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Abstract. For each regular quadric in the Euclidean 3-space, there
is a three-parameter set of cutting planes, but the size of an ellipse
or hyperbola depends only on its two semiaxes. Therefore, on each
quadric Q there exist ellipses or hyperbolas with a one-parameter set
of congruent copies, which can even be moved into each other. For the
case of ellipses, we present parametrizations of motions on ellipsoids,
hyperboloids, and paraboloids. These motions are closely related to
the theory of confocal quadrics.
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1 Introduction

There are well-known examples of conics which can be moved on quadrics.
Apart from the trivial case of circles on a sphere, paraboloids are surfaces
of translation, even with a continuum of translational nets of parabolas.
On quadrics of revolution, each planar section can be rotated while it
remains on the quadric.

What’s about general quadrics Q ? There is a three-parameter fam-
ily of planes which cut Q along a conic. However, the size of an ellipse
or hyperbola depends only on its two semiaxes. This parameter count
reveals that on each quadric Q there exist conics with a one-parameter
family of congruent copies on Q. Below, we focus on ellipses and provide
parametrizations for the motion of appropriate ellipses on ellipsoids, hy-
perboloids, and paraboloids. The motions prove to be in close relation to
the family of quadrics being confocal with Q.

2 Moving ellipses on a triaxial ellipsoid

On each regular quadric Q, two conics e1 and e2 in parallel planes are
homothetic (Fig. 1). This means in the case ellipses, that they have
parallel axes and the same ratio of semiaxes ae : be. Moreover, their
centers lie on the same diameter. This follows from the polarity with
respect to (henceforth abbreviated as w.r.t.) Q.

On an ellipsoid E , we obtain the biggest ellipse within a homothetic
family as the intersection with a plane through the ellipsoid’s center O.
On the other hand, there is a point P ∈ E with a tangent plane τP parallel
to the cutting planes, and the axes of the homothetic conics are parallel
to the principal curvature directions at P (Fig. 1). The conics are even
homothetic to the Dupin indicatrix at P . This can be confirmed, e.g., by
straight forward computation using a Taylor expansion at P .
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Figure 1: Homothetic sections e1, e2 of the ellipsoid E in parallel planes.

According to the definition of the Dupin indicatrix, the ratio of the
principal curvatures κ1, κ2 at P is reciprocal to the ratio of the squared
semiaxes of the ellipses on E in planes parallel to τP , i.e.,

ae : be =
√
κ1 :

√
κ2, if κ1 > κ2. (1)

The lines of curvature on quadrics are related to confocal quadrics. There-
fore, we recall some relevant properties of confocal quadrics.

2.1 Confocal central quadrics

Let E be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter
family of quadrics being confocal with E is given as

F (x, y, z; k) :=
x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
− 1 = 0, (2)

where k ∈ R \ {−a2,−b2,−c2} serves as a parameter. In the case a > b >
c > 0, this family includes

for





−c2 < k < ∞ triaxial ellipsoids,

−b2 < k < −c2 one-sheeted hyperboloids,

−a2 < k < −b2 two-sheeted hyperboloids.

(3)

Confocal quadrics intersect their common planes of symmetry along con-
focal conics. As limits for k → −c2 and k → −b2 we obtain ‘flat’ quadrics,
i.e., the focal ellipse and the focal hyperbola.

The confocal family sends through each point P = (ξ, η, ζ) outside
the coordinate planes, i.e., with ξηζ 6= 0, exactly one ellipsoid, one one-
sheeted hyperboloid, and one two-sheeted hyperboloid. The correspond-
ing parameters k define the three elliptic coordinates of P . We focus on
points P of the ellipsoid E with k = 0,

E :
ξ2

a2
+

η2

b2
+

ζ2

c2
= 1 . (4)



The two hyperboloids H1 and H2 through P with respective parameters
k1 and k2, where

