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Abstract

Plucker's conoid#’, also known under the name cylindroid, is a ruled surfaceegfee three with a finite
double line and a director line at infinity. The following tyooperties of¢” play a major role in the geometric
literature:

1) The bisector of two skew lineg, /> in the Euclidean 3-space, i.e., the locus of points at eqiséhnte
to ¢1 and (», is an orthogonal hyperbolic paraboloi@f. All generators of%” are axes of one-sheeted
hyperboloids of revolutionz which pass througld; and/,. Conversely, the locus of pairs of skew lines
{1, for which a given orthogonal hyperbolic parabolai is the bisector, is a Pliicker conoid

2) Inspatial kinematics, Plicker’s conaidis well-known as the locus of axés, of the relative screw motion
for two wheels which rotate about fixed skew axgsand/, with constant velocities. The axodes of the
relative screw motion are one-sheeted hyperboloids oflugen /77, 27 with mutual contact alonds.
The common surface normals alofyg form an orthogonal hyperboloid paraboloid passing through the
axest1 and/,.

The underlying paper aims to discuss these two main pregeriti seems that there is no close relation between
them though both deal with Pliicker’s conoid, orthogonaddmpolic paraboloids, and hyperboloids of revolution
— however in different ways.

1 Plicker’'s conoid

Plicker’s conoids’, also known under the naneglindroid, is a ruled surface of degree three with a finite double
line and a director line at infinity. Using cylinder coordies(r, ¢,z), the conoid can be given by

z=csin2p (1)

with a constant € R.o. All generators of¢” are parallel to théx,y]-plane. Thez-axis is the double line o¥
and an axis of symmetry. The conoid passes throughlamdy-axis. These two lines can be calledntral
generatorof € since both are axes of symmetry@f too. The Plucker conoi@” is the trajectory of the-axis
under a motion composed from a rotation aboutzlagis and a harmonic oscillation with double frequency glon
thez-axis [10, p. 37].

The substitutionx = r cos¢ andy = sing in (1) yields the Cartesian equation

(X +y?)z—2cxy=0, 2

which reveals that reflections in the planesy = 0 map% onto itself. The origirO is called thecenterof &
The right cylindeix? +y? = R? intersects the Pliicker concid along a curvey, of degree 4 (see Fig. 1, left),

which in the cylinder’s development (in ti&g)-plane withé = R¢ andn = 2) appears as the Sine-curve

28

n :csinﬁ, 0< & <2Rm,

with amplitudec and wavelengtRrt. The generators &’ connect points.y which are symmetric with respect to
(henceforth abbreviated as w.r.t.) thaxis. The conoid is bounded by the plaizes +c, which contact” along
the torsal generatotg andt; in the planexFy = 0. We call Z thewidth of the conoid.

1The remaining part of the curve of intersection consistsvof tomplex conjugate lines at infinity in the plaxg iy = 0.



The tangent plangy - at any pointX € ¢, X ¢ ty,tz, with position vector
x(r,¢) = (rcosg, rsing, csin2p), where r >0, (3)

is orthogonal to the vectorprodugt x x4 of the partial derivates

cosp —rsing
Xr 1= ? = | sin¢g and X¢ := Z—X = r cosg .
r 0 ¢ 2ccos 2

This yields the equation

Tx|¢ 2CCOS2P (XSing —ycosp) +rz=rcsin2¢p. (4)
The tangent plangy - has a 45-inclination against théx, y|-plane ifr or —r equals the distribution parameter
0= :72) =2ccos 2

of the generator througX.

For pointsX € ¢’ outside the torsal generators, the intersectigp N¢” splits into the generatgy throughX
and an ellipsex with principal vertices on the torsal generators and theoméxis in the[x, y]-plane (Fig. 1, left).
After orthogonal projection into thi, y]-plane, the ellipse appears as the cigl€see Fig. 1, right) satisfying

cos2p (X% +y?) +r(ysing —xcosp) = 0,

hence

rcosp \2 rsing \2 2 .
(Xi Zcoszp) Jr(erZCOSZP) ~ 2co22¢ if cos2 70.

