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Abstract  

The modeling of the tooth flanks of gears with skew axes still represents a challenge to geometers. The 
problem is to attach to each wheel a surface such that, during uniform rotations of the two wheels, these 
surfaces remain in contact at a single point or along a line. We focus on two possibilities for designing 
simultaneously a pair of conjugate flanks. In both cases we present new proofs and report about new 
developments.  
The first possibility dates back to Jack Phillips in 2003. He proved that helical developables serve as 
conjugate tooth flanks with point contact. Moreover, these types of flanks sustain errors upon assembly. 
There is even a case with permanent line contact, similar to helical involute gears with parallel axes. As 
a clarification of Phillips's achievements, particular attention is necessary when the transmission 
changes from front-to-front to back-to-back. 
The second solution dates back to Martin Disteli in 1911. Based on the spatial Camus's Theorem, we 
obtain pairs of skew ruled surfaces which permanently are in contact along a straight line. As an 
example, we present spatial cycloidal gears and give an outlook to generalizations. 

Keywords: Skew gears, cylindroid, involute gearing, cycloid gearing, Camus's Theorem, dual vectors.  

1  INTRODUCTION 

Designing a gear pair means obtaining a given transmission of the rotations from a driving or input wheel 
to a driven or output wheel  by a pair of tooth flanks which are sliding on each other. We address 

this by focusing on general principles from the geometrical point of view, i.e., without paying attention to 
all deviations that real gear pairs undergo. To begin with, we recall a very few results on planar gearing, 
where the wheels' axes are supposed to be parallel, and we quote 
of Gearing.  

1.1  Involute spur gears  

Conventional involute spur gears are regarded as superior in planar gearing. For this type of gearing, 
which was invented by L. Euler (1765), the tooth profiles c , c  are circular involutes, i.e., their evolutes 
are circles b  and b  called base circles. This type of gears is characterized by the condition that the 
common normal  to the profiles c  and c  at their contact point C remains fixed in the gear box , 
which means that with respect to (w.r.t., for short)  the meshing point C runs along a line. 

For involute spur gears the helical tooth flanks are helical developables, also known as helical involutes. 
These developables  are swept out by the tangents of a helix s. The right cylinder  passing through 
s is called base cylinder and  contains the base circle b of the involute spur gear (Fig. 1, left). Helical 
developables consist of two sheets which meet along the helix s called cuspidal edge. The lower sheet 
has its convex side pointing upwards w.r.t. the direction of the axis a, the convex side of the upper sheet 
points downwards (Fig. 1, right).  A helical developable is uniquely defined, up to rigid motions, by the 
radius of the base cylinder and the pitch of the generating helical motion. 

The surface normals of a helical developable  along any generator g are mutually parallel. The 
congruence of normals consists of lines which enclose a constant angle with the axis and contact the 
base cylinder. In the case of a left-handed developable the normals are right-twisted w.r.t. the axis. 
Along each generator g there exists an osculating cone with an axis g* lying on the base cylinder and 
with its apex at the cuspidal point C* of g, i.e., its contact point with the cuspidal edge s (Figs. 1, left, 
and 6). 
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Fig. 1. Helical developable . Left: the lower sheet of  with the involute c of the circle b as cross section.      

Right: the two sheets of  meet on the cuspidal edge s, a helix on the base cylinder . 

1.2  Camus's principle in the plane  

The following theorem is attributed to C.É.L. Camus (1733), but most probably it dates back to Ph. de 
La Hire (1674) or Olaf Rømer (note [3]). It turns out that Camus's Theorem provides the most general 
principle of gearing, i.e., each pair of conjugate tooth profiles can be defined this way.1 

Theorem 1 (Camus's Theorem). If an auxiliary curve p  rolls on the pitch circles p  and p , then any 
point C attached to p  traces conjugate profiles c  and c , respectively. 

We rephrase this theorem by introducing an additional frame , where the auxiliary curve p  is attached 
to. Let us assume that, simultaneously with the two rotating wheels  and  the auxiliary frame  
moves w.r.t. the gear box  in such a way that p    rolls on p  and p  and all mutual contacts take 
place at the pitch point I  = I  = I  . If C is any point attached to  and different from I , 
then the  trajectories c  and c  of C under the relative motions  and , respectively, are in 
contact at C, since the respective path normals pass through the common pitch point I  = I  = I . 
Hence, c   and c   satisfy the planar Law of Gearing. 