−a2 < k2 < −b2 < k1 < −c2 < 0 , (5)

satisfy

Hi :
ξ2

a2 + ki
+

η2

b2 + ki
+

ζ2

c2 + ki
= 1, i = 1, 2. (6)

For given Cartesian coordinates (ξ, η, ζ) of a point P , we obtain the
elliptic coordinates, i.e., the parameters of the quadrics through P , by
solving F (ξ, η, ζ; k) = 0 in (3) for k. This results in a cubic equation with
three real roots. Conversely, if the tripel (0, k1, k2) of elliptic coordinates is
given, then the Cartesian coordinates (ξ, η, ζ) of the corresponding points
P ∈ E satisfy

ξ2 =
a2(a2+ k1)(a

2+ k2)

(a2 − b2)(a2 − c2)
, η2 =

b2(b2+ k1)(b
2+ k2)

(b2 − c2)(b2 − a2)
,

ζ2 =
c2(c2+ k1)(c

2+ k2)

(c2 − a2)(c2 − b2)
.

(7)

There exist 8 such points, symmetric w.r.t. the coordinate planes.
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Figure 2: Ellipsoid E with lines of curvature (blue), curves of constant
ratio of principal curvatures κ1 : κ2 (red), principal curvature directions
v1,v2 at the point P , and one umbilic point U with κ1 = κ2.



At each point P of the ellipsoid E , the surface normal nP to E has the
direction vector

nP =
(

ξ

a2
,

η

b2
,

ζ

c2

)
. (8)

The surface normals of the two hyperboloids H1 und H2 through P are
in direction of the vectors

vi :=
(

ξ

a2 + ki
,

η

b2 + ki
,

ζ

c2 + ki

)
, i = 1, 2 . (9)

The differences of any two of the equations in (4) and (6) yield

ξ2

a2(a2 + ki)
+

η2

b2(b2 + ki)
+

ζ2

c2(c2 + ki)
= 0, i = 1, 2 , and

ξ2

(a2 + k1)(a2 + k2)
+

η2

(b2 + k1)(b2 + k2)
+

ζ2

(c2 + k1)(c2 + k2)
= 0.

(10)

This is equivalent to vanishing dot products

nP · v1 = nP · v2 = v1 · v2 = 0.

Therefore, confocal quadrics form a triply orthogonal system of surfaces.
Due to a theorem of Dupin, they intersect each other along lines of cur-
vature. The vectors v1 and v2 from (9) define the principal curvature
directions at P .

2.2 Ellipses on ellipsoids

Now, we look for the biggest ellipse on E within a homothetic family.

Lemma 1. The semiaxes of the ellipse in the diameter plane parallel to
the tangent plane τP at the point P ∈ E with elliptic coordinates (0, k1, k2)
are

aP =
√
−k2, bP =

√
−k1. (11)

Proof. The diameter plane is spanned by the direction vectors v1 and v2

from (9). We look for λ ∈ R with λvi ∈ E , hence by (4)

λ2

[
ξ2

(a2 + ki)2a2
+

η2

(b2 + ki)2b2
+

ζ2

(c2 + ki)2c2

]
= 1.

This condition does not change if we subtract from the term in square
brackets the left-hand side of the first equation in (10), divided by ki.
Thus, we obtain

λ2

[
ξ2

(a2 + ki)2a2
− ξ2

ki(a2 + ki)a2
+ . . .

]
= 1,
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Figure 3: Moving the ellipse e on the ellipsoid E . The trajectories of the
principal vertices of e are displayed in green.

and, finally,

−λ2

ki

[
ξ2

(a2 + ki)2
+

η2

(b2 + ki)2
+

ζ2

(c2 + ki)2

]
= −λ2

ki
‖vi‖2 = 1,

hence, aP = |λ| ‖v2‖ =
√−k2 and bP = |λ| ‖v1‖ =

√−k1. These equa-
tions can already be found in [1, p. 517].

