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Abstract

Plücker’s conoidC , also known under the name cylindroid, is a ruled surface of degree three with a finite
double line and a director line at infinity. The following twoproperties ofC play a major role in the geometric
literature:

1) The bisector of two skew linesℓ1, ℓ2 in the Euclidean 3-space, i.e., the locus of points at equal distance
to ℓ1 and ℓ2, is an orthogonal hyperbolic paraboloidP . All generators ofP are axes of one-sheeted
hyperboloids of revolutionH which pass throughℓ1 andℓ2. Conversely, the locus of pairs of skew lines
ℓ1, ℓ2 for which a given orthogonal hyperbolic paraboloidP is the bisector, is a Plücker conoidC .

2) In spatial kinematics, Plücker’s conoidC is well-known as the locus of axesℓ12 of the relative screw motion
for two wheels which rotate about fixed skew axesℓ1 andℓ2 with constant velocities. The axodes of the
relative screw motion are one-sheeted hyperboloids of revolution H1, H2 with mutual contact alongℓ12.
The common surface normals alongℓ12 form an orthogonal hyperboloid paraboloidP passing through the
axesℓ1 andℓ2.

The underlying paper aims to discuss these two main properties. It seems that there is no close relation between
them though both deal with Plücker’s conoid, orthogonal hyperbolic paraboloids, and hyperboloids of revolution
— however in different ways.

1 Plücker’s conoid

Plücker’s conoidC , also known under the namecylindroid, is a ruled surface of degree three with a finite double
line and a director line at infinity. Using cylinder coordinates(r,ϕ ,z), the conoid can be given by

z= csin2ϕ (1)

with a constantc ∈ R>0 . All generators ofC are parallel to the[x,y]-plane. Thez-axis is the double line ofC
and an axis of symmetry. The conoid passes through thex- andy-axis. These two lines can be calledcentral
generatorsof C since both are axes of symmetry ofC , too. The Plücker conoidC is the trajectory of thex-axis
under a motion composed from a rotation about thez-axis and a harmonic oscillation with double frequency along
thez-axis [10, p. 37].

The substitutionx= r cosϕ andy= sinϕ in (1) yields the Cartesian equation

(x2+ y2)z−2cxy= 0, (2)

which reveals that reflections in the planesx± y= 0 mapC onto itself. The originO is called thecenterof C .

The right cylinderx2+y2 = R2 intersects the Plücker conoidC along a curveccyl of degree 41 (see Fig. 1, left),
which in the cylinder’s development (in theξ η-plane withξ = Rϕ andη = z) appears as the Sine-curve

η = csin
2ξ
R
, 0≤ ξ ≤ 2Rπ ,

with amplitudec and wavelengthRπ . The generators ofC connect pointsccyl which are symmetric with respect to
(henceforth abbreviated as w.r.t.) thez-axis. The conoid is bounded by the planesz= ±c, which contactC along
the torsal generatorst1 andt2 in the planesx∓ y= 0. We call 2c thewidthof the conoid.

1The remaining part of the curve of intersection consists of two complex conjugate lines at infinity in the planex± iy= 0.

1



The tangent planeτX|C at any pointX ∈ C , X 6∈ t1, t2, with position vector

x(r,ϕ) = (r cosϕ , r sinϕ , csin2ϕ), where r > 0, (3)

is orthogonal to the vectorproductxr × xϕ of the partial derivates

xr :=
∂x
∂ r

=




cosϕ
sinϕ

0



 and xϕ :=
∂x
∂ϕ

=




−r sinϕ
r cosϕ

2ccos2ϕ



 .

This yields the equation
τX|C : 2ccos2ϕ (xsinϕ − ycosϕ)+ rz= rcsin2ϕ . (4)

The tangent planeτX|C has a 45◦-inclination against the[x,y]-plane ifr or−r equals the distribution parameter

δ :=
dz
dϕ

= 2ccos2ϕ

of the generator throughX.

