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Abstract. Billiards in ellipses have a confocal ellipse or hyperbola as caustic.
The goal of this paper is to prove that for each billiard of one type there exists an
isometric counterpart of the other type. Isometry means here that the lengths of
corresponding sides are equal. The transition between these two isometric billiard
can be carried out continuosly via isometric focal billiards in a fixed ellipsoid.
The extended sides of these particular billiards in an ellipsoid are focal axes, i.e.,
generators of confocal hyperboloids.

This transition enables to transfer properties of planar billiards to focal billiards,
in particular billiard motions and canonical parametrizations. A periodic planar
billiard and its associated Poncelet grid give rise to periodic focal billiards and
spatial Poncelet grids. If the sides of a focal billiard are materialized as thin rods
with spherical joints at the vertices and other crossing points between different
sides, then we obtain Henrici’s hyperboloid, which is flexible between the two
planar limits.
Key Words: billiard, billiard in ellipse, caustic, Poncelet grid, confocal conics,
confocal quadrics, focal axis, focal billiard in ellipsoids, billiard motion, canonical
parametrization
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1 Introduction

A billiard is the trajectory of a mass point in a domain with ideal physical reflections in
the boundary. Already for two centuries, billiards in ellipses have attracted the attention
of mathematicians, beginning with J.-V. Poncelet and A. Cayley. In 2005 S. Tabachnikov
published a book on billiards as integrable systems [17]. In several publications, V. Dragović
and M. Radnović studied billiards in higher dimensions from the viewpoint of dynamical
systems. Their survey [7] as well as the introduction in [17] provide insights into the rich
history of this topic.
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It is well-known that the sides of a billiard in an ellipse e are tangent to a confocal conic
called caustic. If this is an ellipse, we speak of an elliptic billiard. Otherwise the billiard is
called hyperbolic. Computer animations of billiards in ellipses, which were carried out recently
by D. Reznik, stimulated a new vivid interest on this well studied topic, where algebraic
and analytic methods are meeting. Periodic billiards in an ellipse e with a fixed caustic c
provide the standard example of a Poncelet porism, because the periodicity of a billiard in
e with caustic c is independent of the choice of the initial vertex. Hence, the continuous
variation of the initial vertex defines a so-called billiard motion, and this was the starting
point for Reznik’s investigations. He published a list of more than eighty invariants of periodic
billiards in ellipses under billiard motions [12] and, with the coauthors R. Garcia, J. Koiller
and M. Helman, also proofs for dozens of invariants. However, also other authors contributed
proofs and detected more invariants, among them A. Akopyan, M. Bialy, A. Chavez-Caliz,
R. Schwartz, S. Tabachnikov (see, e.g., [1, 3, 5]). A long list of further references can be found
in [12].

In the literature on billiards in ellipses, the case of elliptic billiards is more intensively
studied than that of hyperbolic billiards. The goal of this paper is to prove an isometry between
elliptic and hyperbolic billiards. It is shown that there is even a continuous transition between
these two types via particular billiards in ellipsoids, called focal billiards. This transition
preserves the lengths of the billiards’ sides and is related to Henrici’s flexible hyperboloid, a
well-known example of an overconstrained mechanism.

It needs to be mentioned that n-dimensional versions of billiards in quadrics for n ≥ 3
ellipsoid were already studied by V. Dragović and M. Radnović within the framework of
dynamical systems (see, e.g., [6, 7]). In [7, Example 2-17], focal billiards in ellipsoids are
explicitly mentioned, but without any further details.

The underlying paper is organized as follows. The coming section recalls properties of
billiards in ellipses and their associated Poncelet grids. After a brief comparison of elliptic and
hyperbolic versions, Section 3 addresses the isometry between these two types. The proof is
postponed to Section 4 which shows the continuous transition from one type to the other via
isometric focal billiards in an ellipsoid. Finally, in Section 5, the transition is used to transfer
results concerning billiard motions and invariants from the plane to three dimensions. Thus
we obtain, in terms of Jacobian elliptic functions, a mapping that sends a square grid together
with diagonals to the Poncelet grid of a focal billiard on a one-sheeted hyperboloid.

2 The geometry of billiards in ellipses

A family of confocal central conics is given by

x2

a2 + k
+ y2

b2 + k
= 1, where k ∈ R \ {−a2, −b2} (1)

serves as a parameter in the family. All these conics share the focal points F1,2 = (±d, 0) with
d2 := a2 − b2.

The confocal family sends through each point P outside the common axes of symmetry
two orthogonally intersecting conics, one ellipse and one hyperbola [8, p. 38]. The parameters
(ke, kh) of these two conics define the elliptic coordinates of P with

−a2 < kh < −b2 < ke .
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If (x, y) are the Cartesian coordinates of P , then (ke, kh) are the roots of the quadratic equation

k2 + (a2 + b2 − x2 − y2)k + (a2b2 − b2x2 − a2y2) = 0, (2)

while conversely

x2 = (a2 + ke)(a2 + kh)
d2 , y2 = −(b2 + ke)(b2 + kh)

d2 . (3)

Let (a, b) = (ac, bc) be the semiaxes of the ellipse c with k = 0. Then, for points P on
a confocal ellipse e with semiaxes (ae, be) and k = ke > 0, i.e., exterior to c, the standard
parametrization yields

P = (ae cos t, be sin t), 0 ≤ t < 2π, with a2
e = a2

c + ke, b2
e = b2

c + ke . (4)

For the elliptic coordinates (ke, kh) of P follows from (2) that

ke + kh = a2
e cos2 t + b2

e sin2 t − a2
c − b2

c .

After introducing tangent vectors of e and c, namely

te(t) := (−ae sin t, be cos t) and tc(t) := (−ac sin t, bc cos t), (5)

where ∥te∥2 = ∥tc∥2 + ke , we obtain

kh = kh(t) = −(a2
c sin2 t + b2

c cos2 t) = −∥tc(t)∥2 = −∥te(t)∥2 + ke (6)

and
∥te(t)∥2 = ke − kh(t) . (7)

Note that points on the confocal ellipses e and c with the same parameter t have the
same coordinate kh. Consequently, they belong to the same confocal hyperbola (Figure 1).
Conversely, points of e or c on this hyperbola have a parameter out of {t, −t, π + t, π − t}.

