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Abstrakt Abstract
Plückerov konoid (cylindroid) C je priamková
plocha tretieho stupňa s jednou vlastnou
dvojnásobnou priamkou. Táto plocha zohráva
kľúčovú úlohu v geometrickej literatúre,
pretože všetky jej úpätnice sú rovinné
krivky. Je geometrickým miestom dvojíc
mimobežných priamok, pre ktoré je daný
kolmý hyperbolický paraboloid bisektorom.
V priestorovej kinematike je C geometrickým
miestom okamžitých polôh osí relatívneho
skrutkového pohybu dvoch otáčajúcich sa
kolies s pevnými mimobežnými osami.
Napokon, štyri koncyklické generátory C sú
spoločnými dotyčnicami nekonečného počtu
guľových plôch, a v článku študujeme ich
obalovú kanálovú plochu.

Plücker’s conoid (cylindroid) C is a ruled
surface of degree three with a finite double line.
This surface plays a major role in the geometric
literature since all its pedal curves are planar.
It is the locus of pairs of skew lines for which a
given orthogonal hyperbolic paraboloid is the
bisector. In spatial kinematics, C is the locus of
instantaneous screw axes of the relative motion
for two rotating wheels with fixed skew axes.
Finally, four concyclic generators of C are
common tangents of infinitely many spheres,
and we study their enveloping canal surface.
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1 Introduction

Plücker’s conoid C, which is also known under the name cylindroid, is a ruled surface of
degree three with a finite double line and a director line at infinity (see Fig. 1). Using cylinder
coordinates (r, ϕ, z), the conoid can be given by the equation

C : z = c sin 2ϕ (1)

with a constant c ∈ R>0 . All generators of C are parallel to the [x, y]-plane. The z-axis is the
double line d of C and an axis of symmetry. The conoid passes through the x- and y-axis. These
two lines c1, c2 , called central generators of C, are axes of symmetry, as well. The Plücker
conoid C is the trajectory of the x-axis under a motion composed from a rotation about the
z-axis and a harmonic oscillation with double frequency along the z-axis [13, p. 37] (Fig. 2).

The substitution x = r cosϕ and y = sinϕ in (1) yields the Cartesian equation

(x2 + y2) z − 2c xy = 0, (2)
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Fig. 1, pluecker_conoid_HS_0

Fig. 1. Plücker’s conoid C with central generators c1 and c2, torsal generators
t1 and t2, the generator g through X , and the ellipse e in the tangent
plane τX to C at point X .

which reveals that reflections in the planes x± y = 0 map C onto itself. The origin O is called
the center of C.

The right cylinder x2 + y2 = R2 intersects the Plücker conoid C along a curve ccyl of degree 41

(see Fig. 1), which in the cylinder’s development appears as the Sine-curve with amplitude c
and wavelength Rπ (Fig. 2). The generators of C connect opposite points ccyl .2 The conoid is
bounded by the planes z = ±c, which contact C along the torsal generators t1 and t2. Their
distance 2c is called the width of C.

For the sake of simplicity, we assume that the [x, y]-plane and all generators of C are horizontal
and the z-axis is vertical. In this sense, the top view stands for the image after vertical projection
into the [x, y]-plane; a prime will be used to indicate the top views of geometric objects.

The top view reveals that the intersection of Plücker’s conoid C with any right cylinderZ through
the double line d gives a curve e which in the cylinder’s development shows up as one period of
a Sine curve (Fig. 3). Therefore, e is an ellipse with principal vertices on the torsal generators.
There exists a two-parameter set of ellipses e on C. They all have the same excentricity c, as it
equals the z-coordinates’ difference of a principal vertex and the center of e [6, p. 208].

The secondary vertices of e lie on the central generators c1 and c2. Ellipses e ⊂ C with the same
minor semiaxis are congruent, and their planes have the same slope. All these ellipses are poses
of one ellipse when it performs the 3D-continuation of an elliptic motion (see [14, p. 45]) under

1The remaining part of the curve of intersection consists of the lines at infinity of the two complex conjugate
planes x± iy = 0 .