As an extension of Camus's classical result, not only the trajectories of points attached to , but also 
the envelopes of curves attached to  under the motions  and  are conjugate profiles. 

 

Fig. 2. Left: The dual angle =  +  between two oriented lines  and  is a composition of the signed angle  
and the distance with the dual unit .  Right: The instantaneous screw motion with the twist  =  is 
defined by the oriented axis  and the dual angular velocity . 

                                                           
1 To be precise, all profiles except their points which are located on the tangent to the pitch circles at the common pitch point. 
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1.3  Basics of spatial gearing  

From now on the axes  and of the two wheels are supposed to be skew. For the mathematical 
description, dual vectors are an adequate tool to represent oriented lines in space as well as instant 
screw motions (twists). For the sake of brevity, we skip the introduction into the dual vector calculus and 
refer only to the literature, e.g., to [8, 2]. At a few places below we will apply this tool. Therefore, we use 
the usual symbols for dual vectors and numbers as the labels of oriented lines, twists, dual angles, and 
dual angular velocities (note Fig. 2). 

Instead of the pitch circles in the plane, we have in spatial gearing two hyperboloids as the axodes of 
the relative motion  between the two wheels which rotate with the velocities  and  about the 
respective axes. The axodes are in contact along the instant screw axis called ISA, in short. 

Without going into detail, we recall from [6], Chapter 2: 

Theorem 2 (Law of Gearing, spatial version). For gears with skew axes  and , the point C is a 
meshing point of conjugate tooth flanks ,  if and only if the common surface normal  to the flanks 
at C encloses dual angles  with the axes  and   (see Fig. 3) such that 2  

 =  . 

 

 

Fig. 3. Law of Gearing for skew gears. 

2   P  SPATIAL INVOLUTE GEARS 

In 2003 Jack Phillips published a book [6] where he proved that helical involutes provide a uniform 
transmission not only for wheels with parallel axes but also for those with skew shafts. Moreover, as 
well as in the planar case, there is no transmission error in the case of misplacement. In the following, 
we present some basic results of this type of gearing, but we also focus on one inherent problem which 
hasn't been extensively discussed in [6] and in the related literature so far. 

2.1  The role of helical developables 

According to Phillips's definition, spatial involute gears are defined by the condition that during the mesh 
each meshing point C runs w.r.t. the gear box  along its meshing normal . According to the Law of 
Spatial Gearing (Theorem 2), the contact normal  at a single meshing point C outside ISA is sufficient 

                                                           
2 The following formula is equivalent to the statement that  belongs to the linear line complex of path normals of the relative 
motion  with the twist  =  - . 
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to determine the transmission ratio of a given spatial gearing. Therefore, Phillips's condition for a fixed 
meshing normal yields gears for a uniform transmission. 

How can we find appropriate tooth flanks? 

 

     

Fig. 4. The slip tracks are orthogonal trajectories of one regulus of the hyperboloid .  Left: The rulings of are 
normal lines of the helical developable  along the slip track c .  Right: Lower sheet of the helical developable  

with possible slip tracks. 

During the mesh, the wheel  rotates w.r.t.  about the axis  with the angular velocity , while 
the contact point C runs along the fixed line . On the other hand, w.r.t. , point C traces on the tooth 
flank  a curve c  called slip track in [6]. At each point of c  the pose of  is orthogonal to  and 
therefore also orthogonal to c . 

The movement of C against  along c  is the composition C s movement along  w.r.t.  and the 
inverse motion  which is the rotation about  with the angular velocity - . During this rotation 
the line  sweeps out a one-sheeted hyperboloid of revolution  in . The trace c  of the contact 
point C w.r.t.  belongs to this hyperboloid and is an orthogonal trajectory of one family of generators 
on . In Fig. 4, left, such orthogonal trajectories c  are depicted; they have the shape of a bed spring 
curve . 