Let . . . P1P2P3 . . . be a billiard in the ellipse e. Then the extended sides intersect at points

S
(j)
i :=

[Pi−k−1, Pi−k] ∩ [Pi+k, Pi+k+1] for j = 2k,

[Pi−k, Pi−k+1] ∩ [Pi+k, Pi+k+1] for j = 2k − 1,
(8)

where i = . . . , 1, 2, 3, . . . and j = 1, 2, . . . . These points are distributed on particular confocal
conics: For fixed j, there are conics e(j) passing through the points S

(j)
i . On the other hand,

the points S
(2)
i , S

(4)
i , . . . are located on the confocal hyperbola through Pi, while S

(1)
i , S

(3)
i , . . .

belong to a confocal conic other than c through the contact point between the side line
[Pi, Pi+1] and the caustic c. This configuration is called the associated Poncelet grid.

For an N -periodic billiard the set of points S
(j)
i is finite. There are confocal conics e(j) for

j = 1, 2, . . . , p with p =
[

N−3
2

]
. If the billiard is centrally symmetric, then the points S

(j)
i for

j = N−2
2 are at infinity. Below we summarize some properties of the two types of billiards.

For further details see, e.g., [15].
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Figure 1: Periodic billiard P1P2 . . . P8 with turning number τ = 1 together with the conjugate billiard
P ′

1P ′
2 . . . P ′

8 and the ellipses e(1) and e(2). The associated billiard in e(1) splits into two
conjugate quadrangles; the billiard in e(2) has τ = 3.

2.1 Elliptical billiards
Let . . . P1P2P3 . . . be a billiard in e with the ellipse c as caustic (Figure 1). The points
S

(1)
i , S

(3)
i , . . . are located on the confocal hyperbola through the contact point Qi between c

and the side PiPi+1. On the other hand, S
(2)
i , S

(4)
i , . . . are located on the confocal hyperbola

through Pi. For fixed j, the points S
(j)
i , i = . . . , 1, 2, . . . , are either at infinity or points of

a confocal ellipse e(j). The ellipses e(j) are independent of the position of the initial vertex
P1 ∈ e, hence motion invariant.

Based on the standard parametrizations of e and c, let ti denote the parameter of Pi

and t′
i that of Qi. Then for N -periodic elliptic billiards, N > 2, the sequence of parameters

t1, t′
1, t2, t′

2, . . . , t′
N is cyclic. Exchanging ti with t′

i is equivalent to the exchange of the billiard
P1P2 . . . PN with the conjugate billiard P ′

i P
′
2 . . . P ′

N (see [15, Definition 3.10]). The turning
number τ of any periodic elliptic billiard counts the surroundings of e within one period. If
the original billiard has τ = 1, then the extended sides in e(1) determine a billiard with turning
number τ = 2, in e(2) with τ = 3, and so on.

For even N , opposite vertices of the elliptic billiard belong to the same confocal hyperbola.
For odd N , each vertex and the contact point of c with the opposite side belong to the same
confocal hyperbola. As a consequence, for even N and odd τ , the elliptic billiard is centrally
symmetric (Figures 1 or 3, bottom). For odd N and odd τ , the billiard is centrally symmetric
to the conjugate billiard. If N is odd and τ even, then the conjugate billiard coincides with
the original one.

2.2 Hyperbolic billiards
As illustrated in Figure 2, billiards in an ellipse e with a confocal hyperbola c as caustic are
zig-zags between an upper and lower subarc of e. However, they differ from elliptic billiard
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Figure 2: Periodic billiard P1P2 . . . P12 in the ellipse e with the hyperbola c as caustic, together with
the hyperbolas e(1), e(3) and the ellipse e(2). The associated billiard in e(2) splits into four
quadrangles.

also in other respects.
Let Ti be the contact point between c and the side line [Pi, Pi+1]. Then the points

S
(1)
i , S

(3)
i , . . . are located on the confocal ellipse through Ti. On the other hand, S

(2)
i , S

(4)
i , . . .

are located on the confocal hyperbola through Pi. For odd j, the points S
(j)
i , i = . . . , 1, 2, . . . ,

belong to a confocal hyperbola e(j) or to the secondary axis of e, or they are at infinity. If S
(j)
i

is finite, then the tangent to e(j) bisects the angle between the sides lines through S
(j)
i . For

even j, the S
(j)
i are vertices of a billiard inscribed in an ellipse e(j) (note e(2) in Figure 2) or at

infinity. All conics e(j) are motion invariant.
Now we concentrate on N -periodic hyperbolic billiards P1P2 . . . PN . Since they oscillate

between the upper and lower section of the circumscribed ellipse, N must be even. If
P 1P 2 . . . P N denotes the billiard’s image under the reflection in the principal axis, then the
sequence of parameters t1, t2, t3, t4, . . . , tN of the vertices P1, P 2, P3, P 4, . . . , P N is cyclic. Also
for hyperbolic billiards, it is possible to define the turning number τ . It counts how often
the points P1, P 2, P3, . . . , P N run to and fro along one component of e. According to [15,
Definition 3.13], there exist conjugate billiards also in this case.

For N ≡ 0 (mod 4), the hyperbolic billiards are symmetric with respect to (w.r.t. in brief)
the secondary axis of e and c (Figure 2). For N ≡ 2 (mod 4) and odd turning number τ ,
the billiards are centrally symmetric (Figure 3, top). For even τ , each hyperbolic billiard is
symmetric w.r.t. the principal axis of e and c (note also Lemma 7). If the initial point P1 is
chosen at any point of intersection between e and the hyperbola c, then the billiard is twofold
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Figure 3: Two isometric periodic billiards with N = 14 and turning number τ = 3.

covered. The first side P1P2 is of course tangent to c at P1.

2.3 Isometry between elliptic and hyperbolic billiards
There is a surprising relation between billiards with ellipses and hyperbolas as caustics.

Definition 1. Two polygons P1P2 . . . and P ∗
1 P ∗

2 . . . in the Euclidean 3-space are called
isometric if corresponding sides PiPi+1 and P ∗

i P ∗
i+1 have equal lengths for all i = 1, 2, . . .

Theorem 1. 1. For each billiard P ′
1P

′
2 . . . in an ellipse e′ with an ellipse c′ as caustic there

exists an isometric billiard P ′′
1 P ′′

2 . . . in an ellipse e′′ with a hyperbola c′′ as caustic. The
billiard inscribed in e′′ is unique only up to a reflection in the principal axis.