For the motion of a given ellipse e with semiaxes (ae, be), Lemma 1
implies the necessary condition

ae ≤ aP =
√
−k2, where b <

√
−k2 < a (12)

by virtue of (5). We infer, under inclusion of (1),

Theorem 1. If an ellipse e with semiaxes (ae, be) is moving on a triaxial
ellipsoid E, then both points P ∈ E with tangent planes τP parallel to the
plane of e move on curves with proportional elliptic coordinates k2 : k1 =
−a2e : −b2e. Along these curves also the ratio of the principal curvatures
remains constant (see Fig. 2).

The ellipses of E in planes parallel to τP have their principal vertices in
the plane spanned by the centerO, point P , and by the principal curvature
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Figure 4: Motion of the ellipse e on the ellipsoid E – displayed together
with the trajectory of a principal vertex of e (green) and that of the
corresponding point P ∈ E (red) with the tangent plane τP parallel to e.

direction v2 from (9). Therefore, the principal vertices are located on an
ellipse, for which OP and the major axis with length aP in the plane
through O determine conjugate diameters. Let p denote the position
vector of P and m = µp with 0 ≤ µ = sinx < 1 that of the center M of
any ellipse in the homothetic family. Then, its major semiaxis ae equals
aP cosx = aP

√
1− µ2, which results in

µ2 = 1− a2

e

a2

P

= 1 +
a2

e

k2
. (13)

When during the motion of the ellipse e, the scalar µ vanishes, then its
center M coincides with the center O of E . The corresponding point P
has the elliptic coordinate k2 = −a2e. In order to continue the motion,
point P has to jump to its antipode (note the example in Fig. 4).

In order to parametrize the motion of the ellipse e on the ellipsoid E
(see Fig. 3), we set

v :=
k2

k1
=

a2

e

b2e
= const., where 1 < v <

a2

c2
, (14)



and use the parameter t = −k2 for representing the motion. Then, by
virtue of (5), t is restricted by the interval

max{b2, vc2, a2e} ≤ t ≤ min{a2, vb2}, (15)

and k1 = t/v. From (7) follows the parametrization p(t) by replacing
(k1, k2) with (t/v, t). This implies for the trajectory of the center M of e

m(t) = µ(t)p(t) with µ(t) =

√
1− a2

e

t
. (16)

Now, we can express the motion of e in matrix form, in terms of position
vectors xm w.r.t. the moving space (attached to e) and xf w.r.t. the fixed
space (attached to E), as

xf = m(t) +M(t)xm, where M(t) =

[
v2

‖v2‖
,

v1

‖v1‖
,

nP

‖nP ‖

]
. (17)

The three column vectors of the orthogonal matrix M(t) are given in (9)
and (8).

Note that this parametrization is valid only for points P in the octant
x, y, z > 0. We get a closed motion after appropriate reflections in the
planes of symmetry (see Figs. 3 and 4). By the same token, algebraic
properties of this motion are reported in [2].

3 Moving ellipses on a one-sheeted hyperboloid

Also on hyperboloids and paraboloids, the conics in parallel planes are
homothetic. However, not in all cases the method, as used before for
ellipsoids, can be applied since a point P either does not exist or lies at
infinity. Moreover, paraboloids have no center O. Below, we analyse the
motions of ellipses on a one-sheeted hyperboloid H1 and on an elliptic
paraboloid P (see Section 4). The motion of an ellipse on a two-sheeted
hyperboloid works similar to that of triaxial ellipsoids.1

For ellipses e ⊂ H1, there is no point P ∈ H1 with a tangent plane τP
parallel to e. However, we find an appropriate point P̃ on the ‘conjugate’
two-sheeted hyperboloid H2 (Fig. 5).

The hyperboloid H2 shares the asymptotic cone with H1, and there-
fore, the axes of the ellipse e are parallel to the principal curvature direc-
tions of H2 at P̃ . The two hyperboloids satisfy the respective equations

H1 :
x2

a2
+

y2

b2
− z2

c2
= 1 and H2 : −

x2

a2
− y2

b2
+

z2

c2
= 1

1The motion of a parabola on a hyperboloid is discussed in [4, p. 355–357].
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Figure 5: For ellipses e on a one-sheeted hyperboloid H1, there does not
exist a point P ∈ H1 with a tangent plane τP parallel to the plane of e.

with a > b. The quadrics confocal with H2 are given by

− x2

a2 − k
− y2

b2 − k
+

z2

c2 + k
= 1.