2See models #96 – #100 of the collection of mathematical models at the Institute of Discrete Mathematics
and Geometry, Vienna University of Technology, https://www.geometrie.tuwien.ac.at/modelle/
models_show.php?mode=2&n=100&id=0, retrieved Sept. 2022. All these models originate from Schilling’s
collection as presented in [9].
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Fig. 2. The intersection ccyl of Plücker’s conoid C with a right cylinder about
the double line d = z-axis appears in the cylinder’s development as
two periods of a Sine curve. The generators of C connect opposite
points of ccyl .
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ẽ

z

d

e

Z

Fig. 3, ZylAbw2,Pluecker_Ellipse

Fig. 3. The intersection e of the conoid C with a right cylinder Z through the
double line d appears in the cylinder’s development as one period ẽ of
a Sine curve. The generators of C meet e and intersect d orthogonally.

which the secondary vertices trace the central generators [6, p. 209].

Lemma 1.1. Let g1, g2, g3 be three lines with an orthogonal transversal d such that no two of
the three lines are parallel, and they are not coplanar either. Then there exists a unique Plücker
conoid C passing through these lines.

Proof. We choose any right cylinder Z which passes through d and does not contact any of the
given lines. Then their remaining points of intersection with Z span a plane that intersects Z
along an ellipse e thus defining C as shown in Fig. 3.

The intersection of C with the plane of any ellipse e must additionally contain a line g ∈ C
passing through the common point of e and d (Fig. 1). This generator g, which is horizontal and
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therefore parallel to the minor axis of e, shares with e another point X . This must be the point
of contact between the conoid and the plane of e. In other words: The tangent plane τX to C at
X intersects C beside the generator g along an ellipse e which appears in the top view as a circle
e′ through d′.

The top view gives insight into another important property of the ellipse e = τX ∩ C (Fig. 4).
For all points P in space with the top view P ′ ∈ e′ opposite to the top view d′ of the double
line, the pedal curve on C, i.e., the locus of pedal points of P on the generators of C, coincides
with e. This holds since right angles enclosed with generators of C appear in the top view again
as right angles, provided that the spanned plane is not parallel to the double line d. It means
conversely that for each point of e the surface normal to C meets the vertical line through P ′.
We summarize.

X ′ g′

P ′

c′1

c′2

t′1

t′2

x

y

e′

z′
ϕ
ϕ

Fig. 4, pluecker_grundriss
Fig. 4. X is the pedal point of g for all points P with the top view P ′; the

ellipse e ∈ C is the pedal curve of P .

Lemma 1.2. All pedal curves of Plücker’s conoid C are planar. For points outside the double
line the pedal curves are ellipses with the same excentricity.

Due to P. Appell [1], Plücker’s conoid is the only algebraic non-torsal ruled surface with planar
pedal curves (note also [6, p. 211]).

2 Bisector of two skew lines

A classical result states that the bisector of two skew lines `1, `2, i.e., the set of points X being
equidistant to `1 and `2, is an orthogonal (or equilateral) hyperbolic paraboloid (Fig. 5). This is
reported, e.g., in [8, p. 154] or [7, p. 64].

If in an appropriate coordinate system (x, y, z) the lines `1, `2 are given by z = ±d and
x sinα = ±y cosα, then the bisector satisfies the equation

P : 2d z + xy sin 2α = 0. (3)
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Fig. 5. The bisector of two skew lines `1 and `2 is an orthogonal hyperbolic
paraboloid P which contains the axes of symmetry c1, c2 of `1 and `2
as vertex generators.

Conversely, the question for all pairs (`1, `2) of lines for which a given orthogonal hyperbolic
paraboloid P is the bisector, was answered in [4], but already reported at the turn to the 20th

century in [9, p. 54]. We recall:

Lemma 2.1. All pairs of skew lines (`1, `2) which share the bisecting orthogonal hyperbolic
paraboloid P are located on a Plücker conoid C in symmetric position with respect to the central
generators c1 and c2 of C, that coincide with the vertex generators of P .

