Plücker's Conoid Revisited

Hellmuth Stachel

Abstract

Abstrakt Plückerov konoid (cylindroid) \mathcal{C} je priamková plocha tretieho stupňa s jednou vlastnou dvojnásobnou priamkou. Táto plocha zohráva klúčovú úlohu v geometrickej literatúre, pretože všetky jej úpätnice sú rovinné krivky. Je geometrickým miestom dvojíc mimobežných priamok, pre ktoré je daný kolmý hyperbolický paraboloid bisektorom. V priestorovej kinematike je \mathcal{C} geometrickým miestom okamžitých polôh osí relatívneho skrutkového pohybu dvoch otáčajúcich sa kolies s pevnými mimobežnými osami. Napokon, štyri koncyklické generátory \mathcal{C} sú spoločnými dotyčnicami nekonečného počtu gulových plôch, a v článku študujeme ich obalovú kanálovú plochu.

Kl'účové slová: Plückerov konoid, cylindroid, bisektor, jednodielny rotačný hyperboloid, kolmý hyperbolický paraboloid

Abstract

Plücker's conoid (cylindroid) \mathcal{C} is a ruled surface of degree three with a finite double line. This surface plays a major role in the geometric literature since all its pedal curves are planar. It is the locus of pairs of skew lines for which a given orthogonal hyperbolic paraboloid is the bisector. In spatial kinematics, \mathcal{C} is the locus of instantaneous screw axes of the relative motion for two rotating wheels with fixed skew axes. Finally, four concyclic generators of \mathcal{C} are common tangents of infinitely many spheres, and we study their enveloping canal surface.

Keywords: Plücker's conoid, cylindroid, bisector, one-sheeted hyperboloid of revolution, orthogonal hyperbolic paraboloid

1 Introduction

Plücker's conoid \mathcal{C}, which is also known under the name cylindroid, is a ruled surface of degree three with a finite double line and a director line at infinity (see Fig. 1). Using cylinder coordinates (r, φ, z), the conoid can be given by the equation

$$
\begin{equation*}
\mathcal{C}: z=c \sin 2 \varphi \tag{1}
\end{equation*}
$$

with a constant $c \in \mathbb{R}_{>0}$. All generators of \mathcal{C} are parallel to the $[x, y]$-plane. The z-axis is the double line d of \mathcal{C} and an axis of symmetry. The conoid passes through the x - and y-axis. These two lines c_{1}, c_{2}, called central generators of \mathcal{C}, are axes of symmetry, as well. The Plücker conoid \mathcal{C} is the trajectory of the x-axis under a motion composed from a rotation about the z-axis and a harmonic oscillation with double frequency along the z-axis [13, p. 37] (Fig. 2).

The substitution $x=r \cos \varphi$ and $y=\sin \varphi$ in (1) yields the Cartesian equation

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) z-2 c x y=0, \tag{2}
\end{equation*}
$$

Fig. 1. Plücker's conoid \mathcal{C} with central generators c_{1} and c_{2}, torsal generators t_{1} and t_{2}, the generator g through X, and the ellipse e in the tangent plane τ_{X} to \mathcal{C} at point X.
which reveals that reflections in the planes $x \pm y=0 \operatorname{map} \mathcal{C}$ onto itself. The origin O is called the center of \mathcal{C}.
The right cylinder $x^{2}+y^{2}=R^{2}$ intersects the Plücker conoid \mathcal{C} along a curve $c_{c y l}$ of degree 4^{1} (see Fig. 1), which in the cylinder's development appears as the Sine-curve with amplitude c and wavelength $R \pi$ (Fig. 2). The generators of \mathcal{C} connect opposite points $c_{c y l} .{ }^{2}$ The conoid is bounded by the planes $z= \pm c$, which contact \mathcal{C} along the torsal generators t_{1} and t_{2}. Their distance $2 c$ is called the width of \mathcal{C}.
For the sake of simplicity, we assume that the $[x, y]$-plane and all generators of \mathcal{C} are horizontal and the z-axis is vertical. In this sense, the top view stands for the image after vertical projection into the $[x, y]$-plane; a prime will be used to indicate the top views of geometric objects.

