUCTION 
 

The logarithmic spiral, displayed in Fig. 1, was first 
disclosed by René Descartes (1596–1650), who called 
this curve equiangular spiral. Evangelista Torricelli 
(1608–1647) rectified this curve in 1645, even before 
calculus was invented by Newton and Leibnitz. The 
sobriquet, logarithmic, was given to this spiral by Jakob 
Bernoulli (1654–1705). Bernoulli was so fascinated by 
this curve that he investigated its properties in depth and 
went up to demanding that such a spiral be engraved on 
his tombstone with the phrase “Eadem mutata resurgo”, 
which means “Although changed, I shall arise the same”, 
in agreement with its self-similarity property. Unfortuna-
tely, the sculptor of Bernoulli’s tombstone made the 
mistake of sculpting, instead, an Archimedean spiral (see 
Fig. 2b).  

 
Fig. 1 Logarithmic spiral C and its velocity vector v at point P. 

First examples on the synthesis of involute cylindrical 
gears via the logarithmic spiral as auxiliary centrode, 

when applying the Camus theorem, can be found in 
Reuleaux’s book [18], along with the books of Airy [1], 
Bennett [2], and Willis [20], which are also cited by 
Reuleaux. 
 

 
                (a)                                                (b) 

Fig. 2 Jakob Bernoulli: (a) Memorial plaque in the Minster in 
Basel/Switzerland; (b) Zoom-in of the legend “Eadem mutata 

resurgo” along with the wrong spiral. 
 
The spherical logarithmic spiral, also known as the 

loxodromic spiral, is the analogue of the planar loga-
rithmic spiral in spherical geometry. It gained particular 
interest in navigation since it gives a constant-bearing 
course on the Earth, as it intersects all the meridians at 
the same angle. Pictures of spherical loxodromes can also 
be found in the work of Escher, such as the “Sphere 
Spirals” and “Sphere Surface with Fish” [3], p. 319, as 
shown in Fig. 3. 

Similar to involute cylindrical gears, the synthesis of 
exact involute bevel gears is formulated in this paper by 
application of the Camus Theorem and assuming a sphe-
rical logarithmic spiral as auxiliary centrode, which rolls 
on the pitch circles of the fundamental sphere. Con-
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sequently, the pole traces the exact spherical involute 
directly, without using the base circles or applying enve-
lope theory, which would yield octoidal gears rather than 
involute gears (cf [9]). 

 

 
Fig. 3 M. C. Escher’s 1958 woodcuts “Sphere Spirals” and 

“Sphere Surface with Fish” [3]. 
 
Concerning gears with skew axes, the Ball-Disteli 

diagram is extremely useful to synthesize spatial gears 
via the Camus theorem. In this context, the orthogonal 
helicoid plays the role of the auxiliary surface to generate 
the tooth flanks of involute-gear pairs with skew axes, 
even if they show interpenetration, as described in 
previous publications [11, 12]. As an alternative, the 
synthesis of the pitch surfaces of non-circular skew-gears 
was proposed in [10], whereby the case of identical 
logarithmic spirals was also developed. This could be 
also useful to synthesize the spatial version of the 
logarithmic spiral and the skew involute gears. 
  
2. ROLLING LOGARITHMIC SPIRALS 
 
Usually, a logarithmic spiral C is defined by its polar 
equation 

C :  ( ) br ae ϕϕ = ,        (2.1) 

depending on the two real constants a = r(0) > 0 and 
\{0}b∈ . The origin O is the asymptotic point, ob-

tained as the limit for (bφ) → ‒∞. 
Let the polar angle be given by the smooth monotonic 
function φ(t). This gives rise to the parametrization in 
cartesian coordinates, namely 

cos ( )
( ) ( ( ))

sin ( )
t

t r t
t

ϕ 
= ϕ  ϕ 

c .      (2.2) 

Differentiation by t yields the velocity vector 
cos sin

( ) ( )
sin cos

t t r r
ϕ − ϕ   

= = + ϕ   ϕ ϕ   
v c  , 

decomposed into two orthogonal components (Fig. 1). If 
 ( )  || ( ) ||s t t= c  denotes the arc length of C, we obtain for 

the angle ψ between the radial direction and the velocity 
vector v, from eq. (2.1), 

cot const.r br b
r r

ϕ
ψ = = = =

ϕ ϕ


 

     (2.3) 

Moreover, we conclude from 

cosdr r
ds s

= = ψ




  

that ψ is constant if and only if the polar radius r is a 
linear function of the arc length s. 
Lemma 1:  Logarithmic spirals are characterized by the 
polar distance r being a linear function of arc length s. 
 