2. Conversely, for each billiard with a hyperbola c′′ as caustic there exists an isometric
billiard with an ellipse c′ as caustic, provided that in the case of an N-periodic billiard
with N ≡ 2 (mod 4), we traverse the billiard with the elliptic caustic twice.

3. For each side P ′
i P

′
i+1 of the original billiard, the isometry [P ′

i , P ′
i+1] → [P ′′

i , P ′′
i+1] between

the extended sides maps the incident points S
(j)′
k with j ≡ 0 (mod 2) of the associated
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Poncelet grid to the corresponding point S
(j)′′
k of the isometric billiard, hence

P ′′
i S

(j)′′
k = P ′

i S
(j)′
k for k = i + j

2 .

4. For all i, the isometric image of the contact point Q′
i of the side P ′

i P
′
i+1 with the ellipse

c′ is the point of intersection Q′′
i of the side P ′′

i P ′′
i+1 with the principal axis. On the other

hand, the isometry sends the point of intersection T ′
i between the side line [P ′

i , P ′
i+1]

and the principal axis to the contact point T ′′
i of the side P ′′

i P ′′
i+1 with the hyperbola c′′

(Figure 3).

We use the notations (a′
e, b′

e) and (a′
c, b′

c) for the semiaxes of the ellipses e′ and c′ as well
as (a′′

e , b′′
e) and (a′′

c , b′′
c ) for those of e′′ and the confocal hyperbola c′′. Finally, let d′ and d′′

denote the respective eccentricities of the confocal pairs (e′, c′) and (e′′, c′′) and k′
e as well as

k′′
e the respective elliptic coordinates of e′ and e′′ w.r.t. the caustics, i.e., k′

e = a′2
e − a′2

c and
k′′

e = a′′2
e − a′′2

c . Then there hold the symmetric relations

a′′
c = d′, b′′

c = b′
c, d′′ = a′

c, a′′
e = a′

e, b′′2
e = k′

e ,

a′
c = d′′, b′

c = b′′
c , d′ = a′′

c , a′
e = a′′

e , b′2
e = k′′

e .
(9)

Moreover, the distances of corresponding points P ′
i and P ′′

i from the respective secondary axes
are proportional.

Item 4 means that

P ′
i Q

′
i = P ′′

i Q′′
i and P ′

i Q
′
i−1 = P ′′

i Q′′
i−1

with Q′′
i and Q′′

i−1 as points of intersection of the principal axis with the sides through P ′′
i .

Instead of a verification of Theorem 1 based on formulas from [15], we embed below the
two isometric planar billiards as limiting poses in a continuous set of isometric spatial billiards
in an ellipsoid.

3 Focal billiards in an ellipsoid

Let the billiard in the ellipse e′ with the confocal ellipse c′ as caustic be placed in the plane
z = 0. There exists an ellipsoid E through e′ with c′ as focal ellipse. Hence, by [11, p. 280], E
has the semiaxes

ae = a′
e, be = b′

e, ce =
√

a′2
e − a′2

c =
√

k′
e , where ae > be > ce. (10)

All quadrics which are confocal with E can be represented as

x2

a′2
c + k

+ y2

b′2
c + k

+ z2

k
= 1 for k ∈ R \ {−a′2

c , −b′2
c , 0}. (11)

We obtain the focal ellipse c′ as limiting case for k = 0 and the ellipsoid E for

k = c2
e = k′

e = a′2
e − a′2

c = b′2
e − b′2

c .

The family of confocal central quadrics contains

for


0 < k = k0 < ∞ triaxial ellipsoids,

−b′2
c < k = k1 < 0 one-sheeted hyperboloids,

−a′2
c < k = k2 < −b′2

c two-sheeted hyperboloids
(12)
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and the focal hyperbola c′′ in the plane y = 0 as the limit for k = −b′2
c with the semiaxes

a′′
c =

√
a′2

c − b′2
c = d′ and b′′

c = b′
c .

We recall that the family of confocal quadrics sends through each point P = (x, y, z) with
xyz ̸= 0 three mutually orthogonal surfaces, one of each type. The parameters (k0, k1, k2) of
these quadrics are the elliptic coordinates of P and satisfy

x2 = (a′2
c + k0)(a′2

c + k1)(a′2
c + k2)

(a′2
c − b′2

c )a′2
c

, y2 = (b′2
c + k0)(b′2

c + k1)(b′2
c + k2)

b′2
c (b′2

c − a′2
c ) , z2 = k0k1k2

a′2
c b′2

c

. (13)

Conversely, eight points in space, symmetrically placed w.r.t. the coordinate frame, share
their elliptic coordinates (k0, k1, k2).

In the [x, y]-plane, the traces of the confocal triaxial ellipsoids and the one-sheeted
hyperboloids are ellipses confocal with e′ and respectively outside or inside the focal ellipse
c′. The two-sheeted hyperboloids intersect the [x, y]-plane along confocal hyperbolas. Their
second elliptic coordinate k′

h according to (6) equals k2 .
At the point P = (x, y, z) with xyz ̸= 0 and position vector p, the normal vectors to the

three quadrics through P ,

ni =
(

x

a′2
c + ki

,
y

b′2
c + ki

,
z

ki

)
for ki ̸= 0, −b′2

c , −a′2
c and i = 0, 1, 2 , (14)

are mutually orthogonal and yield the dot product

⟨p, ni⟩ = x2

a′2
c + ki

+ y2

b′2
c + ki

+ z2

ki

= 1 .

Therefore, confocal quadrics form a triply orthogonal system, and any two confocal quadrics
of different types intersect each other along a line of curvature w.r.t both quadrics.

Let P be a common point of the ellipsoid E with k0 = k′
e and a confocal one-sheeted

hyperboloid H1 given by k = k1. Then the two generators of H1 through P are symmetric
w.r.t. E , since they are asymptotic lines on H1 and the tangent plane to H1 at P is orthogonal
to E . In other words, the reflection in E exchanges the two generators of H1 through P
(Figure 4).

All generators of the one-sheeted hyperboloids in the confocal family together with the
tangent lines of the two focal conics are called focal axes1 of the confocal family as well as of
any contained single ellipsoid E .

Definition 2. A billiard in an ellipsoid E is called focal billiard if each side is located on a
focal axis of E .

Remark 1. There exist also billiards in E which are non-focal. They can also be periodic,
for example any periodic billiard inscribed in e′, but with a caustic different from the focal
ellipse c′ of E . The side lines of any non-focal billiard in the ellipsoid are tangents to two
fixed quadrics, which are confocal with E . At the points of contact with the two quadrics, the
tangent planes are orthogonal (see [11, p. 332]).