For pointsX ∈ C outside the torsal generators, the intersectionτX|C ∩C splits into the generatorgX throughX
and an ellipseeX with principal vertices on the torsal generators and the minor axis in the[x,y]-plane (Fig. 1, left).
After orthogonal projection into the[x,y]-plane, the ellipse appears as the circlee′X (see Fig. 1, right) satisfying

cos2ϕ(x2+ y2)+ r(ysinϕ − xcosϕ) = 0,

hence (
x− r cosϕ

2cos2ϕ

)2
+
(

y+
r sinϕ

2cos2ϕ

)2
=

r2

2cos22ϕ
if cos2ϕ 6= 0.

All ellipseseX ⊂C have the same excentricityc, since it equals the difference of thez-coordinates of the respective
principal and secondary vertices on the vertical cylinder [4, p. 208].
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Figure 1: Plücker’s conoidC (left: axonometric view, right: top view) with central generatorsc1 andc2, torsal
generatorst1 andt2, the generatorgX throughX, and the ellipseeX ⊂ C ∩ τX|C .

For all pointsP in space with a top viewP′ ∈ e′X opposite to the top view of the double line (see Fig. 1, right),
thepedal curveon C , i.e., the locus of pedal points ofP on the generators ofC , coincides witheX . This holds
since right angles enclosed with generators ofC appear in the top view again as right angles, provided that the
spanned plane is not parallel to thez-axis. Thus, all pedal curves of a Plücker conoid are planar. Furthermore, all
surface normals ofC at points ofeX meet the vertical line throughP′.

Remark1. Another remarkable property of the cylindroid is reported in [9]: Let four generatorsg1, . . . ,g4 ⊂ C be
calledcyclic if their points of intersection with any fixed tangent planeτX|C are concyclic, i.e., located on a circle
(and on the ellipseeX). Then, in each tangent plane their points of intersection are located on a circle. Moreover,
there is an infinite set of spheres which contact these four lines, and, apart from four generators of a one-sheeted
hyperboloid of revolution, this is the only choice of four lines in space with this property.
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2 Bisector of two skew lines

For two given point setsS1,S2 in the Euclidean planeE2 or three-spaceE3, the set of pointsX being equidistant to
S1 andS2 is called thebisectorof S1 andS2.

In the case of two given pointsP,Q∈ E
3, the bisector is the orthogonal bisector planeσPQ of P andQ. The

standard definition of a parabola inE2 as the bisector of its focal point and directrix reveals thateach paraboloid
of revolution inE3 is the bisector of a pointF and a plane not passing throughF. However, also the equilateral
hyperbolic paraboloid is a bisector, as reported, e.g., in [7, p. 154] and stated in the theorem below.

x

y

z

ℓ1

ℓ2

c1
c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

X

F1

F2P

Figure 2: PointsX of the bisectorP of the two linesℓ1 andℓ2 satisfyXℓ1 = XF1 = XF2 = Xℓ2.

Theorem 1. Let ℓ1 andℓ2 be two skew lines inE3 with 2ϕ :=<) ℓ1ℓ2 and shortest distance2d := ℓ1ℓ2.

1. The bisector ofℓ1 and ℓ2 is an orthogonal hyperbolic paraboloidP (Fig. 2). If ℓ1 and ℓ2 are given by
z=±d and xsinϕ =±ycosϕ , then

P : z+
sin2ϕ

2d
xy= 0. (5)

2. The axes of symmetry c1 and c2 of the two skew linesℓ1, ℓ2, which coincide with the x- and y-axis of our
coordinate frame, are the vertex generators ofP; the common perpendicular ofℓ1 andℓ2 is the paraboloid’s
axis. The linesℓ1 andℓ2 are polar w.r.t.P, i.e., each point X1 ∈ ℓ1 is conjugate w.r.t.P to all points X2 ∈ ℓ2,
and vice versa.

3. At any point X∈ P, the tangent planeτX|P to P is the orthogonal bisector planeσF1F2 of the pedal points
F1,F2 of X on the linesℓ1 andℓ2, respectively. Hence,P is the envelope of the bisecting planesσF1F2 for all
points F1 ∈ ℓ1 and F2 ∈ ℓ2.