The top view reveals that the intersection of Plücker's conoid \mathcal{C} with any right cylinder \mathcal{Z} through the double line d gives a curve e which in the cylinder's development shows up as one period of a Sine curve (Fig. 3). Therefore, e is an ellipse with principal vertices on the torsal generators. There exists a two-parameter set of ellipses e on \mathcal{C}. They all have the same excentricity c, as it equals the z-coordinates' difference of a principal vertex and the center of e [6, p. 208].

The secondary vertices of e lie on the central generators c_{1} and c_{2}. Ellipses $e \subset \mathcal{C}$ with the same minor semiaxis are congruent, and their planes have the same slope. All these ellipses are poses of one ellipse when it performs the 3D-continuation of an elliptic motion (see [14, p. 45]) under

[^0]

Fig. 2. The intersection $c_{c y l}$ of Plücker's conoid \mathcal{C} with a right cylinder about the double line $d=z$-axis appears in the cylinder's development as two periods of a Sine curve. The generators of \mathcal{C} connect opposite points of $c_{c y l}$.

Fig. 3. The intersection e of the conoid \mathcal{C} with a right cylinder \mathcal{Z} through the double line d appears in the cylinder's development as one period \widetilde{e} of a Sine curve. The generators of \mathcal{C} meet e and intersect d orthogonally.
which the secondary vertices trace the central generators [6, p. 209].
Lemma 1.1. Let g_{1}, g_{2}, g_{3} be three lines with an orthogonal transversal d such that no two of the three lines are parallel, and they are not coplanar either. Then there exists a unique Plücker conoid \mathcal{C} passing through these lines.

Proof. We choose any right cylinder \mathcal{Z} which passes through d and does not contact any of the given lines. Then their remaining points of intersection with \mathcal{Z} span a plane that intersects \mathcal{Z} along an ellipse e thus defining \mathcal{C} as shown in Fig. 3 .

The intersection of \mathcal{C} with the plane of any ellipse e must additionally contain a line $g \in \mathcal{C}$ passing through the common point of e and d (Fig. 1). This generator g, which is horizontal and
therefore parallel to the minor axis of e, shares with e another point X. This must be the point of contact between the conoid and the plane of e. In other words: The tangent plane τ_{X} to \mathcal{C} at X intersects \mathcal{C} beside the generator g along an ellipse e which appears in the top view as a circle e^{\prime} through d^{\prime}.

The top view gives insight into another important property of the ellipse $e=\tau_{X} \cap \mathcal{C}$ (Fig. 4). For all points P in space with the top view $P^{\prime} \in e^{\prime}$ opposite to the top view d^{\prime} of the double line, the pedal curve on \mathcal{C}, i.e., the locus of pedal points of P on the generators of \mathcal{C}, coincides with e. This holds since right angles enclosed with generators of \mathcal{C} appear in the top view again as right angles, provided that the spanned plane is not parallel to the double line d. It means conversely that for each point of e the surface normal to \mathcal{C} meets the vertical line through P^{\prime}. We summarize.

Fig. 4. X is the pedal point of g for all points P with the top view P^{\prime}; the ellipse $e \in \mathcal{C}$ is the pedal curve of P.

Lemma 1.2. All pedal curves of Plücker's conoid \mathcal{C} are planar. For points outside the double line the pedal curves are ellipses with the same excentricity.

Due to P. Appell [1], Plücker's conoid is the only algebraic non-torsal ruled surface with planar pedal curves (note also [6, p. 211]).

2 Bisector of two skew lines

A classical result states that the bisector of two skew lines ℓ_{1}, ℓ_{2}, i.e., the set of points X being equidistant to ℓ_{1} and ℓ_{2}, is an orthogonal (or equilateral) hyperbolic paraboloid (Fig. 5). This is reported, e.g., in [8, p. 154] or [7, p. 64].
If in an appropriate coordinate system (x, y, z) the lines ℓ_{1}, ℓ_{2} are given by $z= \pm d$ and $x \sin \alpha= \pm y \cos \alpha$, then the bisector satisfies the equation

$$
\begin{equation*}
\mathcal{P}: 2 d z+x y \sin 2 \alpha=0 . \tag{3}
\end{equation*}
$$

Fig. 5. The bisector of two skew lines ℓ_{1} and ℓ_{2} is an orthogonal hyperbolic paraboloid \mathcal{P} which contains the axes of symmetry c_{1}, c_{2} of ℓ_{1} and ℓ_{2} as vertex generators.