1The notation stems from the analogy to focal points of plane algebraic curves. They are defined by the
property that the isotropic lines through any focal point are tangents of the curve. Similarly, the isotropic
planes through any focal axis are tangent to all quadrics in the confocal family (see [11, p. 289]).
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E

H1

e

P
θ/2

θ/2

n1n1n1n1n1n1n1n1n1n1n1n1n1n1n1n1n1

n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2

Figure 4: The reflection in the ellipsoid E permutes on each confocal one-sheeted hyperboloid H1 the
two reguli. The yellow polygon is a focal billiard between two confocal ellipsoids.2

Lemma 2. If one side line of a billiard in an ellipsoid E is located on a focal axis, then the
billiard is a focal billiard. This means, all side lines are generators of a confocal one-sheeted
hyperboloid H1, and the vertices of the billiard are located on the line of curvature e = E ∩ H1
(Figure 5).

Proof. This follows from the symmetry of the two H1-generators through any point P ∈ e
w.r.t. the tangent plane to E at P . Along both loops of the curve of intersection e = E ∩ H1,
the elliptic coordinates k0 and k1 remain constant, while k2 varies.

3.1 Focal billiards and Henrici’s flexible hyperboloid
Theorem 3. Referring to the notation in Theorem 1, suppose that the billiard P ′

1P
′
2 . . .

lies in the [x, y]-plane and the isometric billiard P ′′
1 P ′′

2 . . . in the [x, z] plane, such that the
circumscribed ellipses e′ and e′′ share the principal vertices on the x-axis and the semiaxes
satisfy (9). Then the isometric transition from P ′

1P
′
2 . . . to P ′′

1 P ′′
2 . . . can be carried out

continuously via mutually isometric focal billiards P1P2 . . . in the fixed triaxial ellipsoid E
through e′ and e′′ with the focal ellipse c′ and the focal hyperbola c′′ (Figure 5).

During this transition, which is an affine motion, the paths of the billiards’ vertices on E
are orthogonal trajectories of the confocal one-sheeted hyperboloids. In the two flat poses, the
sides of the billiards P ′

1P
′
2 . . . in e′ and P ′′

1 P ′′
2 . . . in e′′ are tangent to the respectively coplanar

focal conics c′ and c′′.

2Billiard between confocal conics and quadrics have already been studied in [6, 7].
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Figure 5: The transition from the periodic flat billiard P ′
1P ′

2 . . . P ′
14 (green) in e′ with caustic c′ to

the isometric focal billiard P1P2 . . . P14 (red) in the ellipsoid E with vertices on the line of
curvature e.

In order to prove Theorem 3, we focus on any pair of confocal one-sheeted hyperboloids
H1 and H∗

1 with the respective elliptic coordinates k1 and k∗
1 and −b′2

c < k1, k∗
1 < 0. There is

an axial scaling

γ(k1, k∗
1) : P = (x, y, z) 7→ P ∗ = (x∗, y∗, z∗) with H1 → H∗

1 and

x∗ = x

√√√√a′2
c + k∗

1
a′2

c + k1
, y∗ = y

√√√√b′2
c + k∗

1
b′2

c + k1
, z∗ = z

√
k∗

1
k1

.
(15)

This affine transformation maps generators of H1 to those of H∗
1, but also lines of curvature of

H1 to those of H∗
1. The latter follows from the Lemma below.

Lemma 4. Let P ∈ H1 and P ∗ ∈ H∗
1 be corresponding points under the affine transformation

γ(k1, k∗
1) defined in (15). Then, P and P ∗ share the elliptic coordinates k0 and k2.

Proof. It is sufficient to show that the ellipsoid and the two-sheeted hyperboloid through
P = (x, y, z) passes also through P ∗ = (x∗, y∗, z∗). For the polynomial

F (P, k) := x2

a′2
c + k

+ y2

b′2
c + k

+ z2

k
− 1

holds F (P, k1) = 0 and F (P ∗, k∗
1) = 0. We prove for k = kj, j = 0, 2 and therefore kj ≠ k1,

that the equation F (P, kj) = 0 implies F (P ∗, kj) = 0:
The claim is a consequence of the identity

F (P ∗, kj) = k∗
1 − k1

kj − k1
F (P, k1) +

(
1 − k∗

1 − k1
kj − k1

)
F (P, kj).
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This representation as an affine combination can readily be verified by

1
a′2

c + kj

x∗2 = a′2
c + k∗

1
(a′2

c + k1)(a′2
c + kj)

x2 =
[

k∗
1 − k1

(kj − k1)(a′2
c + k1)

+ kj − k∗
1

(kj − k1)(a′2
c + kj)

]
x2.

Similar identities hold for the terms with y2 and z2 in F (P ∗, kj).

The choice k∗
1 = 0 in (15) defines a singular affine transformation which sends the focal

billiard P1P2 . . . to the isometric planar billiard P ′
1P

′
2 . . . inscribed in the ellipse e′ ⊂ E in the

plane z = 0 (Figure 5). From the standard parametrization x′ = a′
e cos t, y′ = b′

e sin t of e′

follows with (15) for the curve e = E ∩ H1

x(t) = ah1

a′
c

x′, y(t) = bh1

b′
c

y′, z(t) = 0

with
ah1 =

√
a′2

c + k1, bh1 =
√

b′2
c + k1, ch1 =

√
−k1 (16)

as semiaxes of H1. This yields for the upper and the lower loop of e the parametrizations

e(t) = (x(t), y(t), z(t)) =
(

aeah1

a′
c

cos t,
bebh1

b′
c

sin t, ±

√
k0k1k2(t)

a′
cb

′
c

)
, (17)

where the third equation follows from (13) with k0 = k′
e and k2 = k′

h by (6), i.e., for

k0 = a2
e − a′2

c = b2
e − b′2

c = c2
e, k2 = k2(t) = −(a′2

c sin2 t + b′2
c cos2 t). (18)

For the second limit k∗
1 = −b′2

c , the image under γ(k1, −b′2
c ) is the isometric planar billiard

P ′′
1 P ′′

2 . . . (Figure 3) inscribed in the ellipse e′′ ⊂ E in y = 0 with the focal hyperbola c′′ of E as
caustic. By virtue of (15), we obtain for the upper and lower subarcs of e′′ the parametrizations

x′′(t) = x(t)
√

a′2
c − b′2

c

a′2
c + k1

= aed
′ cos t

a′
c

, y′′(t) = 0, z′′(t) = z(t) b′
c√

−k1
= ±

√
−k0k2(t)

a′
c

(19)