Each surface that passes through c  with tangent planes  orthogonal to the corresponding generators  
   serves as a tooth flank  for a single point contact on a contact normal , which remains fixed 

in the machine frame . The simplest choice is the envelope of these planes  w.r.t. . 

Theorem 3. Let skew gears with a uniform transmission from  to  be given. If the respective tooth 
flanks  and  are in permanent single point contact such that the meshing normal  remains fixed 
in the gear box , then the envelopes of the common tangent planes  at the meshing points C w.r.t. 

 and  are helical developables. For a constant driving velocity  the meshing point C runs w.r.t. 
 with a constant velocity along .  

Proof. The movement of C w.r.t. along the fixed line  is the composition of a rotation about  and 
a movement along the slip track c . Therefore, the velocity vector  of C along  is the sum of the 
velocity vector  caused by the rotation of  about , and a tangent vector  to c  orthogonal 
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to  and . Fig. 5 shows this decomposition in the top view, i.e., after projection in direction of , 
and in a front view, obtained by orthogonal projection into a plane parallel to  and . 

The rotation about  assigns to C the velocity with 

||  = ||  =  ) =  . 

This yields for the front view ||  = | |.  In other words, for each choice of C on the line  the 
front view  has the same length, provided that  is constant. Therefore, the velocity  of C 
along  is constant, too, namely (Fig. 5)  ||  = | sin |  with as the slope angle of 

 

 

Fig. 5. Velocity analysis of the meshing point C, shown in the front view (above) and the top view (bottom). 

The common tangent plane  to the tooth flanks at the meshing point C intersects the axis  at a 
point S, which moves along the axis with the constant velocity | | = || cos = | |. 
Hence,  envelops a helical developable with the axis  and the pitch h  = . This confirms 
that each orthogonal trajectory of one regulus on a one-sheeted hyperboloid belongs also to a helical 
developable (see Fig. 4, right, and note [9], p. 438, or [4], p. 408).3 The line g  in  with the top view g  
coinciding with (see Fig. 5) is a generator of the envelope.  

Conversely, let  be the helical developable with axis  and with the cuspidal edge s  on the base 
cylinder with radius  and pitch h . A rotation of  about its axis  through the angle  together 
with a translation along  by h  transforms  into itself. Hence, a pure rotation through  has the 
same effect on  (as a whole) like a translation by - h . This translation sends a generator g  of  
with its tangent plane into a parallel line and plane at the distance - h cos  where tan = h  is 
the slope of s  (see Fig. 5). Consequently, the rotation about its axis  transforms a helical 

                                                           
3 The top view of c  is the trajectory of a point under an involute motion where a line as the moving pitch curve rolls on a circle. 
For points C of c  on the generator g  of , the distance d to the cuspidal point C* of g  increases with the constant signed velocity 

 (note Fig. 5). Therefore, two different slip tracks cut the generators of  in pieces of equal lengths.  
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involute into an offset4 at the distance -  sin , and in accordance with our previous result for 
||  we obtain for the signed velocity in the direction of   

                                                  = -                                                                           (1) 

where /2 +  is the dual angle between g  and the axis  (see also Fig. 4, right). 

When  rotates with the angular velocity , then the generator g   through the meshing point C 
remains parallel to itself and moves together with the tangent plane  in the direction of  with 
the velocity  given in (1). Suppose that a second helical developable  is in contact with  at the 
point C with the common tangent plane . If the two surfaces rotate about their respective axes  

 with angular velocities  such that 

 =  

then in both cases the point C together with the common tangent plane  is shifted orthogonally to  
with the same velocity. This means that the contact between the two surfaces is preserved, wheresoever 
the axes of the two wheels have been located. We realize that the condition above is equivalent to the 
Law of Gearing in Theorem 2. 

 Whenever two helical developables  and  
are in contact at a single point C and rotate about their axes ,  with respective velocities ,  
such that the dual angles  between any orientation of the contact normal  and the axes satisfy 
the Law of Gearing (Theorem 2, note Fig. 3), then the two surfaces remain in contact with a fixed contact 
normal .Therefore, these surfaces serve as tooth flanks with single point contact for a uniform 
transmission from  to , and they sustain errors upon assembly. 

