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Abstract. Given any regular quadric, there is a three-parameter
set of cutting planes, but the size of an ellipse or hyperbola depends
only on its two semiaxes. This parameter count reveals that on each
quadric Q there exist ellipses or hyperbolas with a one-parameter set
of congruent copies on Q, which can even be moved into each other.
We present parametrizations for such movements on ellipsoids and
hyperboloids. There is a close connection between these movements
and the theory of confocal quadrics.
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1 Introduction

There are well-known examples of conics which can be moved on quadrics.
Apart from the trivial case of circles on a sphere, paraboloids are surfaces
of translation, even with a continuum of translational nets of parabolas.
On quadrics of revolution, each planar section can be moved.

What’s about general quadrics Q ? There is a three-parameter family
of cutting planes, but the size of an ellipse or hyperbola depends only
on its two semiaxes. The situation for parabolas is similar: Their size
depends on one single length, its parameter, while on hyperboloids and
paraboloids there exists a two-parameter family of planes which intersect
along parabolas.

This parameter count reveals that on each quadric Q there exist conics
with a one-parameter family of congruent copies on Q. Below, we focus
on central quadrics and provide parametrizations for the movement of
appropriate ellipses and hyperbolas Q. It turns out that there is a close
connection with the theory of confocal quadrics.

2 Moving ellipses on an ellipsoid

On any regular quadric Q, the intersections with parallel planes are ho-
mothetic. This means, in the case ellipses or hyperbolas, that they have
parallel axes and the same ratio of semiaxes ae : be. Moreover, their cen-
ters lie on the same diameter. This is a consequence of the polarity with
respect to (w.r.t., in brief) Q.

In the case of an ellipsoid E , we obtain the biggest ellipse of this
homothetic family in the plane through the center O. On the other hand,
there is a point P ∈ E with a tangent plane τP parallel to the cutting
planes, and the axes of the conics are parallel to the principal curvature
directions at P . The conics are even homothetic to the Dupin indicatrix
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at P . This can be confirmed, e.g., by straight forward computation using
the Taylor expansion of the quadratic polynomial at P .

According to the definition of the Dupin indicatrix, the ratio of the
principal curvatures κ1, κ2 at P is reciprocal to the ratio of the squared
semiaxes of the ellipses on E in planes parallel to τP , i.e.,

ae : be =
√
κ1 :

√
κ2, if κ1 > κ2. (1)

The lines of curvature on quadrics are related to confocal quadrics. There-
fore, we recall the relevant properties of confocal quadrics.

2.1 Confocal central quadrics

Let E be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter
family of quadrics being confocal with E is given as

x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
= 1, where k ∈ R \ {−a2,−b2,−c2} (2)

serves as parameter. In the case a > b > c > 0 this family includes

for





−c2 < k < ∞ triaxial ellipsoids,

−b2 < k < −c2 one-sheeted hyperboloids,

−a2 < k < −b2 two-sheeted hyperboloids.

(3)

Confocal quadrics intersect their common planes of symmetry along con-
focal conics. As limits for k → −c2 and k → −b2 we obtain ‘flat’ quadrics,
i.e., the focal ellipse and the focal hyperbola.

The confocal family sends through each point P = (ξ, η, ζ) outside the
coordinate planes exactly one ellipsoid, one one-sheeted hyperboloid and
one two-sheeted hyperboloid. The corresponding parameters k define the
three elliptic coordinates of P . We concentrate on points P of the ellipsoid
E with k = 0, and denote the parameters of the two hyperboloids H1 and
H2, respectively, by k1 and k2. Hence,

E :
ξ2

a2
+

η2

b2
+

ζ2

c2
= 1 (4)

and, for i = 1, 2 and −a2 < k2 < −b2 < k1 < −c2 < 0

Hi :
ξ2

a2 + ki
+

η2

b2 + ki
+

ζ2

c2 + ki
= 1. (5)

For given Cartesian coordinates (ξ, η, ζ) of a point P ∈ E , the param-
eters k1 and k2 of the hyperboloids through P are the two roots of the
quadratic equation

k2 + Lk +M = 0 (6)
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Figure 1: Curvature lines (blue), curves of constant ratio of principal
curvatures κ1 : κ2 (red), and direction vectors v1,v2 of the principal
curvature tangents at P .

with coefficients

L =
(b2 + c2)ξ2

a2
+

(c2 + a2)η2

b2
+

(a2 + b2)ζ2

c2
,

M =
a2b2c2

h2
, where h = OτP and

1

h2
=

ξ2

a4
+

η2

b4
+

ζ2

c4
.