Proof. We refer to the coordinates of `1 and `2 as given above. Then the paraboloidP satisfying
(3) remains the same if the quotient d/ sin 2α does not change. Obviously, the points X =
(r cosα, ±r sinα, ±d) (r ∈ R) of `1 and `2 satisfy

C : (x2 + y2) z − 2c xy = 0 for c :=
d

sin 2α
. (4)

This is the equation of a Plücker conoid C according to (2). The lines (`1, `2) are symmetric
with respect to (w.r.t., for short) to the x- and y axis, i.e., to the central generators c1 and c2 of C
(Fig. 7).

As reported in [7, Theorem2.3.6], the lines `1, `2 are polar w.r.t. P , i.e., each point X1 ∈ `1
is conjugate w.r.t. P to all points X2 ∈ `2, and vice versa. This follows since the coordinates
Xi = (xi, yi, zi) for i = 1, 2 with

y1 = x1 tanα, z1 = d, y2 = −x2 tanα, z1 = −d

satisfy the polar form of P ,

d(z1 + z2) + (x1y2 + x2y1) sinα cosα = 0.
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Therefore, the polarity in the paraboloid P maps the Plücker conoid C onto itself. The ellipses
e in tangent planes of C are polar to the quadratic cones of tangents drawn from points X ∈ C
to C. For further details see [11, Theorem 3].

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1

M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2

H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1

H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2

ℓ1

ℓ2

g1

g2

c1
c2

Fig. 6, orth_hpb

Fig. 6. Two hyperboloids of revolutionH1,H2 through two skew lines `1 and
`2. The two hyperboloids with respective centers M1,M2 and axes
g1, g2 on the bisecting paraboloid (with vertex generators c1, c2) share
the secondary semiaxis.

3 Plücker’s conoid as locus of instant screw axes for skew gears

Here we report about another property of the bisecting orthogonal paraboloid P of two skew
lines `1, `2 (see, e.g., [7, Theorem 2.3.5]: The generators of P are the axes of rotations which
send the line `1 to the line `2 (Fig. 7). In other words: The generators of P are axes of
one-sheeted hyperboloids of revolution passing through symmetric pairs of lines `1, `2 (Fig. 6).
These hyperboloids are centered on vertex generators of P . By the way, the two hyperboloids
share the secondary semiaxis b. This follows from a result of Wunderlich [15] and Krames [5]
which states that two skew generators `1, `2 of any hyperboloid of revolution define already the
secondary semiaxis b = d cotϕ, where 2d = `1`2 and 2ϕ =<) `1`2 (see also [7, p. 37]).

By virtue of Lemma 2.1, the lines `1, `2 are generators of the Plücker conoid C and symmetric
w.r.t. the central generators c1, c2 (Fig. 7). The limit `1, `2 → c1 reveals that generators of P
being skew to c1 are axes of hyperboloids which contact C along c1. Therefore, all c1 intersecting
generators of the orthogonal hyperbolic paraboloid P are surface normals of C.3

3Model XXIII, no. 10, of Schilling’s famous collection of mathematical models [9] shows the pair of surfaces C
and P (see, e.g., https://www.geometrie.tuwien.ac.at/modelle/models_show. php?mode=
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Fig. 7. All pairs of skew lines (`1, `2) which share the bisecting orthogonal
hyperbolic paraboloid P are located on a Plücker conoid C. Generators
g of P are axes of rotations with `1 7→ `2 (courtesy: G. GLAESER).

Two generators of the P-regulus through c2 are axes of hyperboloids of revolution with mutual
contact along the other vertex generator c1, since both hyperboloids contact C. However,
also a converse statement holds true: Lines `1, `2 ∈ C which are symmetric w.r.t. the central
generators c1, c2, are axes of hyperboloids of revolution with mutual contact along c1. This
follows immediately by a 180◦-rotation about c1, which exchanges c1 and c2 and transforms one
hyperboloid in the other.