4. The generators ofP are the axes of rotations inE3 which send the lineℓ1 to the lineℓ2. Therefore, the
generators ofP are axes of one-sheeted hyperboloids of revolution passingthrough the given pair of skew
lines(ℓ1, ℓ2). These hyperboloids are centered on the vertex generators c1,c2 of P and share the secondary
semiaxis b= dcotϕ (Figs. 4 and 5).

Proof. 1: Let any lineℓ be given in vector form asp+Rv with ‖v‖ = 1. Then, its distance to any pointX with
position vectorx satisfies

Xℓ2 = ‖x−p‖2−〈x−p, v〉2, (6)

where〈 , 〉 denotes the standard dot product. Ifℓ is replaced with one of the given linesℓ1, ℓ2 with

p = (0,0,±d) and v = (cosϕ ,±sinϕ , 0) for 0< ϕ <
π
2

and d > 0,

3



thenXℓ1 = Xℓ2 is equivalent to

x2+ y2+(z−d)2− (xcosϕ + ysinϕ)2 = x2+ y2+(z+d)2− (xcosϕ − ysinϕ)2 ,

and consecutively, to
P : 2d z+ xysin2ϕ = 0. (7)

This is the equation of an orthogonal hyperbolic paraboloid(Fig. 2). The rotation(x,y,z) 7→ (x′,y′,z′) about the
z-axis throughπ/4 with

x=
1√
2
(x′− y′), y=

1√
2
(x′+ y′), z= z′,

yields the standard equation

2z′+
sin2ϕ

2d
(x′2− y′2) = 0.

2. Two pointsX1 = (x1,y1,z1) andX2 = (x2,y2,z2) are conjugate w.r.t. the paraboloidP (7) if and only if

sin2ϕ
2d

(x1y2+ x2y1)+ (z1+ z2) = 0.

This is satisfied by eachX1 ∈ ℓ1 andX2 ∈ ℓ2 since

X1 = (r1 cosϕ , r1sinϕ , d) and X2 = (r2 cosϕ , −r2sinϕ ,−d).

The origin is the vertex of the paraboloidP; thex- andy-axis are the two vertex generatorsc1 andc2.
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Figure 3: The tangent planeτX|P at X to the bisecting paraboloidP is the orthogonal bisector planeσF1F2 of the
respective pedal pointsF1 andF2 of X on the linesℓ1 andℓ2.

3. LetF1 andF2 be the pedal points ofX ∈ P on the linesℓ1 andℓ2, respectively. Then,X is uniquely defined as
the point of intersection between the orthogonal bisector planeσF1F2 of F1 andF2 and the planes orthogonal toℓ1

andℓ2 through the respective pointsF1 andF2. The generatorsg1,g2 of P throughX pass through the pedal points
C1,C2 of X on the vertex generatorsc1 andc2 of P. The tangent planeτX|P to P at X is spanned byg1 andg2.

Now, we project the scene orthogonally into the[x,y]-plane (Fig. 3): The top view of thez-axis is the common
point ofℓ′1 andℓ′2. SinceF1 andF2 are at equal distance to the[x,y]-plane, but on different sides, the bisecting plane
σF1F2 intersects the[x,y]-plane along the orthogonal bisector line of the top viewsF ′

1 andF ′
2. The Thales circle

with diameterX′z′ passes throughF ′
1 andF ′

2, and also through the pedal pointsC′
i of X′ onc′i for i = 1,2. Since the

arcs fromC′
1 to F ′

1 and toF ′
2 are of equal lengths, pointC1 lies on the trace ofσF1F2, which must be a diameter of

the Thales circle. Hence, this diameter coincides with the trace[C1C2] of τX|P , which proves the coincidence of
τX|P andσF1F2.

4. If g is the axis of a rotation which sendsℓ1 to ℓ2, then each pointX ∈ g has equal distances toℓ1 andℓ2, which
impliesg⊂ P.
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Figure 4: Gorge circles of hyperboloids of revolution through ℓ1 andℓ2. The axes of the hyperboloids form a
regulus of the bisecting orthogonal hyperbolic paraboloidP (Theorem 1,4. or [3]).