Conversely, the question for all pairs $\left(\ell_{1}, \ell_{2}\right)$ of lines for which a given orthogonal hyperbolic paraboloid \mathcal{P} is the bisector, was answered in [4], but already reported at the turn to the $20^{\text {th }}$ century in [9, p. 54]. We recall:

Lemma 2.1. All pairs of skew lines $\left(\ell_{1}, \ell_{2}\right)$ which share the bisecting orthogonal hyperbolic paraboloid \mathcal{P} are located on a Plücker conoid \mathcal{C} in symmetric position with respect to the central generators c_{1} and c_{2} of \mathcal{C}, that coincide with the vertex generators of \mathcal{P}.

Proof. We refer to the coordinates of ℓ_{1} and ℓ_{2} as given above. Then the paraboloid \mathcal{P} satisfying (3) remains the same if the quotient $d / \sin 2 \alpha$ does not change. Obviously, the points $X=$ $(r \cos \alpha, \pm r \sin \alpha, \pm d)(r \in \mathbb{R})$ of ℓ_{1} and ℓ_{2} satisfy

$$
\begin{equation*}
\mathcal{C}:\left(x^{2}+y^{2}\right) z-2 c x y=0 \text { for } c:=\frac{d}{\sin 2 \alpha} . \tag{4}
\end{equation*}
$$

This is the equation of a Plücker conoid \mathcal{C} according to (2). The lines $\left(\ell_{1}, \ell_{2}\right)$ are symmetric with respect to (w.r.t., for short) to the x - and y axis, i.e., to the central generators c_{1} and c_{2} of \mathcal{C} (Fig. 7).

As reported in [7, Theorem2.3.6], the lines ℓ_{1}, ℓ_{2} are polar w.r.t. \mathcal{P}, i.e., each point $X_{1} \in \ell_{1}$ is conjugate w.r.t. \mathcal{P} to all points $X_{2} \in \ell_{2}$, and vice versa. This follows since the coordinates $X_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ for $i=1,2$ with

$$
y_{1}=x_{1} \tan \alpha, z_{1}=d, \quad y_{2}=-x_{2} \tan \alpha, z_{1}=-d
$$

satisfy the polar form of \mathcal{P},

$$
d\left(z_{1}+z_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) \sin \alpha \cos \alpha=0
$$

Hellmuth Stachel

Therefore, the polarity in the paraboloid \mathcal{P} maps the Plücker conoid \mathcal{C} onto itself. The ellipses e in tangent planes of \mathcal{C} are polar to the quadratic cones of tangents drawn from points $X \in \mathcal{C}$ to \mathcal{C}. For further details see [11, Theorem 3].

Fig. 6. Two hyperboloids of revolution $\mathcal{H}_{1}, \mathcal{H}_{2}$ through two skew lines ℓ_{1} and ℓ_{2}. The two hyperboloids with respective centers M_{1}, M_{2} and axes g_{1}, g_{2} on the bisecting paraboloid (with vertex generators c_{1}, c_{2}) share the secondary semiaxis.

3 Plücker's conoid as locus of instant screw axes for skew gears

Here we report about another property of the bisecting orthogonal paraboloid \mathcal{P} of two skew lines ℓ_{1}, ℓ_{2} (see, e.g., [7, Theorem 2.3.5]: The generators of \mathcal{P} are the axes of rotations which send the line ℓ_{1} to the line ℓ_{2} (Fig. 7). In other words: The generators of \mathcal{P} are axes of one-sheeted hyperboloids of revolution passing through symmetric pairs of lines ℓ_{1}, ℓ_{2} (Fig. 6). These hyperboloids are centered on vertex generators of \mathcal{P}. By the way, the two hyperboloids share the secondary semiaxis b. This follows from a result of Wunderlich [15] and Krames [5] which states that two skew generators ℓ_{1}, ℓ_{2} of any hyperboloid of revolution define already the secondary semiaxis $b=d \cot \varphi$, where $2 d=\overline{\ell_{1} \ell_{2}}$ and $2 \varphi=\Varangle \ell_{1} \ell_{2}$ (see also [7, p. 37]).