Again, this family sends through each point P̃ outside of the planes of
symmetry three mutually orthogonal quadrics, one of each type. On the
two-sheeted hyperboloid H2 with k = 0, we use the parameters k0 of the
ellipsoid and k1 of the one-sheeted hyperboloid as the elliptic coordinates
of P̃ with

b2 < k1 < a2 < k0.

Then, similar to Lemma 1, the ellipse e ∈ H1 in the diameter plane parallel
to τ

P̃
has the semiaxes

a
P̃
=

√
k0 and b

P̃
=

√
k1.

This is the smallest ellipse on H1 within the homothetic family.

If any ellipse with given semiaxes ae and be is to be moved on H1,
the corresponding point P̃ ∈ H2 has to trace a curve with proportional
elliptic coordinates

k0 : k1 = a2
P̃
: b2

P̃
= a2e : b2e.

Similar to (7), we can parametrize the trajectory p̃(t) = (ξ, η, ζ) of P̃ by
t := k0 > a2, where

v :=
k0

k1
=

a2

e

b2e
= const.,

hence k1 = t/v with b2 < k1 < a2.
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Figure 6: Movement of the ellipse e on the one-sheeted hyperboloid H1.
The two principal vertices of e trace the same curve (green).

Now we have to find the centerM of the moving ellipse on the diameter
line [P̃ , O]: For each P̃ , the principal vertices of the ellipses in planes

parallel to τ
P̃

are placed on a hyperbola, for which the point P̃ and one
principal vertex in the plane through O are the endpoints of conjugate
diameters. If ae = a

P̃
coshx, then the position vector m of the center M

of e and p̃ of the point P̃ are related by m = sinhx p̃. Thus, we obtain

m = µ p̃ with µ2 =
a2

e

a2

P̃

− 1 . (18)

This yields, similar to (17), a parametrization for the motion of the ellipse

e on H1 (Fig. 6). As a consequence of (18), on the trajectory of P̃ only
points with a2

P̃
= k0 ≤ a2e are admitted. Therefore, the parameter t = k0

runs the interval

max{a2, vb2} ≤ t ≤ min{a2e, va2}.
In the case a2e < va2, the same phenomenon appears as mentioned above.
When the parameter t reaches a2e, then, for continuing the motion of the



ellipse, the point P̃ either has to jump to its antipode, or the scalar µ in
(18) must get a negative sign.

4 Moving ellipses on an elliptic paraboloid

The quadrics being confocal with an elliptic paraboloid can be represented
as

x2

a2 + k
+

y2

b2 + k
− 2z − k = 0 for k ∈ R \ {−a2,−b2}. (19)

In the case a > b > 0, this one-parameter family contains

for





−b2 < k < ∞ elliptic paraboloids,

−a2 < k < −b2 hyperbolic paraboloids,

k < −a2 elliptic paraboloids.

(20)

For each k, the vertex of the corresponding paraboloid has the coordi-
nates (0, 0,−k/2). The point (0, 0, b2/2) is the common focal point of the
principal sections in the plane x = 0, and (0, 0, a2/2) is the analogue for
the sections with y = 0. The limits for k → −b2 or k → −a2 define the
two focal parabolas (note [4, Fig. 7.5]).

P0

P
v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2

nPnPnPnPnPnPnPnPnPnPnPnPnPnPnPnPnP

Figure 7: Elliptic paraboloid P0 with lines of curvature (blue), curves of
constant ratio of principal curvatures κ1 : κ2 (red), and direction vectors
v1,v2 of the principal curvature tangents at the point P ∈ P0.