By virtue of the foregoing Lemma, it is apparent that 
the spiral and related motions under study can be 
analyzed upon using r or s as parameter, playing the 
same role as time t. Hence, differentiation with respect to 
(w.r.t., in brief) s produces time rates of change in our 
analysis. 

We specify c(0) as the initial point for the arc length 
and assume that, for b > 0, the arc length s grows 
monotonically with r. Then we obtain the arc length 
parametrization of the logarithmic spiral by plugging 

( ) cosr s a s= + ψ ,   1 cos( ) ln 1s s
b a

ψ ϕ = + 
 

      (2.4) 

into eq. (2.2). Due to the condition r > 0, the parameter s 
must be restricted to 

cos
as −

>
ψ

, 

thereby revealing that the arc length from the initial point 
to the asymptotic point equals (a/cos ψ). Well-known 
formulas yield, for the curvature κ(s) and the radius of 
curvature ρ(s)  

1 sincosd d dr
ds dr ds br r
κ ϕ ψ

κ = = = ψ = ,   
sin

r
ρ =

ψ
. 

This explains the construction of the center of curvature 
P* corresponding to point P∈ C, as shown in Fig. 1. 
  

 
Fig. 4 Two logarithmic spirals C₁ and C₂ roll simultaneously on 

a line C₀. 
 
When a logarithmic spiral C₁ rolls on a line C₀, the 

asymptotic point O₁ of C₁ traces a line o₁ (Fig. 4), which 
follows from Lemma 1, but can also be derived from 
kinematics: The spiral C₁ and the fixed line C₀ are the 
pitch curves of the motion of interest, while the instan-
taneous tangent of O₁ is orthogonal to the connection 
with the pitch point, i.e., the point of contact between C₁ 
and C₀.   
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Fig. 5 Staircase climber (photo: Online catalogue of kinematic 
models, Institute of Discrete Mathematics and Geometry, TU 

Vienna, http://www.geometrie.tuwien.ac.at/kinmodelle/). 

As an application, Fig. 5 shows how the logarithmic 
spiral can be used for a stairclimbing device (cf  [15], 
[17]). 

Let us return to Fig. 4: When another logarithmic 
spiral C₂ rolls simultaneously on C₀ its asymptotic point 
O₂ traces a line o₂ parallel to o₁. Hence, the distance 
between O₁ and O₂ remains constant. Thus, the inverse 
motion keeps both points O₁ and O₂ fixed, while the 
directly congruent logarithmic spirals C₁ and C₂ roll on 
each other (Fig. 6). Examples of this rolling can be found 
in the literature [8], pp. 128–129, and in [21], p. 232. 

The transmission between the rotations about O₁ and 
O₂ via the two spirals can also be explained with Lemma 
1 and the first of eqs. (2.4). During the depicted external 
rolling by length s, the distance between O₁ and the point 
of contact between C₁ and C₂, the pitch point, increases 
by (s cos ψ), while the distance between O₂ and the pitch 
point decreases about the same amount. However, this 
motion with pitch curves C₁ and C₂ is also possible in the 
case of internal rolling, when the pitch point lies outside 
the segment O₁O₂ and both distances increase by the 
same amount. 

It makes sense to define the constant a in the polar 
equation (2.1) of a logarithmic spiral as the x-coordinate 
of the initial point (s = 0) of the spiral (note Fig. 1). 
Then, in the case of internal rolling, the respective 
constants a₁,  a₂ of the two pitch curves have equal signs. 
Otherwise their signs differ. 

Let us turn over to the usual kinematic setting: We 
assume that the two spirals C₁ and C₂ are correspond-
dingly attached two the systems (i.e., frames) Σ₁ and Σ₂, 
which move w.r.t. the fixed frame Σ₀.  