Conversely, letg be the generator ofP, which intersectsc1 orthogonally at any pointM. The reflection inc1

exchangesℓ1 andℓ2 while g is mapped onto itself. Consequently, there are equal distancesgℓ1 = gℓ2 and congruent
angles<) gℓ1 =<) gℓ2. The reflection inc1 exchanges also the pedal pointsN1,N2 of M on ℓ1 andℓ2; the midpoint
of N1N2 lies onc1 (Fig. 4).

The generatorg is orthogonal toc1 and also toN1N2, sinceg⊂ τM|P lies in the orthogonal bisector planeσN1N2.
Therefore,g is orthogonal to the plane connectingM, N1, andN2. Furthermore, the lines[M,N1] and[M,N2] are
the common perpendiculars ofg with ℓ1 andℓ2, respectively.

There is a rotation aboutg which sendsN1 to N2. This rotation takesℓ1 into a lineℓ̃ throughN2, which is orthogonal
to MN2 and includes withg an angle congruent to<) gℓ2. We obtainℓ̃= ℓ2, since otherwisẽℓ would be symmetric
to ℓ2 w.r.t. the meridian planegN2 and therefore, as a member of the complementary regulus, intersectℓ1.

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1
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Figure 5: Two hyperboloids of revolutionH1,H2 through two skew linesℓ1 andℓ2. The hyperboloids share the
secondary semiaxisb and the distribution parameters±b of their generators.
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Under a continuous rotation aboutg, the lineℓ1 forms one regulus of a one-sheeted hyperboloid of revolution H

(see Fig. 5). It is centered atM and its gorge circle passes through the pedal pointsN1 andN2 of M on the given
linesℓ1, ℓ2.

WhenM varies onc1, we obtain a one-parameter family of one-sheeted hyperboloids of revolution through the
skew generatorsℓ1 andℓ2 (Fig. 5). Due to a result of Wunderlich [11] and Krames [3], these two skew generators
ℓ1, ℓ2 define already the secondary semiaxisb of these hyperboloids, namelyb = dcotϕ , where 2d = ℓ1ℓ2 and
2ϕ =<) ℓ1ℓ2 (see also [5, p. 37]). Of course, the same holds for pointsM ∈ c2. By the same token,+b or−b equals
the distribution parameter of all generators of the hyperboloids.

Remark2. The complete intersection of any two hyperboloids of revolution H1,H2 through the two skew lines
ℓ1 andℓ2 (according to Theorem 1.4, see Fig. 5) consists of two more lines which need not be real. They can be
found as common transversals ofℓ1, ℓ2, and two other generators of the hyperboloids, one of each, and both skew
to ℓ1 andℓ2.

Let us focus on the paraboloidP with the equation (5) and ask the following: Where are all pairs (ℓ1, ℓ2) of
lines for whichP is the bisector? The answer, as given in the theorem below, was disclosed in [2], but already
reported at the turn to the 20th century in [8, p. 54].

Theorem 2. All pairs of skew lines(ℓ1, ℓ2) which share the bisecting orthogonal hyperbolic paraboloid P are
located on a Pl̈ucker conoid (cylindroid)C in symmetric position w.r.t. the vertex generators c1 and c2 of P.

ℓ1

ℓ2

c1

gP

C

Figure 6: All pairs of skew lines(ℓ1, ℓ2) which share the bisecting orthogonal hyperbolic paraboloidP are located
on a Plücker conoidC . Generatorsg of P are axes of rotations withℓ1 7→ ℓ2 (courtesy: G. GLAESER).

Proof. Let the linesℓ1 andℓ2 be given in the same way as in Theorem 1. Then, the bisectorP remains the same
if the quotient sin2ϕ/d does not change. Obviously, all points ofℓ1 andℓ2 satisfy

C : (x2+ y2)z−2cxy= 0 where c :=
d

sin2ϕ
. (8)

This equation defines a Plücker conoidC , as introduced in (2) (see Fig. 6). The surfaceC has thex- andy-axis as
central generatorsc1 andc2 and thez-axis as double line. All pairs(ℓ1, ℓ2) are symmetric w.r.t.c1 andc2 and polar
w.r.t.P.