 

Fig. 6. At skew involute gearing the generators g , g  through the meshing point C enclose a constant angle , 
while they are translated within tangent planes to the respective base cylinders , . Simultaneously the 

osculating cones (green) along the generators g  and g  are translated along their axes g  and g . 

Remark 1. Note that Theorem 4 includes the case of bevel gears and spur gears, the latter only in the 
case  = 0. In [6], Chapter 7, involute gears are used for worm gears. A similar application is discussed 
in [10]. 

                                                           
4  This is the spatial counterpart to a similar property of circular involutes in the plane. 
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According to Fig. 5, the generator g  through the meshing point C spans with  a plane which 
contacts the base cylinder of . Consequently, g  is orthogonal to the common normal m  of  and 

. Similarly, the plane connecting the generator g  through C with  contacts the base cylinder 
of  and is orthogonal to the common normal m  of  and . Since the four lines g , g , m , and m  
are orthogonal to , we can conclude from g  m and g   m  that the angles m m  and g g  are 
congruent. This confirms a result which was first stated in [7]: 

Theorem 5. At spatial involute gearing, the angle  between the generators g  and g  
through the meshing point C remains constant during the mesh. This angle is congruent to the angle 
enclosed by the common perpendiculars m  and m  between the meshing normal  and the respective 
axes  and (Fig. 6). In the particular case  = 0 the flanks  and  are even in permanent contact 
along a line g  = g , the two axes , and the fixed meshing normals  are parallel to a plane, and 
the base cylinders of  and  contact each other.  

Remark 2.  
These gears are not feasible due to the osculation between the conjugate involutes. By the way, the 

elopable tooth flanks has been 
included, but not explicitly mentioned in 1922 by E. Stübler in [9], Satz I, where all spatial gears with 
developable tooth flanks and permanent line contact are characterized. 

2.1  Conditions for a physical contact between the tooth flanks 
While the meshing point C is running along  during the mesh, the generator g  varies on . However, 
w.r.t. the gear box  the line g  remains in the plane through  and parallel to the axis . This plane 
contacts the base cylinder of  along the line g , the locus of the respective cuspidal points C  of g  
and common axis of the cones that osculate  along the moving line g  (Fig. 6). 

 

Fig. 7. Two mating involute gears schematically depicted in a view along the common normal n of the two axes   
and . The crossing angle between the axes varies between  =   = 50° (left) and  = 70° (right). In both 
cases, the meshing normal  (red) is determined as a common tangent of the base cylinders  und . It contacts 
the cylinders at the respective extreme meshing points C  and C . 

Similarly, the cuspidal points C * of the generators g  are located on the generator g  of the base 
cylinder of , and g  is the common axis of the osculating cones of  along the moving generator g  
through the meshing point. 

As long as the meshing point C lies between C  and C , we have external gears and the convex sides 
of the developables  and  are meeting. Otherwise there is an undercut since the convex side of one 
developable meets the concave side of the other; the helical developables intersect each other in the 
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neighbourhood of the contact point. The only exception with locally non-intersecting internal gears is 
possible for  = 0. 

 0: A feasible contact between  and  can only take place between the respective cross 
sections in planes passing through C  and C . This terminates the mesh of the developables  and 

without restricting the uniform transmission. We demonstrate this in an example: 

Fig. 7 shows the schematic contours of two involute gears if seen along the common perpendicular n of 
the axes  and . The two pictures show the gears in two different meshing poses. While the distance 

 between the axes remains the same, the crossing angle  varies between 50° and 70°.5 The 
respective meshing normal  is determined as a common tangent of the respective base cylinders  
und  and encloses given angles  and  with the axes. Moreover, depending on the given helical 
tooth flanks  and , the meshing normal must be respectively right-twisted or left-twisted to the axes. 
Apparently, the variation of the  influences the extreme meshing points C  and 
C   as well as that of the extreme crossing sections, and moreover the addendum- and dedendum-
hyperboloids (not depicted). 