The extreme locations of the vertices P ′′
i ∈ e′′ with t = 0 or π are umbilics of the ellipsoid E

(see [11, Fig. 2]).
Remark 2. For any two poses P1P2 . . . and P ∗

1 P ∗
2 . . . including the flat limits P ′

1P
′
2 . . . and

P ′′
1 P ′′

2 . . . , the corresponding pairs of consecutive vertices form a skew isogram PiPi+1P
∗
i P ∗

i+1,
since PiPi+1 = P ∗

i P ∗
i+1 and PiP ∗

i+1 = P ∗
i Pi+1. The latter equation is a consequence of Ivory’s

Theorem (see, e.g., [11, p. 306]). Skew isograms have an axis of symmetry which connects
the midpoints of the two diagonals. Therefore, the isometry between corresponding side lines
[Pi, Pi+1] and [P ∗

i , P ∗
i+1] is an axial symmetry.

By the same token, Ivory’s theorem implies more general PiP ∗
j = P ∗

i Pj for all (i, j).

Proof. (Theorem 3) According to (17), the coordinates of the billiards’ vertices are continuous
functions of k1. The variation of k1 from 0 to −b′2

c shows the stated transition from P ′
i via Pi to

P ′′
i for all i . All trajectories are k1-lines and therefore orthogonal to the confocal one-sheeted

hyperboloids k1 = const. through the billiards’ sides. Hence for each side PiPi+1, the tangents
to the trajectories of the endpoints are orthogonal to the side. Consequently, the length of each
side remains constant during this transition. Moreover, each point attached to the moving
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Figure 6: Periodic focal billiard in E along e (yellow) with N = 22 and turning number τ = 5 together
with the spatial Poncelet grid. The extended sides determine focal billiards along e(2) with
τ = 7 (red dashed), along e(4) with τ = 3 (black), and along e(8) with τ = 1 (red).

side line [Pi, Pi+1] remains on the same ellipsoid and two-sheeted hyperboloid in the confocal
family, since only k1 varies.

In particular, the contact point Q′
i of the side P ′

i P
′
i+1 with the caustic c′ remains in the

plane z = 0 and runs along a hyperbola. Similarly, the intersection point T ′
i of the side P ′

i P
′
i+1

with the x-axis remains in the plane y = 0 and runs along an ellipse. The end pose of this
point is the contact point T ′′

i of the side line [P ′′
i , P ′′

i+1] with the caustic c′′ (Figure 3).

Remark 3. In each pose, the sides of the billiards can serve as rods of a flexible Henrici
hyperboloid with spherical joints at all vertices and crossing points between sides (see [11,
p. 88] or [2, Fig. 17]). Different to the standard model of this framework [18], the endpoints of
the rods are not located in planar sections but on closed lines of curvature on the confocal
one-sheeted hyperboloid. If the axes of symmetry are fixed and the rods of the framework
represent a periodic focal billiard, then during the flexion each crossing point runs along a
line of curvature on a confocal ellipsoid or, in particular, on a hyperbola in the plane of the
gorge ellipse or on an ellipse in the plane of the focal hyperbola.

We conclude this section with a few consequences of Lemma 4 and Theorem 3 for any
periodic focal billiard in the ellipsoid E and its flat limits with the focal ellipse c′ and the focal
hyperbola c′′ of E as respective caustics.
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Figure 7: Another pose of the periodic focal billiard in E (yellow) with N = 22 and turning number
τ = 5 together with the associated spatial Poncelet grid. Moreover, the hyperbolic billiard
which is isometric to the focal billiard in e(2) is displayed (green). In this particular pose
the hyperbolic billiard inscribed in e′′ is twofold covered.

Corollary 5. If there exist periodic focal billiards in the triaxial ellipsoid E, then all focal
billiards in E have the same length LE .

Lemma 6. If the planar billiard in e′ with the caustic c′ is N -periodic with turning number τ ,
then all focal billiards in the ellipsoid E through e′ with the focal ellipse c′ are

• for even N , again N-periodic with turning number τ ,
• for odd N , 2N-periodic with turning number 2τ .

Lemma 7. N-periodic focal billiards in an triaxial ellipsoid E are
(i) for N ≡ 2 (mod 4) and even τ , symmetric w.r.t. the plane z = 0 of the focal ellipse,
(ii) for N ≡ 2 (mod 4) and odd τ , symmetric w.r.t. the center O of E,
(iii) for N ≡ 0 (mod 4) and odd τ , axial symmetric w.r.t. the z-axis. Focal billiards with

N ≡ 0 (mod 4) and even τ split.

Proof. This follows from the relative position of opposite vertices Pi and Pi+N/2 .

By virtue of Lemma 7, all periodic focal billiards in ellipsoids admit a symmetry which
interchanges opposite vertices. This has consequences for the flat limits. Below, we use the
symbol ar (A, B, C) = AC/BC (distances signed) for the affine ratio of three collinear points
A, B, C.
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Corollary 8. 1. If P ′
1P

′
2 . . . P ′

N is an N-periodic billiard in the ellipse e′ with Q′
1, Q′

2, . . .
as contact points with the ellipse c′ as caustic (Figure 3), then

for even N
N/2∏
i=1

ar (P ′
i , P ′

i+1, Q′
i) = (−1)N/2, for odd N

N∏
i=1

ar (P ′
i , P ′

i+1, Q′
i) = 1 .

2. If P ′′
1 P ′′

2 . . . P ′′
N is an N-periodic billiard with turning number τ in an ellipse e′′ with

T ′′
1 , T ′′

2 , . . . as contact points with the hyperbola c′′ as caustic and P ′′
i ̸= T ′′

i for all i, then

N/2∏
i=1

ar (Pi, Pi+1, Ti) = (−1)τ .

Proof. Due to Theorem 3, we prove the statements for an isometric focal billiard P1P2 . . . PN

in an ellipsoid E in standard position, where Qi and Ti are the intersection points of the sides
[Pi, Pi+1] with z = 0 and y = 0, respectively. Hence

ar (P ′
i , P ′

i+1, Q′
i) = ar (Pi, Pi+1, Qi) = zi

zi+1
, ar (P ′′

i , P ′′
i+1, T ′′

i ) = ar (Pi, Pi+1, Ti) = yi

yi+1
,

where Pj = (xj, yj, zj) for all j. Thus, we obtain for the two products under consideration
z1/zN/2 and y1/yN/2. The claims follow from the symmetries as listed in Lemma 7.