The family of confocal parabolas sends through each point P outside
the planes of symmetry x = 0 and y = 0 three surfaces, one of each type.



Like before in the case of confocal central surfaces, we call the parameters
of the three parabolas through P the elliptic coordinates of P . We focus
on the elliptic paraboloid P0 with k = 0. Its points have the elliptic
coordinates (0, k1, k2), where

k2 ≤ −a2 ≤ k1 ≤ −b2.

Conversely, if any point P ∈ P0 is defined by the elliptic coordinates
(k1, k2), then its Cartesian coordinates ξ, η, ζ satisfy

ξ2 = −a2(a2+ k1)(a
2+ k2)

(a2 − b2)
, η2 =

b2(b2+ k1)(b
2+ k2)

(a2 − b2)
,

ζ = −a2 + b2 + k1 + k2
2

.

(21)

The normal vectors nP of P0 and vi of the paraboloid Pi with parameter
ki, i = 1, 2, at the point P are (note Fig. 7)

nP =




ξ

a2

η

b2

1


 , vi =




ξ

a2 + ki
η

b2 + ki
1


 . (22)

Also confocal paraboloids form a triply orthogonal system of surfaces,
and consequently, they intersect each other along lines of curvature. The
vectors v1 and v2 in (22) define the principal curvature directions at P .

Lemma 2. Given a regular quadric Q0, let P ∈ Q0 be a point in general
position with the tangent plane τP to Q0. If Q1 and Q2 are the remaining
two confocal quadrics through P , the pole of τP w.r.t. Q2 is the center
of curvature of the orthogonal section of Q0 at P through the principal
curvature tangent tP orthogonal to Q2.

Proof. We can verify this by straight forward computation: Based on the
parametrizations of Q0 by elliptic coordinates (k1, k2), as given in (7) for
central quadrics and in (21) for paraboloids, we compute the first and
second fundamental form and the center of curvature (= Meusnier point)
for the orthogonal section of Q0 through tP (see, e.g., [3]).

A synthetic proof runs as follows: Let c be the line of intersection
between the confocal quadrics Q0 and Q1. Then, c is a line of curvature
for both. The developable T which contacts Q0 along c has generators
orthogonal to c. Also the surface normals toQ0 along c form a developable
N . Its cuspidal points are the centers of curvature of the orthogonal
sections of Q0 through the tangents to c (note [4, p. 418ff]).



At the point P ∈ c, the tangent tP to c, the surface normal nP to Q0,
and the generator gP of T are mutually orthogonal. Any two of them
define the principal curvature directions at P for one of the three confocal
quadrics. For example, the lines gP and nP are conjugate tangents of Q2,
and therefore, even polar w.r.t. Q2.

The polarity w.r.t. Q2 transforms the developable T through gP into a
developable T ′ through nP , while tangent planes τX of T andQ0 at points
X ∈ c are sent to points X ′ of the cuspidal edge cT ′ of T ′. The poles of
each plane w.r.t. the quadrics of a confocal family lie on a line orthogonal
to the given plane (see, e.g., [4, p. 292]). Therefore, the Q2-pole X

′ of τX
lies on the normal nX of Q0 at X . Consequently, the cuspidal edge cT ′

of T ′ is a curve on the developable N . The polarity w.r.t. Q2 takes the
generator gX ⊂ T to the tangent g′X to cT ′ at X ′, which is also a tangent
of N .

Now we prove, that the cuspidal edge cT ′ of T ′ passes through the
cuspidal point CN of nP ⊂ N :

The tangent plane τP to T at P is the limit X → P of a plane
connecting the generator gP with any point of gX . By virtue of the
polarity w.r.t. Q2 with T → T ′, the cuspidal point P ′ ∈ cT ′ on nP is
the limit X → P of the point of intersection between nP and any plane
through g′X . As noted before, the tangent plane [nX , tX ] along nX to N
is such a plane, since it passes through g′X . However, the limit X → P of
the point of intersection nP ∩ [nX , tX ] yields also the cuspidal point CN

of nP w.r.t. the developable N . This means, that CN equals the pole P ′

of τP w.r.t. Q2.