By virtue of Lemma 2.1, the lines ℓ_{1}, ℓ_{2} are generators of the Plücker conoid \mathcal{C} and symmetric w.r.t. the central generators c_{1}, c_{2} (Fig. 7). The limit $\ell_{1}, \ell_{2} \rightarrow c_{1}$ reveals that generators of \mathcal{P} being skew to c_{1} are axes of hyperboloids which contact \mathcal{C} along c_{1}. Therefore, all c_{1} intersecting generators of the orthogonal hyperbolic paraboloid \mathcal{P} are surface normals of \mathcal{C}. ${ }^{3}$

[^1]

Fig. 7. All pairs of skew lines $\left(\ell_{1}, \ell_{2}\right)$ which share the bisecting orthogonal hyperbolic paraboloid \mathcal{P} are located on a Plücker conoid \mathcal{C}. Generators g of \mathcal{P} are axes of rotations with $\ell_{1} \mapsto \ell_{2}$ (courtesy: G. GLAESER).

Two generators of the \mathcal{P}-regulus through c_{2} are axes of hyperboloids of revolution with mutual contact along the other vertex generator c_{1}, since both hyperboloids contact \mathcal{C}. However, also a converse statement holds true: Lines $\ell_{1}, \ell_{2} \in \mathcal{C}$ which are symmetric w.r.t. the central generators c_{1}, c_{2}, are axes of hyperboloids of revolution with mutual contact along c_{1}. This follows immediately by a 180°-rotation about c_{1}, which exchanges c_{1} and c_{2} and transforms one hyperboloid in the other.
It is surprising that this remains true if c_{1} is replaced by any other generator of the Plücker conoid \mathcal{C}. This result is well-known in spatial kinematics: the Plücker conoid \mathcal{C} is the locus of instant axes ℓ_{12} of the relative screw motion of two wheels that rotate with respectively constant velocities ω_{1} and ω_{2} about fixed axes $\ell_{1}, \ell_{2} \subset \mathcal{C}$ being symmetric w.r.t. the central generators c_{1}, c_{2} of \mathcal{C}. The axodes of the relative screw motion are the hyperboloids of revolution $\mathcal{H}_{1}, \mathcal{H}_{2}$ with mutual contact along ℓ_{12} as mentioned before (see, e.g., [7, Figs. 2.19, 2.20]). ${ }^{4}$

Thus, the conoid \mathcal{C} provides the solution of a purely geometric problem: For given skew axes ℓ_{1}, ℓ_{2}, find pairs of hyperboloids of revolution which contact each other along a line.
A standard proof of this result uses dual vectors for the representation of oriented lines and screws (see, e.g., [2]). Here we present a synthetic proof of an equivalent statement.

Theorem 3.1. Given two skew lines ℓ_{1}, ℓ_{2}, the vertex generators of all orthogonal hyperbolic paraboloids through ℓ_{1} and ℓ_{2} belong to a Plücker conoid \mathcal{C}. The axes of symmetry of ℓ_{1}, ℓ_{2} are the central generators of \mathcal{C}.

Proof. Why this theorem is equivalent to the statement on pairs of hyperboloids $\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ of $2 \& n=100 \& i d=0$, retrieved Sept. 2022). At this model the boundary curves of the surfaces are even congruent (note [11, Theorem 3]).
${ }^{4}$ There are various relations between the two fixed axes of rotations ℓ_{1}, ℓ_{2}, the relative axis ℓ_{12}, the angular velocities ω_{1}, ω_{2}, and the pitch of the relative screw motion (see [2, Fig. 7]). Due to a more general result by Plücker, the conoid is the locus of axes of linear line complexes which are contained in a pencil [6, p. 214].

Hellmuth Stachel

revolution with a line contact? The common surface normals of two hyperboloids along their line of contact ℓ_{12} form one regulus of an orthogonal hyperbolic paraboloid \mathcal{P} which passes through the axes ℓ_{1} and ℓ_{2}. The line ℓ_{12} is the vertex generator of the complementary regulus on \mathcal{P}. The other vertex generator of \mathcal{P} intersects all three lines ℓ_{12}, ℓ_{1}, and ℓ_{2} orthogonally. Therefore, it is the common perpendicular d of ℓ_{1} and ℓ_{2}.