All ellipsesex C ¢ have the same excentricitysince it equals the difference of taeoordinates of the respective
principal and secondary vertices on the vertical cylindep[ 208].

Figure 1: Plucker’s conoi® (left: axonometric view, right: top view) with central gea¢orsc, andcp, torsal
generatorg; andtp, the generatogx throughX, and the ellipsex C ¢ N T

For all pointsP in space with a top view’ € € opposite to the top view of the double line (see Fig. 1, right)
the pedal curveon @, i.e., the locus of pedal points & on the generators &, coincides withex. This holds
since right angles enclosed with generatorgoéppear in the top view again as right angles, provided that th
spanned plane is not parallel to thexis. Thus, all pedal curves of a Pliicker conoid are plafarthermore, all
surface normals of at points ofex meet the vertical line through .

Remarkl. Another remarkable property of the cylindroid is reportedd]: Let four generatorgs,...,gs C ¢ be
calledcyclicif their points of intersection with any fixed tangent plang, are concyclic, i.e., located on a circle
(and on the ellipsex). Then, in each tangent plane their points of intersectrer@ated on a circle. Moreover,
there is an infinite set of spheres which contact these foesliand, apart from four generators of a one-sheeted
hyperboloid of revolution, this is the only choice of foundis in space with this property.



2 Bisector of two skew lines

For two given point set$;, S, in the Euclidean plani&? or three-spacg?2, the set of pointX being equidistant to
S andS; is called thebisectorof S; andS,.

In the case of two given poin Q € E2, the bisector is the orthogonal bisector plamg, of P andQ. The
standard definition of a parabolalif as the bisector of its focal point and directrix reveals twath paraboloid
of revolution inE2 is the bisector of a poirfe and a plane not passing through However, also the equilateral
hyperbolic paraboloid is a bisector, as reported, e.gZ,ip]154] and stated in the theorem below.
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Theorem 1. Let/; and/» be two skew lines ifi® with 2¢ := ¥ (10, and shortest distanced := /1/,.

1. The bisector of; and ¢, is an orthogonal hyperbolic paraboloid” (Fig. 2). If {1 and ¢, are given by
z=+d and xsin¢g = +ycosg, then
) sin2p
P+ d xy= 0. (5)
2. The axes of symmetry and ¢ of the two skew lineg;, /,, which coincide with the x- and y-axis of our
coordinate frame, are the vertex generators®fthe common perpendicular éf and/; is the paraboloid’s
axis. The lineg; and/, are polar w.r.t.£, i.e., each point X< ¢; is conjugate w.r.tZ to all points % € /5,
and vice versa.

3. Atany point Xe &, the tangent planey|» to & is the orthogonal bisector planexr, of the pedal points
F1,F> of X on the lineg; and/z, respectively. Hence? is the envelope of the bisecting plar@sr, for all
points i € /1 and i € /5.

4. The generators af” are the axes of rotations ifi® which send the liné; to the linel,. Therefore, the
generators of” are axes of one-sheeted hyperboloids of revolution paskinggh the given pair of skew
lines(¢1,¢7). These hyperboloids are centered on the vertex generatars af & and share the secondary
semiaxis b=dcot¢ (Figs. 4 and 5).

Proof. 1: Let any line¢ be given in vector form ap + Rv with ||v|| = 1. Then, its distance to any poiKtwith

position vectoix satisfies o
X€2: ||X7pH27<X7paV>27 (6)

where(, ) denotes the standard dot product 1§ replaced with one of the given linés, ¢, with

p=(0,0,+d) and v=(cosp,+tsing,0) for O<¢<7—2T and d>0,



thenX/?;, = X/, is equivalent to
X2+ y2+ (z— d)? — (xcosp +ysing)? = x2 +y? + (z+d)? — (xcosp — ysing)?,
and consecutively, to
P 2dz+xysin2p = 0. )

This is the equation of an orthogonal hyperbolic parabo{Bid. 2). The rotation(x,y,z) — (X,y’,Z) about the
z-axis throughv/4 with

X=X -Y), y= (X +Y), 2=7,

V2 V2

yields the standard equation

sin2¢
27 + 7 X2-y?) =o.