(7)

If, conversely, the tripel (0, k1, k2) of elliptic coordinates is given, then the
Cartesian coordinates (ξ, η, ζ) of the corresponding points satisfy

ξ2 =
a2(a2+ k1)(a

2+ k2)

(a2 − b2)(a2 − c2)
, η2 =

b2(b2+ k1)(b
2+ k2)

(b2 − c2)(b2 − a2)
,

ζ2 =
c2(c2+ k1)(c

2+ k2)

(c2 − a2)(c2 − b2)
.

(8)

There exist 8 such points, symmetric w.r.t. the coordinate planes.
The differences of any two of the equations in (4) and (5) yield

ξ2

a2(a2 + ki)
+

η2

b2(b2 + ki)
+

ζ2

c2(c2 + ki)
= 0, i = 1, 2 , and

ξ2

(a2 + k1)(a2 + k2)
+

η2

(b2 + k1)(b2 + k2)
+

ζ2

(c2 + k1)(c2 + k2)
= 0.

(9)

This reveals, that confocal quadrics form a triply orthogonal system of
surfaces. Due to a theorem of Dupin, the surfaces of a triply orthogonal
system intersect each other along lines of curvature. Hence, the lines
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of curvature on ellipsoids and hyperboloids are of degree 4, except the
principal sections in the coordinate planes (see Figure 1).

At each point P of the ellipsoid E the surface normal nP to E at P
has the direction vector

nP =
(

ξ

a2
,

η

b2
,

ζ

c2

)
. (10)

On the other hand, for point P ∈ E in general position, the two principal
curvature tangents are the surface normals of the two hyperboloids H1

und H2 through P , therefore in direction of the vectors

vi :=
(

ξ

a2 + ki
,

η

b2 + ki
,

ζ

c2 + ki

)
. (11)

2.2 Ellipses on ellipsoids

Now, we look for the biggest ellipse on E among the homothetic family in
parallel planes.

Lemma 1. The semiaxes of the ellipse in the diameter plane parallel
to the tangent plane τP at the point P ∈ E with the elliptic coordinates
(0, k1, k2) are

aP =
√
−k2, bP =

√
−k1. (12)

Proof. The diameter plane is spanned by the direction vectors v1 and v2

given in (11). We look for λ ∈ R with λvi ∈ E , hence

λ2

[
ξ2

(a2 + ki)2a2
+

η2

(b2 + ki)2b2
+

ζ2

(c2 + ki)2c2

]
= 1.

This condition does not change if we subtract from the term in square
brackets the left-hand side of the first equation in (9), divided by ki.
Thus, we obtain

λ2

[
ξ2

(a2 + ki)2a2
− ξ2

ki(a2 + ki)a2
+ . . .

]
= 1,

and, finally,

−λ2

ki

[
ξ2

(a2 + ki)2
+

η2

(b2 + ki)2
+

ζ2

(c2 + ki)2

]
= −λ2

ki
‖vi‖2 = 1,

hence, aP = |λ| ‖v2‖ =
√
−k2 and bP = |λ| ‖v1‖ =

√
−k1. These equa-

tions can already be found in [1, p. 517].

For the movement of a given ellipse e with semiaxes (ae, be), Lemma 1
implies the necessary condition

ae ≤ aP =
√
−k2, where b <

√
−k2 < a . (13)

Together with (1), we conclude
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Figure 2: Moving an ellipse on an ellipsoid.

Theorem 1. If an ellipse e with semiaxes (ae, be) is moving on a triaxial
ellipsoid E, then the points P ∈ E with tangent planes τP parallel to
the plane of e moves on a curve with proportional elliptic coordinates
k2 : k1 = −a2e : −b2e. This curve is also the locus of points with constant
ratio of principal curvatures (Figure 1).

All ellipses in planes parallel to τP have their principal vertices on
an ellipse with the conjugate diameters OP and the major axis of the
diametral section. Let p denote the position vector of P and m = µp

with 0 ≤ µ = sinx < 1 that of the center M of any ellipse in this family.
Then, its major semiaxis ae equals aP cosx = aP

√
1− µ2, which results

in

µ2 = 1− a2

e

a2

P

= 1− a2

e

t
. (14)

When, during the movement of the ellipse e, the scalar µ vanishes, then
its center M coincides with the center O of E . The corresponding point
P has the elliptic coordinate k2 = −a2e. In order to continue the motion,
point P has to jump to its antipode.