Fig. 8. Top view of an an orthogonal hyperboloid passing through ℓ_{1} and ℓ_{2} with d and ℓ_{12} as vertex generators and g as a generator which intersects ℓ_{1}, ℓ_{2} and ℓ_{12} (note Theorem 3.1).

We still assume that ℓ_{1} and ℓ_{2} are horizontal, and we us the orthogonal projection in direction of the common orthogonal transversal d. As shown in Fig. 8, for any choice of a horizontal vertex generator ℓ_{12}, the top view shows on an ℓ_{12} intersecting generator g the affine ratio of g 's meeting points with ℓ_{1}, ℓ_{2} and ℓ_{12}. Let $\pm d$ be the given z-coordinates ℓ_{1} and ℓ_{2}. If the signed angles between the x-axis and the lines ℓ_{1}, ℓ_{2} and ℓ_{12} are respectively $\alpha,-\alpha$ and φ, then the altitude of ℓ_{12} is

$$
\begin{aligned}
z & =-d+2 d \frac{\tan (\alpha+\varphi)}{\tan (\alpha-\varphi)+\tan (\alpha+\varphi)}=d \frac{\tan (\alpha+\varphi)-\tan (\alpha-\varphi)}{\tan (\alpha-\varphi)+\tan (\alpha+\varphi)} \\
& =\frac{d}{\sin 2 \alpha} \sin 2 \varphi,
\end{aligned}
$$

which confirms by (1) the claim.

4 Concyclic generators of Plücker's conoid

Given any Plücker conoid \mathcal{C}, let $e \subset \mathcal{C}$ be the pedal curve of any given point P. Suppose that some generators of \mathcal{C} are tangents to a sphere \mathcal{S} centered at P. Then their pedal points w.r.t. P must have equal distances to P. Since they are located in the plane of e, they belong to a circle $k \subset \mathcal{S}$ with an axis through P (compare with Fig. 9). The circle k can share with the ellipse e at most four points. Therefore, at most four generators of \mathcal{C} can contact any sphere with the center P. Below we discuss the converse problem: Is the center P of a contacting sphere unique?

Definition 4.1. Four mutually different lines g_{1}, \ldots, g_{4} are called concyclic if they belong to a Plücker conoid \mathcal{C} and their points of intersection with any tangent plane τ_{X} to \mathcal{C} are concyclic, i.e., located on a circle.

Fig. 9. The ellipse e is the pedal curve of \mathcal{C} w.r.t. the point P. There are infinitely many spheres contacting the four concyclic generators g_{1}, \ldots, g_{4} of \mathcal{C}. The center of a contacting sphere must be located on the vertical line through P and on the axis of the circle k.

Suppose that two out of four concyclic lines are intersecting. Then also the remaining two must be intersecting, since in this case the center of the circumcircle k must be located on the principal axis of the ellipse $e=\tau_{X} \cap \mathcal{C}$. We call this the symmetric case.

Lemma 4.1. If the generators $g_{1}, \ldots, g_{4} \subset \mathcal{C}$ are concyclic, then they intersect all tangent planes τ_{X} to \mathcal{C} at four concyclic points, provided that in the particular case $g_{i} \subset \tau_{X}$ the point of contact X with \mathcal{C} serves as the point of intersection.

Proof. We compare two ellipses $e_{1}, e_{2} \subset \mathcal{C}$. The top view (Fig. 10) shows that lines h^{\prime} through d^{\prime} intersect e_{1}^{\prime} and e_{2}^{\prime} at points $H_{1}^{\prime}, H_{2}^{\prime}$ which define a similarity $e_{1}^{\prime} \rightarrow e_{2}^{\prime}$. In particular, the top view of the generator g_{1} in the plane of e_{1} intersects e_{1}^{\prime} at the top view X_{1}^{\prime} of the point of contact between the plane of e_{1} and \mathcal{C}.
The similarity $e_{1}^{\prime} \rightarrow e_{2}^{\prime}$ induces in space an affine correspondence α_{12} between the ellipses e_{1} and e_{2} and consequently between the corresponding planes. The torsal generators and the central generators of \mathcal{C} indicate that α_{12} sends the vertices of e_{1} to vertices of respectively equal types of e_{2}. Using appropriate coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the respective planes, the correspondence can be expressed in the form

$$
\alpha_{12}:\left(x_{1}, y_{1}\right) \mapsto\left(x_{2}, y_{2}\right)=\left(\lambda x_{1}, \mu y_{1}\right)
$$

with

$$
e_{1}: \frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=1 \rightarrow e_{2}: \frac{x_{2}^{2}}{\lambda^{2} a^{2}}+\frac{y_{2}^{2}}{\mu^{2} b^{2}}=1
$$