SCHILLING ’s famous collection of mathematical models contains as model XXIII, no. 10, the pair of surfaces
C andP, each represented by strings with endpoints on a closed boundary curve of degree four (see Fig. 72 and
compare with Fig. 8). The two boundary curves are even congruent, as we confirm below in Theorem 3.

2The displayed model belongs to the collection of the Institute of Discrete Mathematics and Geometry, Vienna Universityof Technology,
https://www.geometrie.tuwien.ac.at/modelle/models_show.php?mode=2&n=100&id=0, retrieved March 2020.
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c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1

c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

Figure 7: String model of a Plücker conoidC together with the surface formed by its normals along the central
generatorsc1 andc2, an orthogonal hyperbolic paraboloidP. This is model XXIII, no. 10, out of SCHILLING ’s
famous collection of mathematical models. In addition, thelinesc1 andc2, which are vertex generators ofP, are
marked in red color.

By the same token, all generators of the orthogonal hyperbolic paraboloidP are surface normals of the Plücker
conoid along any central generator. This follows from (4): For ϕ = 0, the surface normal at the point(r,0,0), r ∈R,
has the direction of(0,−2c, r). For ϕ = π/2, the normal at(0, r,0) has the direction of(−2c,0, r). Now we can
confirm that the points

(r,−2ct, rt ) and (−2ct, r, rt ) for all (r, t) ∈ R
2

satisfy the paraboloid’s equation
P : xy+2cz= 0 (9)

according to (5) in the case

c=
d

sin2ϕ
. (10)

The same follows from Theorem 1,4. as the limitℓ1 → ℓ2, i.e.,d → 0: All generators ofP are axes of one-sheeted
hyperboloids of revolution which contact the conoidC along one of the central generators.

We summarize some properties of the pair of surfacesC andP (see Figs. 7 and 8), which share the distribution
parameterδ = 2c at c1 andc2:

Theorem 3. LetP be the orthogonal hyperbolic paraboloid(9) andC be the Pl̈ucker conoid satisfying(8).

1. The generators ofP are the surface normals ofC along its central generators c1 and c2.

2. Each generator g ofP is the axis of concentric one-sheeted hyperboloids of revolution which intersectC
along two skew generatorsℓ1, ℓ2 being symmetric w.r.t. c1 and c2 . The gorge circles lie in the tangent plane
to C at the point M where g⊂ P intersects the vertex generator of the complementary regulus.

3. The right cylinder x2 + y2 = 4c2 with radius2c equal to the width ofC intersectsP and C along two
quartics which are symmetric w.r.t. the[x,y]-plane (Fig. 7).

4. The polarity in the paraboloidP maps the Pl̈ucker conoidC onto itself. Outside the torsal generators, there
is a symmetric one-to-one correspondence between points Q1,Q2 on C such that Q2 is the pole w.r.t.P of
the tangent plane toC at Q1, and vice versa.

Proof. 2. We varyd andϕ such thatc = d/sin2ϕ remains constant. The hyperboloids with the same axisg
throughM ∈ c1 share the plane[M,N1,N2] of the gorge circle, where the pointsN1,N2 are the pedal points ofM
on the corresponding pair of linesℓ1, ℓ2. This plane orthogonal tog is tangent toC at M. The pedal pointsN1 and
N2 belong to the pedal curve ofM onC , which is an ellipse with the minor axisOM alongc1 (note Fig. 1, right).
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c1c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

P

C

Figure 8: The surface normals of the Plücker conoidC along the two central generatorsc1 andc2 form the two
reguli of an orthogonal hyperbolic paraboloidP (courtesy: G. GLAESER).

3. We plugx = Rcosϕ andy = Rsinϕ into the equation (2) ofC and obtainR2z− 2cR2sinϕ cosϕ = 0. The
same substitution in the equation (9) ofP results inR2sinϕ cosϕ +2cz= 0. The choiceR= 2c gives rise to two
symmetric curvesz=±csin2ϕ (Figs. 7 and 8).