We set

v :=
k2

k1
=

a2

e

b2e
= const., where 1 < v <

a2

c2
, (15)

and we use the parameter t = −k2 for representing the motion. Then, t
is restricted by the interval

max{b2, vc2, a2e} ≤ t ≤ min{a2, vb2}, (16)
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and k1 = t/v. From (8) follows the parametrization p(t) by replacing
(k1, k2) with (t/v, t). This implies for the trajectory of the center M of e

m(t) = µ(t)p(t) with µ(t) =

√
1− a2

e

t
. (17)

Now, we can express the movement of e in matrix form, in terms of posi-
tion vectors xm w.r.t. the moving space (attached to e) and xf w.r.t. the
fixed space (attached to E), as

xf = m(t) +M(t)xm, where M(t) =

[
v2

‖v2‖
,

v1

‖v1‖
,

nP

‖nP ‖

]
. (18)

The square brackets include the column vectors according to (11) and (10)
in the orthogonal matrix M(t).

Note that this parametrization works only for point P in the octant
x, y, z > 0. We get a closed movement after reflections in the planes
of symmetry (see Figure 2). Algebraic properties of this movement are
provided in [2].

3 Moving ellipses on a one-sheeted hyperboloid

Also on hyperboloids and paraboloids, the curves of intersection with
parallel planes are homothetic. However, not in all cases the method, as
used before for ellipsoids, can be applied since a point P either does not
exist or lies at infinity. Moreover, paraboloids have no center O. Below,
we analyse only the movements of ellipses on a one-sheeted hyperboloid
H1. The case of moving parabolas is presented in [3].

H1

H2

P̃
τ
P̃

e

Figure 3: For ellipses e on a one-sheeted hyperboloid H1, there does not
exist a point P ∈ H1 with the tangent plane τP parallel to the plane of e.

For ellipses e ⊂ H1, there is no point P ∈ H1 with a tangent plane
τP parallel to e. However, we find an appropriate point P̃ on the ‘conju-
gate’ two-sheeted hyperboloid H2 (Figure 3). The hyperboloid H2 shares
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the asymptotic cone with H1, and, therefore, the axes of the ellipse e
are parallel to the principal curvature directions of H2 at P̃ . The two
hyperboloids satisfy the respective equations

H1 :
x2

a2
+

y2

b2
− z2

c2
= 1 and H2 : −

x2

a2
− y2

b2
+

z2

c2
= 1

with a > b. The quadrics confocal with H2 are given by

− x2

a2 − k
− y2

b2 − k
+

z2

c2 + k
= 1.

Again, this family sends through each point P̃ outside of the planes of
symmetry three mutually orthogonal quadrics, one of each type. On the
two-sheeted hyperboloid H2 with k = 0, we use the respective parameters
k0 and k1 of the ellipsoid and the one-sheeted hyperboloid as the elliptic
coordinates of P̃ with

k0 > a2 and a2 > k1 > b2.

Then, similar to Lemma 1, the ellipse e ∈ H1 in the diameter plane parallel
to τ

P̃
has the semiaxes

a
P̃
=

√
k0 and b

P̃
=

√
k1.

This is the smallest ellipse on H1 in the homothetic family.
Hence, if any given ellipse with semiaxes ae and be should be moved on

H1, the corresponding point P̃ ∈ H2 has to trace a curve with proportional
elliptic coordinates

k0 : k1 = a2
P̃
: b2

P̃
= a2e : b2e

on H2. Similar to (8), we can parametrize the trajectory p̃(t) = (ξ, η, ζ)

of P̃ by t := k0 > a2, where

v :=
k0

k1
=

a2

e

b2e
= const.,

hence k1 = t/v with b2 ≤ k1 ≤ a2.

For each P̃ , the principal vertices of the ellipses in planes parallel to τ
P̃

are placed on a hyperbola, for which one principal vertex in the diameter
plane and the point P̃ define conjugate diameters. If ae = a

P̃
coshx, then

the position vectors m of the center of the ellipse e and p̃ of the point P̃
are related by m = sinhx p̃. Thus, we obtain

m = µ p̃ with µ2 =
a2

e

a2

P̃

− 1 . (19)
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This yields, similar to (18), a parametrization for the movement of the
ellipse e on H1 (Figure 4). As a consequence of (19), on the trajectory of

P̃ only points with a2
P̃
= k0 ≤ a2e are admitted. Therefore, the parameter

t = k0 runs the interval

max{a2, vb2} ≤ t ≤ min{a2e, va2}.

In the case a2e < va2, the same phenomenon appears as mentioned above.
When the parameter t reaches a2e, then, for continuing the movement of

the ellipse, the point P̃ either has to jump to its antipode, or the scalar
µ in (19) must get a negative sign.

Figure 4: Movement of an ellipse on a one-sheeted hyperboloid.
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