If four generators of \mathcal{C} intersect e_{1} at the points A_{1}, \ldots, D_{1} of a circle k with radius r, then the corresponding points $A_{2}, \ldots, D_{2} \in e_{2}$ are located on an ellipse k_{2} with axes of lengths $\lambda r, \mu r$

Fig. 10. The generators h of a Plücker conoid intersect different tangent planes at points H_{1}, H_{2} that correspond each other in an affine transformation α_{12}.
parallel to the coordinate axes. There is a linear combination of the equations of e_{2} and k_{2} with equal coefficients of x_{2}^{2} and y_{2}^{2}, namely

$$
\left(\lambda^{2}-\mu^{2}\right) a^{2} b^{2}\left(\frac{x_{2}^{2}}{\lambda^{2} a^{2}}+\frac{y_{2}^{2}}{\mu^{2} b^{2}}+\ldots\right)+\left(\mu^{2} b^{2}-\lambda^{2} a^{2}\right) r^{2}\left(\frac{x_{2}^{2}}{\lambda^{2} r^{2}}+\frac{y_{2}^{2}}{\mu^{2} r^{2}}+\ldots\right)=0
$$

This means that the pencil spanned by e_{2} and k_{2} contains a circle through the base points A_{2}, \ldots, D_{2}, as claimed. ${ }^{5}$
By the way, for the second coefficient in this linear combination holds

$$
\left(\mu^{2} b^{2}-\lambda^{2} a^{2}\right)=b^{2}-a^{2},
$$

since e_{1} and e_{2} have the same eccentricity. The center of the circumcircle of $A_{2}, \ldots, D_{2} \in e_{2}$ is independent of r and has the coordinates $\left(\frac{m}{\lambda}, \frac{n}{\mu}\right)$, if (m, n) are the coordinates of the center M of the preimage k in the plane of e_{1} (note Fig. 9).

Suppose that, by virtue of Lemma 1.1, the three lines g_{1}, g_{2}, g_{3} with a common orthogonal transversal d define a Plücker conoid \mathcal{C}. If these lines contact a sphere \mathcal{S} with center P, then the points of contact lie on the pedal curve e of P and have equal distances to P. The circumcircle k of the pedal points shares with e a fourth point, and consequently there exists a fourth generator $g_{4} \subset \mathcal{C}$ which contacts the sphere \mathcal{S} as well. If g_{1}, \ldots, g_{4} are mutually different, then they are concyclic. However, it can happen that k contacts e at any point. Then the line g_{4} coincides with one of the three given lines.

Theorem 4.1. If four lines g_{1}, \ldots, g_{4} are concyclic on the Plücker conoid \mathcal{C}, then there exist infinitely many spheres which contact these lines. The six bisecting hyperbolic paraboloids of the pairs $\left(g_{i}, g_{j}\right), i, j \in\{1, \ldots, 4\}, i \neq j$, belong to a pencil.
In the non-symmetric case, the spine curve of the enveloping canal surface \mathcal{E} is a rational quartic q (Fig. 11). The top view of q is an equilateral hyperbola with the top views of the torsal generators of \mathcal{C} as asymptotes (Fig. 12). In the symmetric case, the spine curve splits into two parabolas in the planes which connect the double line d of \mathcal{C} with one of the torsal generators.

[^2]

Fig. 11. Spine curve q of the enveloping canal surface of spheres that contact the lines g_{1}, g_{2} (with bisector \mathcal{P}_{12}) and the line g_{3}.

Remark 4.1. According to [10, Satz 4], there are only two cases where four mutually skew lines have a continuum of contacting spheres: The given lines are either concyclic or belong to a hyperboloid of revolution. For similar problems see also [12].