2. Two pointsX; = (X1,Y1,21) andXy = (X, y2,2) are conjugate w.r.t. the paraboloid (7) if and only if
sin2¢

2d
This is satisfied by eacl € ¢1 andX; € ¢, since

(X1y2+X2y1) + (z1+22) = 0.

Xy = (ricosp, rysing, d) and Xy = (rpcosp, —rpsing, —d).

The origin is the vertex of the paraboloid; thex- andy-axis are the two vertex generatagsandcy.

Figure 3: The tangent plarg, 4 at X to the bisecting paraboloié is the orthogonal bisector plamg,r, of the
respective pedal point& andF, of X on the lineg; and/,.

3. LetF; andF; be the pedal points of € &2 on the line; and/,, respectively. ThenX is uniquely defined as
the point of intersection between the orthogonal bisedamgor, r, of F; andF, and the planes orthogonal £p
and/, through the respective poirfs andF,. The generatorg;, g, of &2 throughX pass through the pedal points
C1,C; of X on the vertex generatocg andc; of &2. The tangent plang »» to & atX is spanned bg; andg,.

Now, we project the scene orthogonally into fkegy/]-plane (Fig. 3): The top view of theaxis is the common
point of ¢ and/,. SinceF; andF; are at equal distance to they]-plane, but on different sides, the bisecting plane
Or,F, intersects thex,y]-plane along the orthogonal bisector line of the top vié§sndF;. The Thales circle
with diameteiX'Z passes through andF;, and also through the pedal poi@sof X’ on¢| fori = 1,2. Since the
arcs fromC] to F{ and toF; are of equal lengths, poif lies on the trace obr,r,, which must be a diameter of
the Thales circle. Hence, this diameter coincides with thegC,C;] of x| 2, which proves the coincidence of
Tx|» andOg,f,.

4. If g is the axis of a rotation which sendsto /», then each poinX € g has equal distances t@ and/,, which
impliesg C Z.



Figure 4: Gorge circles of hyperboloids of revolution thgbu; and/,. The axes of the hyperboloids form a
regulus of the bisecting orthogonal hyperbolic parabol#id¢Theorem 1,4. or [3]).

Conversely, leg be the generator af?, which intersect; orthogonally at any poini. The reflection inc;
exchangeg; and/, while gis mapped onto itself. Consequently, there are equal dissad, = g/> and congruent
angles< g¢1 = < g¢2. The reflection irc; exchanges also the pedal poihks N, of M on ¢1 and/s; the midpoint
of NN\, lies oncy (Fig. 4).

The generatog is orthogonal tas; and also td\;1N,, sinceg C Ty, » lies in the orthogonal bisector plamg,, .
Thereforeg is orthogonal to the plane connectig N;, andN,. Furthermore, the linefM,N;| and[M,N;] are
the common perpendiculars gfwvith ¢, and/,, respectively.

There is arotation abogtwhich send$\; to N,. This rotation takeg, into a linel throughNy, which is orthogonal
to MN; and includes witlg an angle congruent te g¢,. We obtain/ = ¢, since otherwisé would be symmetric
to £, w.r.t. the meridian plangN, and therefore, as a member of the complementary regulessett/; .

Figure 5: Two hyperboloids of revolutios#i, .77 through two skew lineg; and/,. The hyperboloids share the
secondary semiaxtsand the distribution parametet$ of their generators.



Under a continuous rotation abagtthe line/; forms one regulus of a one-sheeted hyperboloid of revaiutit
(see Fig. 5). It is centered M and its gorge circle passes through the pedal pdiptandN, of M on the given
lines/q, (o.

WhenM varies onc;, we obtain a one-parameter family of one-sheeted hypeidmtd revolution through the
skew generatorg and/, (Fig. 5). Due to a result of Wunderlich [11] and Krames [3ggb two skew generators
(1,0, define already the secondary semiaxisf these hyperboloids, namely= dcot¢, where 2 = ¢1/, and
2¢ =< (10> (see also [5, p. 37]). Of course, the same holds for pdihtsc,. By the same tokeni-b or —b equals
the distribution parameter of all generators of the hypleride. O

Remark2. The complete intersection of any two hyperboloids of retiolu.77 , 77 through the two skew lines
{1 and/, (according to Theorem 1.4, see Fig. 5) consists of two maeslivhich need not be real. They can be
found as common transversalséf ¢», and two other generators of the hyperboloids, one of eaxchbath skew

to ¢, and/s.