By virtue of a basic theorem from kinematics, the 
signed distances of the centers O₁ and O₂ to the pitch 
point define the instant transmission ratio, i.e., the ratio 
between the angular velocities ω₁₀ and ω₂₀ of the two 
moving frames Σ₁ and Σ₂ w.r.t. Σ₀. As per our conven-

tion concerning the signs of the constants a₁ and a₂, we 
can state for the transmission ratio, in terms of the arc 
length s of the pitch curves,  

10 20 2 1: ( cos ) : ( cos )a s a sω ω = + ψ + ψ .   (2.5) 

This works for internal as well as for external rolling, 
provided that the constant b = cot ψ is the same for both 
spirals. 

 
Fig. 6 Non-uniform transmission via rolling logarithmic spirals.  

 

 
Fig. 7 When the logarithmic spiral C₂ rolls on the congruent 

fixed spiral C₁, the asymptotic point O₂ traces a circle o. 
 
The same can be confirmed by studying the angles of 

rotation φ₁₀, φ₂₀ of Σ₁ and Σ₂, respectively, from the 
initial pose s = 0 on: From the second of eqs. (2.4), we 
obtain 

 
1

10
cos1( ) ln 1

a
s

b
ψ 

ϕ = + 
 

, 
2

20
cos1( ) ln 1

a
s

b
ψ 

ϕ = + 
 

  (2.6) 

Differentiation of the foregoing expression w.r.t. s yields 
1 2

1 1 2 2
10 20

cos cos
( cos ) ( cos )

: :a a
a s a a s a

ψ ψ

+ ψ + ψ
ϕ ϕ =     

   2 1 10 20( cos ) : ( cos ) :a s a s= + ψ + ψ = ω ω .  

Now we study the relative motion Σ₂/Σ₁, with the 
spiral C₂ rolling along the fixed centrode C₁ (Fig. 7). In 

http://www.geometrie.tuwien.ac.at/kinmodelle/
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this case the asymptotic point O₂ traces a circle o 
centered at O₁. 

Let Σ₃ denote the frame attached to the bar O₁O₂. 
Then, by virtue of (2.6), the angles of rotation of Σ₁ and 
Σ₂ w.r.t.  Σ₃ are 

1
13

cos1( ) ln 1
a

s
b

ψ 
ϕ = + 

 
, 

2
23

cos1( ) ln 1
a

s
b

ψ 
ϕ = + 

 
,   

where φ₂₁ = φ₂₃ + φ₃₁ = φ₂₃ ‒ φ₁₃. Therefore,  

1

2
21

1 /
1 /

1 ln a
ab

+ σ

+ σ

 
ϕ =  

 
, where : cossσ = ψ .  (2.7) 

In 1913, R. Bricard studied the composition of two 
independent rollings Σ₂/Σ₁ and Σ₃/Σ₂ of pairs of loga-
rithmic spirals (C₂, C₁) and (C₃, C₂'), where all spirals are 
directly congruent and the two spirals C₂  and C₂', both 
attached to Σ₂, share the asymptotic point O₂.  

Bricard stated the result below, without a proof. 
 

Theorem 1. (R. Bricard [4], p. 23, sect. 3) The compo-
sition of two rollings Σ₂/Σ₁ and Σ₃/Σ₂ of directly con-
gruent logarithmic spirals (C₁, C₂) and (C₂', C₃), where 
C₂, C₂' ⊂ Σ₂ share the asymptotic point O₂, has a second 
decomposition of the same type with spirals 1 2( , ) C C  and 

2 3( , ) C' C . The respective asymptotic points O₁, O₂, O₃, 

2O  form a parallelogram (Fig. 8). 

Remark 1. This is one of the rather rare examples of 
twofold-decomposable motions. Up to recently, less than 
20 cases were known in the Euclidean 2- or 3-space (note 
[19], Table I). When W. Blaschke posed the question in 
1938, about such two-parametric motions, he was not 
aware that 25 years earlier G. Koenigs [14] had already 
posed the same question, while providing, besides R. 
Bricard [4, 5, 6, 7], the first examples. 