In order to obtain involute gears for the reversed rotation or the driving wheel, we exchange the upper 
and lower helical developables as tooth flanks.6 This can be carried out by reflecting  and  
simultaneously in the common normal n of the axes, called center distance line. This reflection does not 
change the base cylinders while their common tangent  is sent to the meshing normal  of the 
reflected surfaces  and  (Fig. 8, left 7). The reflected extreme meshing points * and * indicate 
the terminating cross sections from the viewpoint of the reversed rotations. Consequently, involute gears 
can be used for rotations in both driving directions only if the common perpendicular n lies between the 
terminating cross sections of both wheels. However, this is necessary, but not sufficient, as Theorem 6 
reveals. 

 As stated in Theorem 5, in this case the two base cylinders contact each other, i.e.  = 
+  and  =  +  (see Fig. 8, right). The conjugate sheets of the tooth flanks contact along a line. 
This means that the meshing normal  is not unique but can be translated locally within the common 
tangent plane of the two base cylinders  and . It is still true that on each meshing normal  at all 
points C between the contact points C  and C  the convex side of  touches the convex side of  
(Fig. 6). 

This case is sensitive against misplacement. If there is any incorrectness, then instead of a line contact 
between the tooth flanks there will only be a single point contact.  

In the summary below the term interior of a wheel stands for the space inside the addendum hyperboloid 
or cylinder and between the terminating cross sections. 

Theorem 6. Referring to the previous notation with  and  being symmetric w.r.t. the center distance 
line n, a pair of skew involute gears can transmit rotations in both directions with the same dual angles 

if and only if  
(i) The point of the meshing normals  and  in the interiors of the wheels lie between the terminating 

points C C and their mirrors *, *, respectively, and 

                                                           
5 The other data used in Fig. 7 are  = 62.4 mm (= distance ),  =  = 54.0°,  = 33.6 mm,  = = 47.347°, 

 = 24.6 mm (compare with Fig. 3),  = 114.27° (left) and  = 84.58° (right), transmission ratio :  = -3 : 2. The upper 
sheet of  contacts the lower sheet of . 
6 Phillips mentions in [6] that for the backs of the teeth once more the principles of involute actions have to be applied. His book 
[6] shows pictures with flanks on one side (e.g., Fig. 4.11) and others with complete teeth (e.g., Figs. 5B.13 or 7.04). The latter 
indicate that the base cylinders and the angles  and  for both sides seem to be rather the same. In our study we restrict us 
only to this assumption and exchange upper and lower sheets of the developables.  
7 The dimensions of the example depicted in Fig. 8, left, are:  = = 62.0°, distance between the axes  = 70.6 mm,  
=   = 54.0°,  = 33.0 mm,  =  = 43.147°,  = 26.0 mm,  = 94.21°, transmission ratio :  = -3 : 2. The 
upper sheet of  contacts the lower sheet of .
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(ii) the interiors of both wheels share a common segment on  as well as on  . In the case  = 0 one 
meshing normal  out of infinitely many is sufficient.  

       

Fig. 8. Left: This view in direction of the common perpendicular n shows schematically the maximum dimensions 
of involute gears which can transmit rotations in both directions.   Right: Case  with a permanent contact of 

the tooth flanks (indicated by the green osculating cones) along g  = g . 

3   THE SPATIAL CAMUS PRINCIPLE 
Martin Disteli was the first who proved that a version of Camus's principle (Theorem 1) is even valid in 
space. It yields conjugate tooth flanks in the form of non-developable ruled surfaces which are in 
permanent contact along a straight line. Here we only lay out the basic ideas. 

Let the motions of two gears be given, i.e., the rotations ,  about fixed skew axes   and  
with angular velocities , , respectively. Similar to the planar case we ask: is there an auxiliary 
system  which can move in such a way that the motions  and  have twists with the same 
axis  and the same pitch h  = / , as pertaining to the relative motion of the two gears? 

This means in terms of dual vectors: Given the twists =  and =  with ,  
(note Fig. 2), we seek a system  such that  =  =  and the dual velocities are proportional, i.e., 
there are factors ,   such that  = ,  =  and consequently  =  and  = 

. 