Let us focus on the paraboloig? with the equation (5) and ask the following: Where are alfpéiy, ¢») of
lines for which# is the bisector? The answer, as given in the theorem belos/disalosed in [2], but already
reported at the turn to the ®@&entury in [8, p. 54].

Theorem 2. All pairs of skew lineg/;,¢>) which share the bisecting orthogonal hyperbolic parabdlé? are
located on a Rlicker conoid (cylindroid¥” in symmetric position w.r.t. the vertex generatorsaod ¢ of 2.

Figure 6: All pairs of skew line§(1, ¢,) which share the bisecting orthogonal hyperbolic paraldotdiare located
on a Plucker conoi@®’. Generatorg of &7 are axes of rotations withy — ¢, (courtesy: G. GAESER).

Proof. Let the lines/; and/, be given in the same way as in Theorem 1. Then, the biseZtoemains the same
if the quotient sin® /d does not change. Obviously, all pointsfgfand/, satisfy

d

. 2 .

: —2cxy=0 here c:= ——.
¢ (X +Yy?)z—2cxy w Sin%s
This equation defines a Plicker con@idas introduced in (2) (see Fig. 6). The surfaéas thex- andy-axis as
central generatory andc, and thez-axis as double line. All pair§/1, ¢2) are symmetric w.r.tt; andc, and polar
w.rt. 2. O

(8)

SCHILLING's famous collection of mathematical models contains asegh¥Xlll, no. 10, the pair of surfaces
¢ and 2, each represented by strings with endpoints on a closeddaoyicurve of degree four (see Fig. @nd
compare with Fig. 8). The two boundary curves are even cargras we confirm below in Theorem 3.

2The displayed model belongs to the collection of the Intitf Discrete Mathematics and Geometry, Vienna Univemsityechnology,
https://ww. geonetrie.tuw en. ac. at/ nodel | e/ nodel s_show. php?node=2&n=100&i d=0, retrieved March 2020.



Figure 7: String model of a Plicker conaid together with the surface formed by its normals along theraén
generatorg; andcy, an orthogonal hyperbolic parabolaid. This is model XXIIl, no. 10, out of SHILLING'S
famous collection of mathematical models. In addition,lthesc; andc,, which are vertex generators 6#, are
marked in red color.

By the same token, all generators of the orthogonal hyperpataboloidZ” are surface normals of the Pliicker
conoid along any central generator. This follows from (4r ¢ = 0, the surface normal at the po{n{0,0), r € R,
has the direction of0, —2c,r). For ¢ = 11/2, the normal at0,r,0) has the direction of—2c,0,r). Now we can
confirm that the points

(r,—2ct,rt) and (—2ct,rrt) forall (rt)eR?

satisfy the paraboloid’s equation

P xy+2cz=0 9
according to (5) in the case
d
c= Sn2p (10)

The same follows from Theorem 1,4. as the lifait> ¢, i.e.,d — 0: All generators of%? are axes of one-sheeted
hyperboloids of revolution which contact the con@dalong one of the central generators.

We summarize some properties of the pair of surfaesnd.”” (see Figs. 7 and 8), which share the distribution
parameted = 2c atc; andc:

Theorem 3. Let &2 be the orthogonal hyperbolic parabolof@) and % be the Plicker conoid satisfyin¢g).

1. The generators of” are the surface normals &f along its central generatorsi@and G.

2. Each generator g of” is the axis of concentric one-sheeted hyperboloids of wasi which intersec#’
along two skew generators, /> being symmetric w.r.t..cand . The gorge circles lie in the tangent plane
to ¢ at the point M where g 7 intersects the vertex generator of the complementary vsgul

3. The right cylinder %+ y? = 4c? with radius 2c equal to the width o intersects% and % along two
quartics which are symmetric w.r.t. tie y]-plane (Fig. 7).