Proof: We denote with Σ₄ and Σ₅ the frames attached to 
the bars O₁O₂ and O₂O₃ (note Fig. 8), respectively. 
Furthermore, the first motion parameter s is the arc 
length of the first pair of rolling spirals (C₁, C₂), and the 
second parameter t being the arc length of the second 
pair (C₂', C₃). The pairs of reals (a₁, a₂) and (a₂', a₃) are 
the signed initial radii of the two spirals at play, in 
accordance with the convention explained above. 

Then, by virtue of eqs. (2.6) and (2.7), we obtain, for 
the respective angles of rotation, 

( )41 1
1 ln 1 /
b

aϕ = + σ , cossσ = ψ ,    

2

1
51 2

1 /1
1 /

ln (1 / )a
b a

a+ σ

+ σ

 
′ϕ = + τ 

 
, costτ = ψ , 

2 3

1 2
31

1 / 1 /1
1 / 1 /

ln a a
b a a

′+ σ + τ

+ σ + τ

 
ϕ =  

 
. 

Now we extend the triangle O₁O₂O₃ of asymptotic 
points by 2O  to a parallelogram and seek two other pairs 

of logarithmic spirals 1 2( , ) C C and 2 3( , )′ C C  that pro-
duce the same composition. Further frames are intro-
duced, namely, 2Σ , 4Σ  and 5Σ . The new motion para-

meters are s  and t , besides the definitions cossσ = ψ    
and costτ = ψ

 . The new constants of the spirals are 1a ,  

2a , 2a′  and 3a . Parallelity between opposite sides leads 
to the new angles of rotations, namely, 

51 41ϕ = ϕ , 41 51ϕ = ϕ  and 31 31ϕ = ϕ , 

where the related side lengths satisfy 2 1 3 2a a a a′− = −   
and 3 2 2 1a a a a′− = −  .     

After some computations it turns out that the fore-
going conditions can be satisfied by setting 

1 2
1

2

a aa
a
′

= ,  1 2 2 3 2 2
2

2

a a a a a a
a

a
′ ′+ −

= , 

1 2 2 3 2 2
2

2

a a a a a a
a

a
′ ′+ −′ =

′
  ,  2 3

3
2

a a
a

a
=

′
  

and  

 1 2 1 2

2 2

( )( )
( )

a a a a
a a

′ ′+ σ + τ

+ σ
σ = − , 2 3 2 3

2 2

( )( )
( )

a a a a
a a
+ σ + τ
′ ′+ σ

τ = − .  

The two decompositions satisfy the symmetric relations 
 2 2 2 2a a a a′ ′=   and  2 2 2 2( )( ) ( )( )a a a a′ ′+ σ + σ = + τ + τ    . 

 
Fig. 8 A two-parametric motion Σ₃/Σ₁ which is twofold-

decomposable. 

A well-known theorem from the kinematics of two-
parameter motions implies that at each instant the pitch 
points of the four rollings at play have to be aligned. This 
is illustrated in Fig. 8. The distances of the respective 
pitch points to O₁, O₂ and 2O  are denoted by (r₁, r₂) and 

1 2( , )r r  , where r₁ = a₁ + σ, r₂ = a₂' + τ, 1 1r a= + σ    and 

2 2r a′= + τ   .                □ 

There is another interesting case where a logarithmic 
spiral C₂ rolls on a fixed spiral C₁ (Fig. 9). This time the 
spirals need not be congruent, but at each instant the arc-
lengths between the point of contact and the respective 
asymptotic points must be equal. Therefore, each point of 
the two spirals becomes a pitch point during the motion. 
In this case we speak of a global rolling of C₂ on C₁. This 
implies, for the shape parameters (a₁, ψ₁) of C₁ and (a₂, 
ψ₂) of C₂, the condition 
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1 2

1 2cos cos
a a

=
ψ ψ

. 