Proof. We assume that the skew generators $g_{i}, g_{j} \subset \mathcal{C}$ for $i, j \in\{1,2,3\}$ have the polar angles φ_{i}, φ_{j} and the z-coordinates $z_{i}=c \sin 2 \varphi_{i}$ and $z_{j}=c \sin 2 \varphi_{j}$ according to (1). The distance of any space point $X=(x, y, z)$ to g_{i} satisfies

$$
{\overline{X g_{i}}}^{2}=x^{2}+y^{2}+\left(z-z_{i}\right)^{2}-\left(x \cos \varphi_{i}+y \sin \varphi_{i}\right)^{2} .
$$

The bisecting paraboloid $\mathcal{P}_{i j}$ of the generators g_{i}, g_{j} of \mathcal{C} has the equation ${\overline{X g_{i}}}^{2}-{\overline{X g_{j}}}^{2}=0$, i.e.,

$$
\mathcal{P}_{i j}:\left(\sin ^{2} \varphi_{i}-\sin ^{2} \varphi_{j}\right)\left(x^{2}-y^{2}\right)-\left(z_{i}-z_{j}\right)\left(\frac{x y}{c}+2 z\right)+\left(z_{i}^{2}-z_{j}^{2}\right)=0
$$

The paraboloids \mathcal{P}_{12} and \mathcal{P}_{13} share a quartic q, and each point $P \in q$ is the center of a sphere \mathcal{S} which contacts g_{1}, g_{2} and g_{3}. As explained before, \mathcal{S} must also contact the line g_{4} which completes the concyclic quadruple. ${ }^{6}$

We obtain the equation of the top view q^{\prime} of q as a linear combination of the equations of \mathcal{P}_{12} and \mathcal{P}_{13} after the elimination of z. In the unsymmetric case, the resulting equation has the form

[^3]

Fig. 12. Top view of a sample of circles of the canal surface through the four concyclic lines g_{1}, \ldots, g_{4} on the Plücker conoid with torsal generators t_{1}, t_{2} and double line d. The hyperbola q^{\prime} is the top view of the spine curve and m^{\prime} that of the curve of circle centers.
$u\left(x^{2}-y^{2}\right)=v$ with $u, v \in \mathbb{R} \backslash\{0\}$, namely

$$
\begin{aligned}
u & =z_{1}\left(\sin ^{2} \varphi_{2}-\sin ^{2} \varphi_{3}\right)+z_{2}\left(\sin ^{2} \varphi_{3}-\sin ^{2} \varphi_{1}\right)+z_{3}\left(\sin ^{2} \varphi_{1}-\sin ^{2} \varphi_{2}\right) \\
& =\frac{c}{2}\left[\sin 2\left(\varphi_{2}-\varphi_{1}\right)+\sin 2\left(\varphi_{3}-\varphi_{2}\right)+\sin 2\left(\varphi_{1}-\varphi_{3}\right)\right] \text { and } \\
v & =z_{1}^{2}\left(z_{2}-z_{3}\right)+z_{2}^{2}\left(z_{3}-z_{1}\right)+z_{3}^{2}\left(z_{1}-z_{3}\right) .
\end{aligned}
$$

Consequently, q^{\prime} is an equilateral hyperbola with the semiaxis $\sqrt{v / u}$ and the asymptotes $x \pm y=$ 0 , which are the top views of the torsal generators of \mathcal{C} (Fig. 12). In order to compute the z coordinate of the points of q, we use the equation of \mathcal{P}_{12} which is linear in z. Therefore, q is rational.

The envelope \mathcal{E} of the infinitely many spheres \mathcal{S}, as mentioned in Theorem 4.1, must contain the four concyclic lines g_{1}, \ldots, g_{4}. The sphere \mathcal{S} with center $P \in q$ contacts the envelope \mathcal{E} along the circumcircle k of the pedal points of g_{1}, \ldots, g_{4} w.r.t. P. The existence of this circle was confirmed in Lemma 4.1.

The shape of the envelope \mathcal{E} is hard to grasp as it has singularities. This becomes apparent since on tangents g_{i} with a top view g_{i}^{\prime} intersecting the equilateral hyperbola q^{\prime} (like g_{1}^{\prime} and g_{4}^{\prime} in Fig. 12) the pedal point cannot trace the full line while P runs along one branch of the spine curve q. There needs to be a point of return. Fig. 13 shows a part of the envelope \mathcal{E} which has no visible singularity. The complete canal surface contains also a second component which is obtained by a halfturn about the z-axis.