4. The polarity in the paraboloid” maps the Ricker conoids” onto itself. Outside the torsal generators, there
is a symmetric one-to-one correspondence between poin,@n ¥ such that Q is the pole w.r.t.% of
the tangent plane t@” at Qy, and vice versa.

Proof. 2. We varyd and ¢ such thatc = d/sin2$ remains constant. The hyperboloids with the same gxis
throughM € ¢; share the plangM, N, Ny| of the gorge circle, where the pointg, N, are the pedal points d¥l
on the corresponding pair of linésg, ¢>. This plane orthogonal tg is tangent tos” at M. The pedal point&l; and
N, belong to the pedal curve & on %, which is an ellipse with the minor ax@8M alongc; (note Fig. 1, right).
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Figure 8: The surface normals of the Plucker cori@idlong the two central generatarsandc, form the two
reguli of an orthogonal hyperbolic paraboloid (courtesy: G. GAESER).

3. We plugx = Rcosp andy = Rsing into the equation (2) 0% and obtainR?z — 2cRsin¢ cosp = 0. The
same substitution in the equation (9).&f results inR?sing cosg + 2cz= 0. The choicéR = 2c gives rise to two
symmetric curveg = +csin2¢ (Figs. 7 and 8).

4. We use the parametrizatia(r, ¢ ) from (3) and se@; = (r;, ¢i) fori = 1,2. Then, the tangent plane@j to ¢
satisfies (4),
TQ,|¢: 2CCOS2py (xsingy — ycosps) +riz=rycsin 2.

The polar plane o, w.r.t. £ in (9) is given by
ra(Xsing, +ycospz) + 2cz= —2csin 29s.
We obtain an identity of the two planes when we set
¢o=—¢1 and rir, = —4c’cos2p. (11)

The correspondence of item 4 reveals: If poi@isis at the distance; = 2c to the double line, i.e., on the quartic
Ccyl @S mentioned in item 3, then the corresponding pQinhas a tangent plane which is inclined undef,4ince
rz =9 = 2ccos2p,. The polarity in%” maps the ellipseq, C (¢ N1q, ) onto the quadratic tangent cone@f
with the apexQ,. The tangent planes of this cone, i.e., the planes spann@d agd any generator &f , intersect
¢ in ellipses passing througl,. All points of the ellipseeg, are conjugate w.r.t% to the pointQ,. O

Remark3. If g1,...,04 are concyclic generators @f (cf. Remark 1), then the bisecting paraboloids for any two of
these four belong to a pencil of quadrics. Their common ciseequartic with a double point at the ideal point of

thez-axis. The infinitely many spheres which contggt. .., g4 are centered on this quartic. The top view of this

spine curve is an equilateral hyperbola. For proofs anthéurdetails see [9].

3 Plicker’s conoid as locus of instant screw axes for skew gears

In spatial kinematics, the Pliicker conaidis well-known as the locus of instant axés of the relative screw
motion for two wheels which rotate with constant velocitigsandw, about fixed skew axeg and/,, respectively.
The axes of symmetry of the two axes of rotatiqrand/, coincide with the central generatars ¢, of ¥’. The
axodes of the relative screw motion are hyperboloids oflcgtian .71, .7 with mutual contact aloné;» (Fig. 9)2

3The various relations between the two fixed axes of rotatign, the relative axi€1, the angular velocitiesy , wy, and the pitch of the
relative screw motion can be visualized in the so-caBedl-Disteli diagram which arises fron¥’ by a particular projection (see [1, Fig. 7]).
Itis noteworthy that we still obtain a Pliicker conoid asltis of relative screw axes when the two wheels perforntéletotions with fixed
pitches about fixed axes [1]. This is also a consequence dbllogving classical result PUCKER's in connection with linear line complexes:
The axes of all linear line complexes which are containedperecil belong to a Plucker conoid [4, p. 214].



Figure 9: Two hyperboloids of revolution in contact along time /1, (courtesy: G. GAESER).

They are solutions of the purely geometric problem: For igiskew axeds, />, find pairs of hyperboloids of
revolution which contact each other along a line.