This means that, geometrically speaking, in the initial 
pose s = 0 the circumcircle of O₁, O₂ and the pitch point 
I₁₂ is centered on the common tangent at I₁₂ (note Fig. 
9). Hence, by virtue of the first of eqs. (2.4), the ratio 
between corresponding polar radii r₁ and r₂ satisfies 

 1 2

1 2
1 2 1 2cos cos

: cos : cos const.a ar r s s
ψ ψ

   
= + ψ + ψ =   
   

  

Therefore, in all poses of C₂, the triangles formed by the 
asymptotic points O₁, O₂ of the spirals and the pitch 
point  I₁₂ are mutually similar. This is valid for external 
as well as for internal global rollings. 

 
Fig. 9 During a ‘global’ rolling of C₂ on C₁the asymptotic  

point O₂ traces a spiral o congruent to C₁. 
 

When a logarithmic spiral C₂ rolls on a circle C₁ with 
radius R then the asymptotic point O₂ of C₂ traces an 
involute o to the circle b₁ with radius (R cos ψ). We 
reach this conclusion from the observation that each 
path-normal connects O₂ with the instant pitch point I₁₂, 
and thereby intersecting the circle C₁ under the constant 
angle ψ. Hence, all path-normals envelope a circle b₁ 
concentric with C₁ (note Fig. 10). 

Consequently, the logarithmic spiral serves as 
auxiliary curve when the tooth profiles of involute gears 
are generated by Camus' principle (see, e.g., [21], p. 
212). The profiles C₂, C₃, involutes of the base circles b₂, 
b₃, are the trajectories of the asymptotic point O when a 
logarithmic spiral p₄ rolls on the pitch circles p₂ and p₃, 
respectively (Fig. 11). 

In total, two logarithmic spirals, one on each side of 
the pitch circles, are necessary for the complete tooth 
profiles. 
 The foregoing results are summarized below: 

Theorem 2: Table 1 shows the trajectories of the asymp-
totic point O₂ of a logarithmic spiral C₂ rolling on speci-
fic curves. 
 

 

 
Fig. 10 When the logarithmic spiral C₂ rolls on the circle C₁, 

the asymptotic point O₂ of C₂ traces an involute o  
of the base circle b₁. 

 

 
Fig. 11 Involute gears with meshing line m, generated 

according to the Camus principle with the auxiliary 
pitch curve p₄, a logarithmic spiral with ψ = 20°. 

 
Table 1 

Rolling logarithmic spirals 
logarithmic spiral C₂ 
rolls 

path of asymptotic 
point O₂ 

Figs. 

on a straight line C₀ straight line Fig. 4 
on a congruent 
logarithmic spiral C₁  

circle centered at the 
pole O₁ of C₁ 

Fig. 7 

globally on an incon-
gruent log. spiral C₁ 

spiral congruent to C₁ Fig. 9 

on a circle C₁ involute of a concentric 
circle b₁ 

Fig. 10 

 
3. ROLLING SPHERICAL LOXODROMES 
 
In order to obtain the spherical analogue of logarithmic 
spirals, we assume that a logarithmic spiral lies in the xy-
plane in three-dimensional space, and apply the stereo-
graphic projection onto the unit sphere with projection 
center at the South pole S = (0,0,-1) (see Fig. 12). While 
the polar angle φ remains the same, the polar radius r is 
projected onto an arc with the center angle ρ, where  

C:  
2

tan br ae ϕρ
= = .        (3.1) 
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Since the stereographic projection preserves angles, the 
image obtained on the sphere is a curve with constant 
course angle ψ, i.e., a spherical loxodrome C with both 
the North-pole N and the South-pole S as asymptotic 
points for φ → ‒∞ and φ → ∞, respectively. 

 
Fig. 12 Stereographic projection. 

In order to parametrize the unit sphere, we use the 
spherical distance ρ to the North-pole N and the polar 
angle φ. This results in 

sin cos

sin sin

cos

( , )
ρ ϕ

ρ ϕ

ρ

 
 ρ ϕ =   
 

x .       (3.2) 

The parameter lines φ = const. are meridians, the lines ρ 
= const. parallel circles. We obtain an orthogonal net 
with tangent vectors 

cos cos

cos sin

sin
ρ

ρ ϕ

ρ ϕ

− ρ

 
 =   
 

x   and  
sin sin

sin cos

0
ϕ

− ρ ϕ

ρ ϕ

 
 =   
 

x ,   (3.3) 

where || || 1ρ =x , || || sinϕ = ρx  , and 0ρ ϕ⋅ =x x . 
The spherical loxodrome can be represented as 

C :  
sin cos

sin sin

cos

( )
ρ ϕ

ρ ϕ

ρ

 
 ϕ =   
 

c  , where 
2

tan bae ϕρ
=     (3.4) 

for ‒∞ < φ  < ∞. This confirms that lim ( )
ϕ→∞

ρ ϕ = π   

(South-pole) and lim ( )
ϕ→−∞

ρ ϕ = π  (North-pole). 