Fig. 13. A portion of the canal surface \mathcal{E} through the four concyclic lines g_{1}, \ldots, g_{4} along with the spheres (red) contacting \mathcal{E} along the terminating circles.

References

[1] Appell, P. Propriété caractéristique du cylindroïde. In Bull. Soc. Math. France 28, 1900, pp. 261-265.
[2] Figliolini, G., Stachel, H., Angeles, J. A new look at the Ball-Disteli diagram and its relevance to spatial gearing. In Mech. Mach. Theory 42/10, 2007, pp. 1362-1375.
[3] G. Glaeser, H. Stachel, B. Odehnal The Universe of Conics. From the ancient Greeks to $21^{\text {st }}$ century developments. Springer Spectrum, Berlin, Heidelberg 2016.
[4] Husty, M., Sachs, H. Abstandsprobleme zu windschiefen Geraden I. In Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 203, 1994, pp. 31-55.
[5] Krames, J. Über die in einem Strahlnetz enthaltenen Drehhyperboloide. In Rad. Jugosl. Akad. Znan. Umjet., Mat. Znan. 2, 1983, pp. 1-7.
[6] MÜLler, E., Krames, J.L. Vorlesungen über Darstellende Geometrie. Band III: Konstruktive Behandlung der Regelflächen. B.G. Teubner, Leipzig, Wien 1931.
[7] Odehnal, B., Stachel, H., Glaeser, G. The Universe of Quadrics. Springer Spectrum, Berlin, Heidelberg 2020.
[8] Salmon, G., Fiedler, W. Die Elemente der analytischen Geometrie des Raumes. B.G. Teubner, Leipzig 1863.
[9] Schilling, M. Catalog mathematischer Modelle. 7. Auflage, Martin Schilling, Leipzig 1911.
[10] Stachel, H. Unendlich viele Kugeln durch vier Tangenten. In Math. Pannonica 6, 1995, pp. 55-66.

Hellmuth Stachel

[11] Stachel, H. Plücker's conoid, hyperboloids of revolution and orthogonal hyperbolic paraboloids. In Z. Jeli (ed.): Proceedings moNGeometrija2020, Serbian Society for Geometry and Graphics (SUGIG), ISBN 978-86-6060-046-4, pp. 51-62.
[12] Theobald, T. New Algebraic Methods in Computational Geometry. Habilitation thesis, TU München, 2003.
[13] Wunderlich, W. Darstellende Geometrie II. BI Mannheim, 1967.
[14] Wunderlich, W. Ebene Kinematik. BI Mannheim, 1970.
[15] Wunderlich, W. Die Netzflächen konstanten Dralls. In Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 191, 1982, pp. 59-84.

Hellmuth Stachel
Vienna University of Technology
Wiedner Hauptstr. 8-10/104, 1040 Wien, Austria
e-mail: stachel@dmg.tuwien.ac.at

[^0]: ${ }^{1}$ The remaining part of the curve of intersection consists of the lines at infinity of the two complex conjugate planes $x \pm \mathrm{i} y=0$.
 ${ }^{2}$ See models \#96-\#100 of the collection of mathematical models at the Institute of Discrete Mathematics and Geometry, Vienna University of Technology, https://www.geometrie.tuwien.ac.at/modelle/ models_show. php?mode $=2 \& n=100 \& i d=0$, retrieved Sept. 2022. All these models originate from Schilling's collection as presented in [9].

[^1]: ${ }^{3}$ Model XXIII, no. 10, of Schilling's famous collection of mathematical models [9] shows the pair of surfaces \mathcal{C} and \mathcal{P} (see, e.g., https://www.geometrie.tuwien.ac.at/modelle/models_show. php?mode=

[^2]: ${ }^{5} \mathrm{An}$ alternative proof based on Desargues's involution theorem [3, Sect. 7.4] is mentioned in [10, p. 60].

[^3]: ${ }^{6}$ As proved in [10], the four lines g_{1}, \ldots, g_{4} are concyclic if and only if the (5×4)-matrix with the rows $\left(1, z_{i}, z_{i}^{2}, \cos 2 \varphi_{i}, \sin 2 \varphi_{i}\right), i=1, \ldots, 4$, has a rank ≤ 3.