A standard proof of this result uses dual vectors for theasgmtation of oriented lines and screws (see, e.g.,
[1]). Here we present another proof:

The common surface normals of the two hyperbolaids and 7% along the line of contact;, form one
regulus of an orthogonal hyperbolic parabolai®i which passes through the ax@sand/,. The line/s; is the
vertex generator of the complementary regulus?®n The other vertex generator 6? intersects all three lines
{12, V1, andl orthogonally. Therefore, it is the common perpendiculaf;cdind/,. These conditions will prove
to be sulfficient for identifying the locus of linég, as a Pliicker conoid.

We use the coordinate frame of Section 2 and definend/, by z= +d andxsing = tycosg. Then the
z-axis is the common perpendicular, and we can assuméithistgiven by

z=a and xsina =ycosa

(see Fig. 10). Now we intersect the orthogonal plan& $dhrough any poinX = (rcosa, rsina, a) € ¢12 with
/1 and/»,, and we obtain

_ [ _rcosp rsing _( rcosp —rsing
X1 = (COia _¢)v COia _¢) 5 d) € (1 andXp = (CO&(X—Q—(P)’ COS(OI+¢), —d> € lo.

In the top view, the three poind§, X;, andX; appear already aligned. Therefore, they are collinearaces|f and
only if the segmentX; X andX X, have the same slope. This means,

a-d  a+d
tan(a —¢) tan(a+¢)’

hence . .
sin2¢ B sin 2a

acos(a—¢)cos(a+¢) coja —¢)coga+¢)

After exclusion of the cases where ¢as- ¢)coga +¢) =0, i.e.,a = ¢ + 7, we conclude

d .
a= Sin2p sin 2o

9



as the relation between the altitud@and the polar angle of the wanted lin¢1, of contact. This is the equation
(1) of a Plucker conoid in cylinder coordinates. In the exi@d cases, the ling, intersects one of the given axes
and is orthogonal to the other. Then, one hyperboloid degée®into a cone and the other into a plane.

Figure 10: The axe$, (5, the line of contact;,, and a portion of the Pliicker conaid.

Theorem 4. If the given skew lineg; and ¢, are axes of hyperboloids of revolution which contact eadteot
along any line {,, then the linesih are located on a Ricker cononoid&” with the axes of symmetry 6fand/, as
central generators. Conversely, @heach generator which is skewtpand/, serves as a line of contact between
such hyperboloids.

Corollary 5. Let g be any generator of theirlker conoids” and n be an orthogonal transversal of g. If all points
of intersection between n aril are real, then n meets two generatdis/, of ¢ which are symmetric w.r.t. the
central generators. In particular, at each point X of any ttahgenerator cC ¢ the orthogonal transversals to
other generators g o are tangents o¥’.

Proof. According to the proof of Theorem 4, we can state: If an ortmad transversai of g meets any generator
{1 C €, then it meets also the symmetric lihe

However, we can also use the top view in Fig. 1, right, and e@gifollows: The lineg andn span the tangent
plane at any poinX € g. Each linen L g sufficiently close to the double line interseegsat two points symmetric
w.r.t. the minor axis o&x. This shows that Theorem 4 can be concluded directly fronptaear pedal curvesy
on the Plcker conoid. O

Remarkd. The complete intersection of the two contacting hyperltdg#; and.7# in Fig. 9 consists of the line
of contact/1, with multiplicity two and two complex conjugate generatofghe complementary regulus (cf. [6,
pp. 119-122] and compare with Remark 2).

4 Conclusions

As explained above, there are various relations betwagkBi'conoid$’, one-sheeted hyperboloids of revolution
2, and orthogonal hyperbolic paraboloigs. However, they show up in different, almost contrary ways:

In Section 2, the axes of the involved hyperboloids of retiotus# are generators of?, and the hyperboloids
pass through pairs of lindg,,¢») on % symmetrically placed w.r.t. the central generaw@rs, (note Figs. 4 and
5). The orthogonal hyperbolic parabolaid is orthogonal tag” along the central generators (Fig. 8).

In Section 3, the axe, ¢, of the hyperboloids#; and./# are two symmetrically placed generatorsgfand
the hyperboloids contact each other along another genégatof 4 (Fig. 9). The involved orthogonal hyperbolic
paraboloids? are orthogonal to the hyperboloids along their line of cottg and pass through and/,.
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