Upon differentiate of the last equation in eq. (3.4) 
w.r.t.  φ, we obtain 

2

2
1 tan

2
bd abe

d
ϕρ ρ + =  ϕ 

,   2

2 2
2 tan cosd b

d
ρ ρρ

=
ϕ

  

hence, by virtue of eq. (2.3), 

2 2
: 2 sin cos sin cot sind b b

d
ρ ρρ

ρ = = = ρ = ψ ρ
ϕ

 .    (3.5) 

For the velocity vector of C we obtain, in turn, 

   : d
d ρ ϕ= = ρ +
ϕ
cc x x   with  2 2 2|| || ( 1)sinb= + ρc ,    (3.6) 

which yields, for the arc-length s of C, with an appro-
priate initial point and orientation,  

sin 1|| ||
sin sin cos

ds d d d d
b

ρ ρ
= ϕ = ϕ = ϕ = ρ

ψ ψ ψ
c



 . 

Moreover, 

   ( ) ( )1 1( ) ( ) (0) ( )
cos cos

s s= ϕ = ρ ϕ −ρ = ρ ϕ −α
ψ ψ

  (3.7) 

with α = ρ(0) = 2 arctan a = const. and the limits s(∞) = 
(π‒ α) /cos ψ and s(‒∞) = ‒ α / cos ψ . Hence, the total 
arc-length of the loxodrome between the North- and the  
South-pole is  π / cos ψ . 

From eq. (3.7) we conclude that, similar to the planar 
case, the arc length parametrization of C in (3.4) is given 
by 

( ) cos 0s sρ = α + ψ >   and 

2 2

1( ) ln tan ln tans
b

ρ α    ϕ = −        
 .       (3.8) 

 

Fig. 13 The spherical distance ρ is a linear function of s 
 ⟺  ψ = const. 

Similar to the planar case, depicted in Fig. 1, we 
deduce from the decomposition of the velocity vector c  
in (3.6) that the function ρ(s) is linear if and only if the 
angle ψ with cos / sψ = ρ   is constant (see Fig. 13), 
where || || s=c  ). 

Lemma 2: Spherical loxodromes are characterized by 
the spherical polar distance ρ being a linear function of 
arc length s. 

 

Fig. 14 Spherical loxodrome C with the spherical radius of 
curvature γ and the center of curvature P* at P. 

The unit tangent vector t and the normal vector n of 
the loxodrome C (see Fig. 14) are 

  sincos
sin

d
ds ρ ϕ

ψ
= = ψ +

ρ
ct x x , cossin

sinρ ϕ
ψ

= − ψ +
ρ

n x x . 

Differentiation of t  w.r.t. s gives, according to the Frenet 
equations,  
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g
d
ds

= − + κ
t c n   

with gκ  as the geodesic curvature of C. After some ma-
nipulations, we obtain 

sin cot cotgκ = ψ ρ = γ  .      (3.9) 

with γ being the spherical radius of curvature, as depic-
ted in Fig. 14. Moreover, P* is the spherical center of 
curvature, i.e., the spherical center of the osculating 
circle. A positive geodesic curvature means that the 
curve turns left when moving along a path with an 
increasing parameter s. Note that the midpoint M of C  
with ρ = π/2 is a spherical inflection point, i.e., with 

0gκ = . When passing along C, the sign of gκ changes at 
this point, M, on the equator. 

 

 
Fig. 15  Non-uniform transmission from N₁ to N₂ via rolling 

spherical loxodromes C₁ and C₂.  