At the same token, the transition from flat billiards in e′ to focal billiards enables also
to transfer the billiards in Ivory quadrangles with side lines tangent to c′ (see [9] or [13]) to
billiards on one-sheeted hyperboloids.

4 The geometry of focal billiards in ellipsoids

4.1 Side lengths and angles
Lemma 9. If the vertex P ∈ e = E ∩ H1 of the focal billiard has the elliptic coordinates
(k0, k1, k2), then for the angle θ/2 between the adjacent sides and the tangential plane to E at
P holds (note Figure 4)

tan θ

2 = ±
√

k0 − k1

k1 − k2
, sin θ

2 = ±
√

k0 − k1

k0 − k2
. (20)

Proof. The principal curvature directions of H1 at P are normal to the ellipsoid E and the
two-sheeted hyperboloid H2 through P . The poles of the tangent plane τP to H1 w.r.t. E and
H2 are the centers of curvature of orthogonal sections of H1 through the principal curvature
directions [11, Lemma 8.2.1]. Therefore, the respective radii of curvature are proportional to
k0 − k1 and k1 − k2.

As a consequence, at the point P the two generators of H1 have direction vectors√
k1 − k2

n2

∥n2∥
±
√

k0 − k1
n0

∥n0∥
, (21)

when n0 is orthogonal to E and n2 orthogonal to H2. This completes the proof.
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Remark 4. The curves of constant angle θ on H1 are the curves of constant ratio of the elliptic
coordinates relative to H1 or of the main curvatures. These curves played a role in [14]. The
particular case θ = π/2 yields the intersection curve with the director sphere with radius√

a2
h1 + b2

h1 − c2
h1 (see [19] or [11, p. 46]).

At the limit k1 = 0, (20) agrees with the formula

tan θ(t)
2 = ±

√
k0

∥tc(t)∥
= ±

√
k0

−k2(t)

in [15, Lemma 2.2]. For k1 = −b′2
c , i.e., for the hyperbolic billiard in the ellipse e′′ follows

tan θ(t)
2 = ±

√√√√ k0 + b′2
c

−b′2
c − k2(t)

= ± b′
e

d′ sin t
= ±

√
k′′

e

a′′2
c sin2 t′′ − b′′2

c cos2 t′′ ,

where t′′ denotes the standard parameter of the ellipse e′′ with semiaxes a′′
e = ae and b′′

e =
ce = k′

e , i.e., by (19)

cos t′′ = d′

a′
c

cos t, sin t′′ =

√
a′2

c sin2 t + b′2
c cos2 t

a′
c

.

According to (14), the normal vector of the ellipsoid along the curve e = E ∩ H1 with the
parametrization e(t) from (17) is

n0 =
(

x(t)
a2

e

,
y(t)
b2

e

,
z(t)
c2

e

)
=
(

ah1

a′
cae

cos t,
bh1

b′
cbe

sin t,

√
k1k2

a′
cb

′
c

√
k0

)
.

This implies with (18)

∥n0∥2 = a′2
c + k1

a′2
c a2

e

cos2 t + b′2
c + k1

b′2
c b2

e

sin2 t − k1(a′2
c sin2 t + b′2

c cos2 t)
a′2

c b′2
c k0

= (b′2
c cos2 t + a′2

c sin2 t + k0)(k0 − k1)
a2

eb
2
ek0

= (k0 − k1)(k0 − k2)
a2

eb
2
ek0

.

Similar computations for the other normal vectors result in

∥n0∥ =

√
(k0 − k1)(k0 − k2)

aebece

, ∥n1∥ =

√
(k0 − k1)(k1 − k2)

ah1bh1ch1

,

∥n2∥ =

√
(k0 − k2)(k1 − k2)

ah2bh2ch2

,

(22)

where
ah2 =

√
a′2

c + k2, bh2 =
√

−(b′2
c + k2), ch2 =

√
−k2 (23)

are the semiaxes of the two-sheeted hyperboloid H2 which passes through the point with
position vector e(t). By virtue of (22), the direction vectors (21) of the generators on H1 can
be expressed as

aebece n0 ± ah2bh2ch2 n2 . (24)
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Based on the orientation of the normalvector n1 of H1 in (14) pointing outwards, we can
also orientate the angles θi along e. We stick to a counter-clockwise order of the initial billiard
in e′ and notice that the angles θi change their sign from vertex to vertex in (20).

The tangent vector to e = E ∩ H1 from (17) is

te(t) := d
dt

e(t) =
−aeah1 sin t

a′
c

,
bebh1 cos t

b′
c

, ±
√

−k0k1

√
−(a′2

c + k2)(b′2
c + k2)

a′
cb

′
c

√
−k2

.

This shows that

te(t) = λn2 with λ = −d′2 sin t cos t =
√

−(a′2 + k2)(b′2 + k2) = ah2bh2 .

We find

∥te(t)∥2 = a2
e(a′2

c + k1) sin2 t

a′2
c

+ b2
e(b′2

c + k1) cos2 t

b′2
c

− k0k1(a′2
c + k2)(b′2

c + k2)
a′2

c b′2
c k2

= −k2 + k0 + k1 − k0k1

k2
= (k2 − k0)(k1 − k2)

k2
,

hence, in accordance with the third equation in (22),

∥te(t)∥ =

√
(k0 − k2(t))(k1 − k2(t))√

−k2(t)
. (25)

By virtue of (7), this is also valid for k1 = 0 .

Lemma 10. Let e be the curve of intersection between the ellipsoid E with k = k0 and semiaxes
(ae, be, ce) and the one-sheeted hyperboloid H1 with k = k1 . Then the Joachimsthal integral for
focal billiards along e equals

Je = k0 − k1

aebece

.

Proof. The definition of the Joachimsthal integral in [1, p. 3] yields for e = E ∩ H1

Je := −⟨ui, n0|i⟩,

where ui as the unit vector of the directed side PiPi+1 and n0|i the normalvector of E at Pi

(cf. [15, Figure 3]). Thus, we obtain for focal billiards by virtue of (20)

Je = ∥n0∥ sin θ

2 =

√
(k0 − k1)(k0 − k2)

aebe

√
k0

√
k0 − k1

k0 − k2
,

which confirms the claim.