4. We use the parametrizationx(r,ϕ) from (3) and setQi = (r i ,ϕi) for i = 1,2. Then, the tangent plane atQ1 to C

satisfies (4),
τQ1|C : 2ccos2ϕ1 (xsinϕ1− ycosϕ1)+ r1z= r1csin2ϕ1.

The polar plane ofQ2 w.r.t. P in (9) is given by

r2(xsinϕ2+ ycosϕ2)+2cz=−2csin2ϕ2.

We obtain an identity of the two planes when we set

ϕ2 =−ϕ1 and r1r2 =−4c2cos2ϕ . (11)

The correspondence of item 4 reveals: If pointsQ1 is at the distancer1 = 2c to the double line, i.e., on the quartic
ccyl as mentioned in item 3, then the corresponding pointQ2 has a tangent plane which is inclined under 45◦, since
r2 = δ = 2ccos2ϕ2. The polarity inP maps the ellipseeQ1 ⊂ (C ∩ τQ1|C ) onto the quadratic tangent cone ofC

with the apexQ2. The tangent planes of this cone, i.e., the planes spanned byQ2 and any generator ofC , intersect
C in ellipses passing throughQ2. All points of the ellipseeQ1 are conjugate w.r.t.P to the pointQ2.

Remark3. If g1, . . . ,g4 are concyclic generators ofC (cf. Remark 1), then the bisecting paraboloids for any two of
these four belong to a pencil of quadrics. Their common curveis a quartic with a double point at the ideal point of
thez-axis. The infinitely many spheres which contactg1, . . . ,g4 are centered on this quartic. The top view of this
spine curve is an equilateral hyperbola. For proofs and further details see [9].

3 Plücker’s conoid as locus of instant screw axes for skew gears

In spatial kinematics, the Plücker conoidC is well-known as the locus of instant axesℓ12 of the relative screw
motion for two wheels which rotate with constant velocitiesω1 andω2 about fixed skew axesℓ1 andℓ2, respectively.
The axes of symmetry of the two axes of rotationℓ1 andℓ2 coincide with the central generatorsc1,c2 of C . The
axodes of the relative screw motion are hyperboloids of revolutionH1, H2 with mutual contact alongℓ12 (Fig. 9).3

3The various relations between the two fixed axes of rotationsℓ1,ℓ2, the relative axisℓ12, the angular velocitiesω1,ω2, and the pitch of the
relative screw motion can be visualized in the so-calledBall-Disteli diagram, which arises fromC by a particular projection (see [1, Fig. 7]).
It is noteworthy that we still obtain a Plücker conoid as thelocus of relative screw axes when the two wheels perform helical motions with fixed
pitches about fixed axes [1]. This is also a consequence of thefollowing classical result PLÜCKER’s in connection with linear line complexes:
The axes of all linear line complexes which are contained in apencil belong to a Plücker conoid [4, p. 214].
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ℓ1

ℓ2

ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12ℓ12

H1

H2

Figure 9: Two hyperboloids of revolution in contact along the lineℓ12 (courtesy: G. GLAESER).

They are solutions of the purely geometric problem: For given skew axesℓ1, ℓ2, find pairs of hyperboloids of
revolution which contact each other along a line.

A standard proof of this result uses dual vectors for the representation of oriented lines and screws (see, e.g.,
[1]). Here we present another proof:

The common surface normals of the two hyperboloidsH1 andH2 along the line of contactℓ12 form one
regulus of an orthogonal hyperbolic paraboloidP which passes through the axesℓ1 andℓ2. The lineℓ12 is the
vertex generator of the complementary regulus onP. The other vertex generator ofP intersects all three lines
ℓ12, ℓ1, andℓ2 orthogonally. Therefore, it is the common perpendicular ofℓ1 andℓ2. These conditions will prove
to be sufficient for identifying the locus of linesℓ12 as a Plücker conoid.