The linearity of the function ρ(s), by virtue of (3.8), 
reveals that two congruent loxodromes C₁, C₂ with fixed 
asymptotic points N₁, N₂ can roll on each other, inter-
nally or externally (Fig. 15). Similarly to the planar case, 
depicted in Fig. 6, the reason behind is that either the 
difference or the sum of distances ρ₁ and ρ₂ of the pitch 
point to the fixed centers N₁ and N₂ remains constant. 
When one of the two rolling loxodromes remains fixed, 
the asymptotic points of the other loxodrome trace 
circles. 

As well, whereby applying the Camus theorem in the 
spherical case, loxodromes are the auxiliary centrodes 
required for generating spherical involute gears. We can 
verify this as given below. 

When one loxodrome C₂ rolls on a fixed circle C₁, as 
shown in Fig. 16, the asymptotic point N₂ of C₂ traces an 
involute o of the base circle b₁ concentric with C₁. The 
same holds for the other asymptotic point S₂. As in the 
plane, this follows from the constancy of angle ψ bet-
ween the path normals and the circle C₁. However, the 
trajectory o of point N₂ ends outside C₁, since infinitely 
many rotations would be necessary until N₂ reaches the 
fixed circle. Therefore, a second spherical loxodrome 2C  
is needed for tracing the complete involute. At the dis-

played position of 2C , the asymptotic point becomes 
stationary at a cusp of o. The reason behind stationarity is 
an instant triple-point-contact between 2C  and C₁. 

 
Fig. 16  While the loxodrome C₂ with course angle ψ = 53.0° 

rolls on circle C₁, the asymptotic point N₂ traces a  
spherical involute o of the base circle b₁. 

The foregoing results are summarized below. 

Theorem 3: Table 2 shows trajectories of the asymptotic 
points N₂ and S₂ of a spherical loxodrome  C₂ when roll-
ing on specific curves. 

Table 2 
Rolling spherical loxodromes 

spherical loxodrome 
C₂ rolls on 

paths of asymptotic 
points N₂, S₂ 

Figs. 

a congruent spherical 
loxodrome C₁ 

circles centered at a 
pole N₁ of C₁   

 

a circle C₁ involutes of a con-
centric circle b₁ 

Fig. 16 

 
Remark 2: There is no spherical counterpart of the two-
fold-decomposable two-parametric rollings of logarith-
mic spirals (Theorem 1) since no parallelograms exist in 
spherical geometry. Moreover, any spherical counterpart 
of the specific rolling depicted in Fig. 9 is missing since 
there do not exist spherical similarities other than 
motions. 

In Fig. 17, we illustrate another role of spherical lo-
xodromes. In the projective model of hyperbolic geo-
metry, the sphere can be seen as a Clifford surface, i.e., 
as the locus of points at constant (hyperbolic) distance to 
an axis. Then, the loxodrome is a hyperbolic helical 
curve. Similarly to the Euclidean 3-space, we can use 
helical curves on a Clifford surface to build various 
grids. Figure 17 shows a 3-web, consisting of three types 
of regularily distributed spherical loxodromes with com-
mon asymptotic points but different course angles ψ₁, ψ₂ 
and ψ₃. Each curved triangle has the same interior 
angles. 
Another approach to this 3-web can be based on the 
conformal Mercator projection of the sphere into a plane, 
as per Marcotte and Salomone in [16]. This transfor-
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mation maps loxodromes with a common course angle ψ 
into parallel straight lines. The 3-web, as displayed in 
Fig. 17, corresponds to a planar web formed by three 
families of parallel straight lines. 

 
Fig. 17  3-web of spherical loxodromes. 

 
4. CONCLUSION 
 
The kinematic properties of planar and spherical loga-
rithmic spirals were analyzed, with the purpose of study-
ing specific trajectories when these spirals were rolling 
on lines, circles or, again, on logarithmic spirals. In 
particular, when the planar and the spherical logarithmic 
spirals are used as auxiliary centrodes, and the corre-
sponding asymptotic points as tracing points, the planar 
and spherical involute tooth profiles can be generated via 
the Camus theorem (cf [13]). This could be useful to 
synthesize the spatial version of the logarithmic spiral 
and the skew involute gears. 
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