Upon recalling the spatial Aronhold-Kennedy Theorem we obtain  -  = (  - ) and -  =  
(  - ), hence, = 1 and  

                             =  = + (1 - )  =  + (1 - ) .                              (2) 

The twist  is an affine combination of  and . This implies (see, e.g., [1]) that the instant axis  
is located on Plücker s conoid  (Fig. 9) defined by the given gear axes   and . Conversely, as 
long as  lies on  and the dual velocity  satisfies (2), serves as an auxiliary frame. For details, 
the reader is referred to [2]. 

 Let two wheels ,  with skew axes ,  and angular 
velocities be given. If an auxiliary system  moves such that the instant screw axis  of  
is permanently located on Plücker s conoid  and the twist  satisfies (2), then for any line g attached 
to  the ruled surfaces ,  traced by g under the relative motions  and , respectively, are 
conjugate tooth flanks of . During the mesh these flanks remain in contact along straight lines. 
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Fig. 9. Plücker conoid  with the wheels' axes  and , with the ISA  and the instant screw axis            
of an auxiliary system  

If a parametrized set of instant axes  is given, then in general an integration is necessary to get 
an explicit representation of the auxiliary motion . However, we can follow M. Disteli on his 
approach to generalizing the planar or spherical cycloidal gearing: We keep the axis of  fixed 
in the machine frame on  and simultaneously move  with the twist  and  with the twist . 
Furthermore, we move  about the fixed axis  with the pitch h  such that the relative 
axes  and  coincide permanently with . Under these motions the axodes of the relative motions 

,  and  are obtained by applying the inverse motions, ,  and , to the 
ISA , which is fixed in  (Fig. 10). Note that the spatial analogues of the circles p  and p  from 
Theorem 1 are one-sheeted hyperboloids, while the circle p  is replaced by a helical ruled surface, the 
trace of the ISA  under the helical motion . 

3.1  A generalization 

The formal replacement of unit vectors of  by dual vectors allows to transfer theorems from spherical 
geometry to spatial geometry. This process, which sends points of the unit sphere to oriented lines in 3-
space, is called Principle of Transference or Dualization. In this sense, the dualization of conjugate 
spherical tooth profiles yields ruled tooth flanks for skew gears. For the dualization of the Camus 
principle it is important to notice that the real coefficients in (2)  and (1 - ), are already known 
from the spherical analogue. Hence, there is a unique solution for the twists of the corresponding spatial 
auxiliary motion which leads to conjugate skew ruled tooth flanks. 

We can generalize: For each auxiliary system , chosen according to Theorem 7, the twists ,  
and  of the respective motions ,  and  are proportional over . Consequently, each 
space point C attached to  has proportional tangent velocity vectors , , and . Hence, 
the tangent lines at C to the respective trajectories are identical. Therefore, we can replace the line g 
(which is strictly dual to a point on the unit sphere) by an arbitrary curve c through C and attach it . 
Then the surfaces ,  swept out by c under  and  are conjugate tooth flanks, since at each 
point C c the tangent plane to both flanks is spanned by the tangent lines to c and to the respective 
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trajectory. This is true even when the path contacts c since in this case the contact point C is a singularity 
of  and . 

Moreover, we can even replace the curve c by any surface S attached to the auxiliary system . The 
conditions for being an enveloping point of S under  and  are the same, namely, that the contact 
normal is included in the linear complex associated to the twists  and , which are real multiples of 

. 

 

 

Fig. 10. Spatial cycloid gearing: The skew ruled surfaces  and  are in contact along the line g. 

Referring to Theorem 7, let  be an appropriate 
auxiliary system. Then each curve c attached to  traces conjugate tooth flanks F , F  under the relative 
motions  and , where the flanks are in permanent line contact along the respective poses of 
c under . More general, each surface attached to  envelopes conjugate tooth flanks under these 
motions. 

4  CONCLUSIONS 

We discussed two methods for designing tooth flanks of spatial gears from the geometric point of view. 
Further studies will be necessary to optimize the design by checking the quality of the transmission. We 
are convinced that the spatial involute gearing is important in practice, in particular when the relative 
position of the wheels' axes , need to be 
locally variable. In view of the spatial Camus principle, it remains open whether non-developable ruled 
surfaces with their hyperbolic surface points can be used as tooth flanks in practice. However, this 
method as well as its generalizations deserve interest as they provide flanks with a permanent line 
contact. 
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