We apply Lemma 2 to the elliptic paraboloid P0. The tangent plane
τP to P0 at P = (ξ, η, ζ) has the equation

τP :
ξ

a2
x+

η

b2
y + z = ζ.

Its pole w.r.t. the paraboloid Pi with parameter ki is

Ci =




a2 + ki

a2
ξ

b2 + ki

b2
η

ζ + ki


 =




ξ
η
ζ



+ ki




ξ

a2

η

b2

1


 . (23)

This confirms that the principal curvatures of P0 at P are

κi = 1/ PCi =
1

−ki‖nP ‖
, where κ1 > κ2 . (24)

Now we have to place a given ellipse e with semiaxes ae and be, where
a2e : b2e = k2 : k1, in a plane parallel to τP in the correct way on P0. This



means, the center M of e lies on the diameter dP of the paraboloid P0

and the major axis is parallel to the principal curvature tangent tP in
direction v2, i.e., orthogonal to the paraboloid P2 through P (Fig. 7).

The major axis lies in the plane ε spanned by tP and dP . This plane
intersects P0 along a parabola p. Due to Meusnier’s theorem, we obtain
the center of curvature P ∗ of p at P as the pedal point of C2 from (23)
in ε. Let ρ = PP ∗ denote the radius of curvature at P (Fig. 8). Then
the chord S1S2 of p parallel to tP through the midpoint of PP ∗ has its
midpoint S0 on the diameter dP and the length 2ρ.

P

P ∗

tP

ρ

2

ρ

ρ

ρ

S1

S2

S0

p

dP

Figure 8: For a given parabola p with point P ∈ p and corresponding
center of curvature P ∗, this is a construction of the endpoints S1, S2 on a
particular chord of p.

This follows with the help of a shear, i.e., a perspective affine trans-
formation in ε with tP as axis and the ideal point of tP as its center. This
shear transforms p into a parabola p′ which osculates p at P . We can
define a shear such that P becomes the vertex of p′. Then, the midpoint
of PP ∗ if the focal point of p′, and for p′ the chord parallel to tP through
the focal point has the length 2ρ. Under the inverse shear, the chord is
just translated parallel to tP .

For the parabola p, the squared length of chords parallel to tP is
proportional to the distance between P and the midpoint of the chord.
According to Fig. 8, in our case the factor of proportionality is known as

S1S2

2

/ PP0. Consequently, the respective position vectors p, s0, and m



of P , S0, and the center M of the wanted ellipse e are related by

m = p+
a2e
ρ2

(s0 − p). (25)

Now, we can parametrize the motion of a given ellipse e on P0 in
the following way. By (24), the given semiaxes define the locus of points
P ∈ P0 with proportional elliptic coordinates

v :=
k2
k1

=
a2e
b2e

, where v > 1.

In the same way as before, we use t := −k2 as the motion parameter. Then
the pair of elliptic coordinates k1 = t/v and k2 = t yields the trajectory
p(t) of the point P ∈ P0 by (21). For each admissible t, we compute the
Meusnier point C2 by (23) and then its pedal point C∗ in the plane ε, as
described above. Finally, due to (25), we can find the correct position of
the ellipse e ⊂ P0 in a plane parallel to τP .

P0

e

Figure 9: Ellipse e moving on the elliptic paraboloid P0 – displayed to-
gether with the trajectories of the principal vertices of e (green) and the
related curve of constant ratio of principal curvatures (red).

We summarize:



Theorem 2. On regular quadrics Q, all ellipses e other than circles can
be moved, except on a one-sheeted hyperboloid the gorge ellipse and on
a triaxial ellipsoid the ellipse with the longest and the shortest diameter
as axes. During these motions, the points P ∈ Q with a tangent plane
parallel to the plane of e trace curves along which the ratio of elliptic
coordinates remains constant.
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