The expression in Lemma 10 yields for the planar billiard with an elliptic caustic, i.e., for
k1 = 0, the statement of [15, Lemma 3.4]. A similar result follows for the other planar limit
k1 = −b2

c , namely for the hyperbolic billiard in e′′ as

Je′′ = be

ae

√
ke

=

√
k′′

e

a′′
eb′′

e

.
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4.2 Periodic focal billiards in ellipsoids
The focal billiards in the triaxial ellipsoid E (semiaxes ae, be, ce with ae > be > ce) are periodic
if and only if the isometric billiards in the ellipse e′ (semiaxes ae, be) with the focal ellipse c′

(semiaxes ac =
√

a2
e − c2

e and bc =
√

b2
e − c2

e ) as caustic are periodic. We just recall from [16,
Theorem 2] that, in terms of Jacobian elliptic functions to the modulus m = d/ac equal to the
numerical eccentricity of c′, the periodicity is equivalent to a rational quotient3

K

∆ũ
with cn∆ũ = bc

be

and K =
∫ π/2

0

dφ√
1 − m2 sin2 φ

. (26)

Given any ellipsoid E , there exists a two-dimensional set of inscribed focal billiards. Each
planar billiard in e′ determines by variation of k1 a one-parameter set of isometric focal
billiards inscribed respectively in lines of curvature e . While the perimeter LE and even the
side lengths remain constant, the Joachimsthal integral Je depends on k1 .

On the other hand, the billiard motion along the planar billiard in e′ induces billiard
motions along each single e , and this time Je remains constant, while angles and side lengths
vary. For the particular case of periodic billiards, it is natural to check which of the around 80
invariants as listed in [12] have spatial counterparts at focal billiards. We pick out a few of
them.

We continue with the spatial analogue of a theorem proved in [1, Theorem 4], that was a
consequence of experiments carried out by D. Reznik [12].

Theorem 11. Let the focal billiards of the triaxial ellipsoid E with semiaxes ae, be, ce be
N-periodic. Then for the billiards inscribed in the line of curvature e = E ∩ H1 with the
constant elliptic coordinates k0 and k1, the sum of cosines of the exterior angles θi equals

N∑
i=1

cos θi = N − Je LE = N − k0 − k1

aebece

LE

with Je as Joachimsthal integral of e and LE as common perimeter of the focal billiards of E .

Proof. In this proof we follow exactly the lines of the proof for the planar version in [1]: We
compute the perimeter of the focal billiards in E as

LE =
N∑

i=1
⟨(pi+1 − pi), ui⟩ =

N∑
i=1

⟨pi+1, ui⟩ −
N∑

i=1
⟨pi, ui⟩

=
N∑

i=1
⟨pi, ui−1⟩ −

N∑
i=1

⟨pi, ui⟩ =
N∑

i=1
⟨pi, (ui−1 − ui)⟩.

The signed angle between the unit vectors ui−1 and ui equals θi (note Figure 4), and the
difference vector (ui−1 − ui) has the direction of the normal vector n0|i at pi to E , hence

ui−1 − ui = 2 sin θi

2
1

∥n0|i∥
n0|i , where ⟨pi, n0|i⟩ = 1

due to the equation of E . On the other hand, the Joachimsthal integral of e = E ∩ H1 equals

Je = −⟨ui, n0|i⟩ = ∥n0|i∥ sin θi

2
3For a long time, similar characterizations for projectively equivalent problems have been known. The first

was given 1828 by Jacobi in [10] for polygons with an incircle and a circumcircle.



114 H. Stachel: Isometric Billiards in Ellipses and Focal Billiards in Ellipsoids

for all i, which results in

JeLE =
N∑

i=1
2 sin2 θi

2 =
N∑

i=1
(1 − cos θi).

This completes the proof.

Now we transfer two results on elliptic billiards (note [16, Theorems 8 and 9]) to the
isometric focal billiards . The second result is a refinement of Corollary 8.

Theorem 12. Let P1P2 . . . PN be an N -periodic focal billiard in the triaxial ellipsoid E with the
elliptic coordinate k0 = c2

e . If the sides [P1, P2], [P2, P3], . . . intersect the plane z = 0 through
the focal ellipse c′ in the points Q1, Q2, . . . , then the distances ri := Qi−1Pi and li := PiQi,
i = 1, . . . , N , satisfy

for N = 4n, n ∈ N : ri · ri+n = li · li+n

for N = 4n+2, n ∈ N : ri · li+n = li · ri+n+1

}
= ke

as well as

N∏
i=1

li =
N∏

i=1
ri = k

N/2
0 , and for N ≡ 0 (mod 4) even

N/2∏
i=1

li =
N/2∏
i=1

ri = k
N/4
0 .

These formulas are also valid for the hyperbolic billiard P ′′
1 P ′′

2 . . . P ′′
N inscribed in e′′.

Remark 5. Similar results can be expected for the intersection points T1, T2, . . . , TN of the
billiards’ sides with the plane y = 0 through the focal hyperbola c′′.

4.3 Focal billiards and elliptic functions
As shown in [16, Theorem 1] for elliptic billiards in e′, there is a one-parameter Liegroup of
transformations which act not only on e′ but on all points of the associated Poncelet grid. It
preserves confocal ellipses and permutes confocal hyperbolas and tangents of the caustic c′.
Hence, it induces billiard motions of all billiards with the common caustic c′. A generating
infinitesimal transformation is defined by a field of velocity vectors for all points in the exterior
of c′ as

P = (ae cos t, be sin t) 7→ vP = ∥tc(t)∥ te(t) =
√

−kh(t) (−ae sin t, be cos t).

If we see the velocity vectors as derivations of the position vectors by a parameter u and use a
dot for indicating this differentiation, then we obtain for the standard parameter t and for the
elliptic coordinates (ke, kh) of P in the plane z = 0

ṫ =
√

−kh(t), k̇e = 0, k̇h = −2
√

kh(a′2
c + kh)(b′2

c + kh) . (27)

By virtue of Lemma 4, we extend the field of velocity vectors to the space by differentiating
e(t) in (17) and taking (27) into account. In terms of spatial elliptic coordinates we obtain
the assignment

(k0, k1, k2) 7→ (k̇0, k̇1, k̇2) =
(
0, 0, −2

√
k2(a′2

c + k2)(b′2
c + k2)

)
.