We use the coordinate frame of Section 2 and defineℓ1 andℓ2 by z= ±d andxsinϕ = ±ycosϕ . Then the
z-axis is the common perpendicular, and we can assume thatℓ12 is given by

z= a and xsinα = ycosα

(see Fig. 10). Now we intersect the orthogonal plane toℓ12 through any pointX = (r cosα, r sinα, a) ∈ ℓ12 with
ℓ1 andℓ2, and we obtain

X1 =

(
r cosϕ

cos(α −ϕ)
,

r sinϕ
cos(α −ϕ)

, d

)
∈ ℓ1 andX2 =

(
r cosϕ

cos(α +ϕ)
,

−r sinϕ
cos(α +ϕ)

,−d

)
∈ ℓ2.

In the top view, the three pointsX, X1, andX2 appear already aligned. Therefore, they are collinear in space if and
only if the segmentsX1X andXX2 have the same slope. This means,

a−d
tan(α −ϕ)

=
a+d

tan(α +ϕ)
,

hence

a
sin2ϕ

cos(α −ϕ)cos(α +ϕ)
= d

sin2α
cos(α −ϕ)cos(α +ϕ)

.

After exclusion of the cases where cos(α −ϕ)cos(α +ϕ) = 0, i.e.,α = ϕ ± π
2 , we conclude

a=
d

sin2ϕ
sin2α
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as the relation between the altitudea and the polar angleα of the wanted lineℓ12 of contact. This is the equation
(1) of a Plücker conoid in cylinder coordinates. In the excluded cases, the lineℓ12 intersects one of the given axes
and is orthogonal to the other. Then, one hyperboloid degenerates into a cone and the other into a plane.

x
y

z

c1
c2

ℓ1

ℓ2

ℓ12

ϕ

−ϕ
d

d
α

a
C

Figure 10: The axesℓ1, ℓ2, the line of contactℓ12, and a portion of the Plücker conoidC .

Theorem 4. If the given skew linesℓ1 and ℓ2 are axes of hyperboloids of revolution which contact each other
along any line l12, then the lines l12 are located on a Pl̈ucker cononoidC with the axes of symmetry ofℓ1 andℓ2 as
central generators. Conversely, onC each generator which is skew toℓ1 andℓ2 serves as a line of contact between
such hyperboloids.

Corollary 5. Let g be any generator of the Plücker conoidC and n be an orthogonal transversal of g. If all points
of intersection between n andC are real, then n meets two generatorsℓ1, ℓ2 of C which are symmetric w.r.t. the
central generators. In particular, at each point X of any central generator c⊂ C the orthogonal transversals to
other generators g ofC are tangents ofC .

Proof. According to the proof of Theorem 4, we can state: If an orthogonal transversaln of g meets any generator
ℓ1 ⊂ C , then it meets also the symmetric lineℓ2.
However, we can also use the top view in Fig. 1, right, and argue as follows: The linesg andn span the tangent
plane at any pointX ∈ g. Each linen⊥ g sufficiently close to the double line intersectseX at two points symmetric
w.r.t. the minor axis ofeX. This shows that Theorem 4 can be concluded directly from theplanar pedal curveseX

on the Plcker conoid.

Remark4. The complete intersection of the two contacting hyperboloidsH1 andH2 in Fig. 9 consists of the line
of contactℓ12 with multiplicity two and two complex conjugate generatorsof the complementary regulus (cf. [6,
pp. 119–122] and compare with Remark 2).

4 Conclusions

As explained above, there are various relations between Pl¨ucker conoidsC , one-sheeted hyperboloids of revolution
H , and orthogonal hyperbolic paraboloidsP. However, they show up in different, almost contrary ways:

In Section 2, the axes of the involved hyperboloids of revolution H are generators ofP, and the hyperboloids
pass through pairs of lines(ℓ1, ℓ2) on C symmetrically placed w.r.t. the central generatorsc1,c2 (note Figs. 4 and
5). The orthogonal hyperbolic paraboloidP is orthogonal toC along the central generators (Fig. 8).

In Section 3, the axesℓ1, ℓ2 of the hyperboloidsH1 andH2 are two symmetrically placed generators ofC , and
the hyperboloids contact each other along another generator ℓ12 of C (Fig. 9). The involved orthogonal hyperbolic
paraboloidsP are orthogonal to the hyperboloids along their line of contact ℓ12 and pass throughℓ1 andℓ2.
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