It is surprising that this remains true if c1 is replaced by any other generator of the Plücker
conoid C. This result is well-known in spatial kinematics: the Plücker conoid C is the locus of
instant axes `12 of the relative screw motion of two wheels that rotate with respectively constant
velocities ω1 and ω2 about fixed axes `1, `2 ⊂ C being symmetric w.r.t. the central generators
c1, c2 of C. The axodes of the relative screw motion are the hyperboloids of revolution H1, H2

with mutual contact along `12 as mentioned before (see, e.g., [7, Figs. 2.19, 2.20]).4

Thus, the conoid C provides the solution of a purely geometric problem: For given skew axes
`1, `2, find pairs of hyperboloids of revolution which contact each other along a line.

A standard proof of this result uses dual vectors for the representation of oriented lines and
screws (see, e.g., [2]). Here we present a synthetic proof of an equivalent statement.

Theorem 3.1. Given two skew lines `1, `2, the vertex generators of all orthogonal hyperbolic
paraboloids through `1 and `2 belong to a Plücker conoid C. The axes of symmetry of `1, `2 are
the central generators of C.

Proof. Why this theorem is equivalent to the statement on pairs of hyperboloids (H1,H2) of

2&n=100&id=0, retrieved Sept. 2022). At this model the boundary curves of the surfaces are even congruent
(note [11, Theorem 3]).

4There are various relations between the two fixed axes of rotations `1, `2, the relative axis `12, the angular
velocities ω1, ω2, and the pitch of the relative screw motion (see [2, Fig. 7]). Due to a more general result by
Plücker, the conoid is the locus of axes of linear line complexes which are contained in a pencil [6, p. 214].
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revolution with a line contact? The common surface normals of two hyperboloids along their
line of contact `12 form one regulus of an orthogonal hyperbolic paraboloid P which passes
through the axes `1 and `2. The line `12 is the vertex generator of the complementary regulus
on P . The other vertex generator of P intersects all three lines `12, `1, and `2 orthogonally.
Therefore, it is the common perpendicular d of `1 and `2.

ℓ′1

ℓ′2

ℓ′12

g′

x

y

d′d′d′d′d′d′d′d′d′d′d′d′d′d
′d′d′d′ ααααααααααααααααα

ααααααααααααααααα ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ

Fig. 8, pluecker_c

Fig. 8. Top view of an an orthogonal hyperboloid passing through `1 and `2
with d and `12 as vertex generators and g as a generator which
intersects `1, `2 and `12 (note Theorem 3.1).

We still assume that `1 and `2 are horizontal, and we us the orthogonal projection in direction
of the common orthogonal transversal d. As shown in Fig. 8, for any choice of a horizontal
vertex generator `12, the top view shows on an `12 intersecting generator g the affine ratio of g’s
meeting points with `1, `2 and `12. Let ±d be the given z-coordinates `1 and `2. If the signed
angles between the x-axis and the lines `1, `2 and `12 are respectively α, −α and ϕ, then the
altitude of `12 is

z = −d+ 2d
tan(α + ϕ)

tan(α− ϕ) + tan(α + ϕ)
= d

tan(α + ϕ)− tan(α− ϕ)
tan(α− ϕ) + tan(α + ϕ)

=
d

sin 2α
sin 2ϕ ,

which confirms by (1) the claim.

4 Concyclic generators of Plücker’s conoid

Given any Plücker conoid C, let e ⊂ C be the pedal curve of any given point P . Suppose that
some generators of C are tangents to a sphere S centered at P . Then their pedal points w.r.t. P
must have equal distances to P . Since they are located in the plane of e, they belong to a circle
k ⊂ S with an axis through P (compare with Fig. 9). The circle k can share with the ellipse e at
most four points. Therefore, at most four generators of C can contact any sphere with the center
P . Below we discuss the converse problem: Is the center P of a contacting sphere unique?

Definition 4.1. Four mutually different lines g1, . . . , g4 are called concyclic if they belong to a
Plücker conoid C and their points of intersection with any tangent plane τX to C are concyclic,
i.e., located on a circle.
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Fig. 9. The ellipse e is the pedal curve of C w.r.t. the point P . There are
infinitely many spheres contacting the four concyclic generators
g1, . . . , g4 of C. The center of a contacting sphere must be located on
the vertical line through P and on the axis of the circle k.