H. Stachel: Isometric Billiards in Ellipses and Focal Billiards in Ellipsoids 115

The corresponding transformations preserve ellipsoids and one-sheeted hyperboloids in the
confocal family, while they permute two-sheeted hyperboloids and the generators in each
regulus of one-sheeted hyperboloids. Thus, it induces billiard motions on all one-sheeted
hyperboloids.

The parameter u of the Liegroup in the plane as well as in space is canonical in the sense
of [9]. This means that on e′ the billiard transformation from one vertex to the next one
corresponds to a shift of the respective canonical coordinates ui 7→ ui+1 = ui + 2∆u . After
the transference, the same is true for all focal billiards of the ellipsoid and for the hyperbolic
billiard inscribed in e′′.

According to [16, Theorem 2], a canonical parametrization can be expressed in terms of
Jacobian elliptic functions to the modulus d/ac . After replacing u by ũ := a′

cu , the three
Jacobian elliptic base functions (see, e.g., [20]) are

sn ũ = − cos t, cn ũ = sin t, dn ũ =
√

1 − m2 sn ũ = 1
a′

c

√
a′2

c sin2 t + b′2
c cos2 t .

The canonical parametrization of e′, namely (−ae sn ũ, be cn ũ), and the formula k2(ũ) =
kh(ũ) = −a′2

c dn 2ũ in [16, (4.11)] yield, due to (17), the canonical parametrization

e(ũ) = (x(ũ), y(ũ), z(ũ)) =
(

−
ae

√
a′2

c + k1

a′
c

sn ũ,
be

√
b′2

c + k1

b′
c

cn ũ, ±
√

−k0k1

b′
c

dn ũ

)
(28)

of the trajectory e with the constant elliptic coordinates k0 and k1 . For the hyperbolic billiard
as limit with k1 = −b′2

c follows by (19)

x′′(ũ) =
√

a′2
c − b′2

c

a′2
c + k1

x(ũ) = −aed
′

a′
c

sn ũ , y′′ = 0 , z′′(ũ) = b′
c√

−k1
z(ũ) = ±

√
k0 dn ũ . (29)

Each confocal ellipse e′ in the exterior of c′ is the trajectory of a billiard with the caustic
c′. By virtue of [16, Theorem 2], the corresponding shift ∆ũ satisfies

ae = a′
c dn(∆ũ)
cn(∆ũ) and be = b′

c

cn(∆ũ) .

The conditions for a periodic billiard in e′ are given in (26).
As explained in [16, Corollary 3], it makes sense to replace ke = k0 as a coordinate for the

confocal ellipses e′ by ṽ := ∆ũ , since it is canonical, too. Note that

k0(ṽ) = a2
e − a′2

c = a2
c sn2ṽ

cn2ṽ
(1 − m2).

By use of Lemma 4, we transfer the parametrization of the planar Poncelet grid by (ũ, ṽ) to
the Poncelet grid on the one-sheeted hyperboloid H1 with the elliptic coordinate k1 (Figures 6
and 7). Thus, we obtain (compare with [4, Sect. 9])
Theorem 13. Referring to the notation in Theorem 3, the injective mapping

Z : U × V → H1, (ũ, ṽ) 7→
(

−ah1

sn ũ dn ṽ

cn ṽ
, bh1

cn ũ

cn ṽ
, ± ch1

dn ũ sn ṽ

cn ṽ

)
for U := {ũ | − K < ũ < 3K}, V := {ṽ | − K ≤ ṽ < K}

parametrizes the one-sheetet hyperboloid H1 with semiaxes (ah1 , bh1 , ch1) in such a way, that
the lines ũ = const. are branches of the lines of curvature with k2 = const. Along ṽ = const.
we have k0 = const., and ũ ± ṽ = const. defines generators of H1 .



116 H. Stachel: Isometric Billiards in Ellipses and Focal Billiards in Ellipsoids

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2

P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3

P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P8P8P8P8P8P8P8P8P8P8P8P8P8P8P8P8P8

P9P9P9P9P9P9P9P9P9P9P9P9P9P9P9P9P9

Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14Q7,14 Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8Q1,8 Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9Q2,9

S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8S
(2)
8

S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2S
(2)
2

S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10S
(2)
10

S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1S
(2)
1

S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9S
(2)
9

S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8S
(4)
8

S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2S
(4)
2

S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1S
(4)
1

S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9S
(4)
9

T1

T6

T7

T11T11T11T11T11T11T11T11T11T11T11T11T11T11T11T11T11

T10T10T10T10T10T10T10T10T10T10T10T10T10T10T10T10T10

T3T3T3T3T3T3T3T3T3T3T3T3T3T3T3T3T3 ũ
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Figure 8: The injective mapping Z sends the square grid of points Qi, Pi and S
(j)
i , i = 1, 2 . . . , 14 ,

j = 2, 4 , to the vertices and the diagonals to the net of curvature lines of the Poncelet grid
associated to an N -periodic focal billiard on a one-sheeted hyperboloid with N = 14 and
turning number τ = 2 .

The mapping Z sends a square grid, for example that displayed in Figure 8, to the Poncelet
grid of a periodic focal billiard on H1 . The domain of the mapping Z can be extended to R2

and satisfies
Z((ũ + 4K), ṽ) = Z(ũ, (ṽ + 2K)) = Z(ũ, ṽ).

At the limit k1 = 0 we obtain the elliptic billiard in the plane of the focal ellipse c′;
in this case Z is two-to-one, since Z(ũ, −ṽ) = Z(ũ, ṽ). At the other limit k1 = −b′

c holds
Z(K + ũ, ṽ) = Z(K − ũ, ṽ). This corresponds to the fact, that the flexible Henrici hyperboloid
is two-fold covered in its flat limiting poses (see [11, Figure 2.51]).

5 Conclusion

We reported about a remarkable relation between billiards in ellipses and Henrici’s flexible
hyperboloid: There is a continuous transition between elliptic and hyperbolic billiards together
with the respectively associated Poncelet grids via focal billiards of a triaxial ellipsoid. This
transition preserves not only the side lengths of the billiards but also the distances to the
vertices of the Poncelet grids. In this way, invariants of an elliptic billiard under its billiard
motion can be transferred to invariants of focal billiards and a hyperbolic billiard. A certain
symmetry between the intersection points of the spatial billiard with the planes of the
corresponding focal conics and related invariants will be subject of a future publication.
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