Suppose that two out of four concyclic lines are intersecting. Then also the remaining two must
be intersecting, since in this case the center of the circumcircle k must be located on the principal
axis of the ellipse e = τX ∩ C. We call this the symmetric case.

Lemma 4.1. If the generators g1, . . . , g4 ⊂ C are concyclic, then they intersect all tangent planes
τX to C at four concyclic points, provided that in the particular case gi ⊂ τX the point of contact
X with C serves as the point of intersection.

Proof. We compare two ellipses e1, e2 ⊂ C. The top view (Fig. 10) shows that lines h′ through
d′ intersect e′1 and e′2 at points H ′1, H

′
2 which define a similarity e′1 → e′2. In particular, the top

view of the generator g1 in the plane of e1 intersects e′1 at the top viewX ′1 of the point of contact
between the plane of e1 and C.

The similarity e′1 → e′2 induces in space an affine correspondence α12 between the ellipses
e1 and e2 and consequently between the corresponding planes. The torsal generators and the
central generators of C indicate that α12 sends the vertices of e1 to vertices of respectively equal
types of e2. Using appropriate coordinates (x1, y1) and (x2, y2) in the respective planes, the
correspondence can be expressed in the form

α12 : (x1, y1) 7→ (x2, y2) = (λx1, µy1)

with

e1 :
x21
a2

+
y21
b2

= 1 → e2 :
x22
λ2a2

+
y22
µ2b2

= 1.

If four generators of C intersect e1 at the points A1, . . . , D1 of a circle k with radius r, then the
corresponding points A2, . . . , D2 ∈ e2 are located on an ellipse k2 with axes of lengths λr, µr
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Obr. 1. The generators h of a Plücker conoid intersect different tangent planes
at points H1,H2 that correspond each other in an affine transformation
α12.

Fig. 10, pluecker_affin

Fig. 10. The generators h of a Plücker conoid intersect different tangent
planes at points H1, H2 that correspond each other in an affine
transformation α12.

parallel to the coordinate axes. There is a linear combination of the equations of e2 and k2 with
equal coefficients of x22 and y22 , namely

(λ2−µ2)a2b2
(

x22
λ2a2

+
y22
µ2b2

+ . . .

)
+(µ2b2−λ2a2)r2

(
x22
λ2r2

+
y22
µ2r2

+ . . .

)
= 0.

This means that the pencil spanned by e2 and k2 contains a circle through the base points
A2, . . . , D2, as claimed.5

By the way, for the second coefficient in this linear combination holds

(µ2b2 − λ2a2) = b2 − a2,

since e1 and e2 have the same eccentricity. The center of the circumcircle of A2, . . . , D2 ∈ e2 is
independent of r and has the coordinates (m

λ
, n
µ
), if (m,n) are the coordinates of the center M

of the preimage k in the plane of e1 (note Fig. 9).

Suppose that, by virtue of Lemma 1.1, the three lines g1, g2, g3 with a common orthogonal
transversal d define a Plücker conoid C. If these lines contact a sphere S with center P , then the
points of contact lie on the pedal curve e of P and have equal distances to P . The circumcircle k
of the pedal points shares with e a fourth point, and consequently there exists a fourth generator
g4 ⊂ C which contacts the sphere S as well. If g1, . . . , g4 are mutually different, then they are
concyclic. However, it can happen that k contacts e at any point. Then the line g4 coincides
with one of the three given lines.

Theorem 4.1. If four lines g1, . . . , g4 are concyclic on the Plücker conoid C, then there exist
infinitely many spheres which contact these lines. The six bisecting hyperbolic paraboloids of
the pairs (gi, gj), i, j ∈ {1, . . . , 4}, i 6= j, belong to a pencil.
In the non-symmetric case, the spine curve of the enveloping canal surface E is a rational quartic
q (Fig. 11). The top view of q is an equilateral hyperbola with the top views of the torsal
generators of C as asymptotes (Fig. 12). In the symmetric case, the spine curve splits into two
parabolas in the planes which connect the double line d of C with one of the torsal generators.

5An alternative proof based on Desargues’s involution theorem [3, Sect. 7.4] is mentioned in [10, p. 60].
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Fig. 11. Spine curve q of the enveloping canal surface of spheres that contact
the lines g1, g2 (with bisector P12) and the line g3.

Remark 4.1. According to [10, Satz 4], there are only two cases where four mutually skew
lines have a continuum of contacting spheres: The given lines are either concyclic or belong to
a hyperboloid of revolution. For similar problems see also [12].

Proof. We assume that the skew generators gi, gj ⊂ C for i, j ∈ {1, 2, 3} have the polar angles
ϕi, ϕj and the z-coordinates zi = c sin 2ϕi and zj = c sin 2ϕj according to (1). The distance of
any space point X = (x, y, z) to gi satisfies

Xgi
2
= x2 + y2 + (z − zi)2 − (x cosϕi + y sinϕi)

2.

The bisecting paraboloid Pij of the generators gi, gj of C has the equation Xgi
2 −Xgj 2 = 0,

i.e.,

Pij : (sin2ϕi − sin2ϕj)(x
2 − y2)− (zi − zj)

(
xy

c
+ 2z

)
+ (z2i − z2j ) = 0.

The paraboloids P12 and P13 share a quartic q, and each point P ∈ q is the center of a sphere
S which contacts g1, g2 and g3. As explained before, S must also contact the line g4 which
completes the concyclic quadruple.6

We obtain the equation of the top view q′ of q as a linear combination of the equations of P12

and P13 after the elimination of z. In the unsymmetric case, the resulting equation has the form

6As proved in [10], the four lines g1, . . . , g4 are concyclic if and only if the (5×4)-matrix with the rows
(1, zi, z

2
i , cos 2ϕi, sin 2ϕi), i = 1, . . . , 4 , has a rank ≤ 3 .
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Fig. 12. Top view of a sample of circles of the canal surface through the four
concyclic lines g1, . . . , g4 on the Plücker conoid with torsal
generators t1, t2 and double line d. The hyperbola q′ is the top view
of the spine curve and m′ that of the curve of circle centers.

u(x2 − y2) = v with u, v ∈ R \ {0}, namely

u = z1(sin
2ϕ2 − sin2ϕ3) + z2(sin

2ϕ3 − sin2ϕ1) + z3(sin
2ϕ1 − sin2ϕ2)

=
c

2
[ sin 2(ϕ2 − ϕ1) + sin 2(ϕ3 − ϕ2) + sin 2(ϕ1 − ϕ3)] and

v = z21 (z2 − z3) + z22 (z3 − z1) + z23 (z1 − z3).

Consequently, q′ is an equilateral hyperbola with the semiaxis
√
v/u and the asymptotes x±y =

0, which are the top views of the torsal generators of C (Fig. 12). In order to compute the z-
coordinate of the points of q, we use the equation of P12 which is linear in z. Therefore, q is
rational.

The envelope E of the infinitely many spheres S , as mentioned in Theorem 4.1, must contain
the four concyclic lines g1, . . . , g4. The sphere S with center P ∈ q contacts the envelope E
along the circumcircle k of the pedal points of g1, . . . , g4 w.r.t. P . The existence of this circle
was confirmed in Lemma 4.1.

The shape of the envelope E is hard to grasp as it has singularities. This becomes apparent
since on tangents gi with a top view g′i intersecting the equilateral hyperbola q′ (like g′1 and g′4
in Fig. 12) the pedal point cannot trace the full line while P runs along one branch of the spine
curve q. There needs to be a point of return. Fig. 13 shows a part of the envelope E which has
no visible singularity. The complete canal surface contains also a second component which is
obtained by a halfturn about the z-axis.
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z
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Fig. 13. A portion of the canal surface E through the four concyclic lines
g1, . . . , g4 along with the spheres (red) contacting E along the
terminating circles.
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