THE DESIGN OF SKEW GEARS FROM THE GEOMETRIC POINT OF VIEW

Hellmuth Stachel
Vienna University of Technology (AUSTRIA), stachel@dmg.tuwien.ac.at

Abstract

The modeling of the tooth flanks of gears with skew axes still represents a challenge to geometers. The problem is to attach to each wheel a surface such that, during uniform rotations of the two wheels, these surfaces remain in contact at a single point or along a line. We focus on two possibilities for designing simultaneously a pair of conjugate flanks. In both cases we present new proofs and report about new developments. The first possibility dates back to Jack Phillips in 2003. He proved that helical developables serve as conjugate tooth flanks with point contact. Moreover, these types of flanks sustain errors upon assembly. There is even a case with permanent line contact, similar to helical involute gears with parallel axes. As a clarification of Phillips's achievements, particular attention is necessary when the transmission changes from front-to-front to back-to-back. The second solution dates back to Martin Disteli in 1911. Based on the spatial Camus's Theorem, we obtain pairs of skew ruled surfaces which permanently are in contact along a straight line. As an example, we present spatial cycloidal gears and give an outlook to generalizations.

Keywords: Skew gears, cylindroid, involute gearing, cycloid gearing, Camus's Theorem, dual vectors.

1 INTRODUCTION

Designing a gear pair means obtaining a given transmission of the rotations from a driving or input wheel Σ_{2} to a driven or output wheel Σ_{3} by a pair of tooth flanks which are sliding on each other. We address this by focusing on general principles from the geometrical point of view, i.e., without paying attention to all deviations that real gear pairs undergo. To begin with, we recall a very few results on planar gearing, where the wheels' axes are supposed to be parallel, and we quote Phillips's version of the spatial Law of Gearing.

1.1 Involute spur gears

Conventional involute spur gears are regarded as superior in planar gearing. For this type of gearing, which was invented by L. Euler (1765), the tooth profiles c_{2}, c_{3} are circular involutes, i.e., their evolutes are circles b_{2} and b_{3} called base circles. This type of gears is characterized by the condition that the common normal n_{C} to the profiles c_{2} and c_{3} at their contact point C remains fixed in the gear box Σ_{1}, which means that with respect to (w.r.t., for short) Σ_{1} the meshing point C runs along a line.
For involute spur gears the helical tooth flanks are helical developables, also known as helical involutes. These developables \mathcal{F} are swept out by the tangents of a helix s. The right cylinder \mathscr{B} passing through s is called base cylinder and contains the base circle b of the involute spur gear (Fig. 1, left). Helical developables consist of two sheets which meet along the helix s called cuspidal edge. The lower sheet has its convex side pointing upwards w.r.t. the direction of the axis a, the convex side of the upper sheet points downwards (Fig. 1, right). A helical developable is uniquely defined, up to rigid motions, by the radius of the base cylinder and the pitch of the generating helical motion.

The surface normals of a helical developable \mathcal{F} along any generator g are mutually parallel. The congruence of normals consists of lines which enclose a constant angle with the axis and contact the base cylinder. In the case of a left-handed developable the normals are right-twisted w.r.t. the axis. Along each generator g there exists an osculating cone with an axis g^{*} lying on the base cylinder and with its apex at the cuspidal point C^{*} of g, i.e., its contact point with the cuspidal edge s (Figs. 1, left, and 6).

Fig. 1. Helical developable \mathscr{F}. Left: the lower sheet of \mathscr{F} with the involute c of the circle b as cross section. Right: the two sheets of \mathscr{F} meet on the cuspidal edge s, a helix on the base cylinder \mathscr{B}.

1.2 Camus's principle in the plane

The following theorem is attributed to C.É.L. Camus (1733), but most probably it dates back to Ph. de La Hire (1674) or Olaf Rømer (note [3]). It turns out that Camus's Theorem provides the most general principle of gearing, i.e., each pair of conjugate tooth profiles can be defined this way. ${ }^{1}$

Theorem 1 (Camus's Theorem). If an auxiliary curve p_{4} rolls on the pitch circles p_{2} and p_{3}, then any point C attached to p_{4} traces conjugate profiles c_{2} and c_{3}, respectively.
We rephrase this theorem by introducing an additional frame Σ_{4}, where the auxiliary curve p_{4} is attached to. Let us assume that, simultaneously with the two rotating wheels Σ_{2} and Σ_{3} the auxiliary frame Σ_{4} moves w.r.t. the gear box Σ_{1} in such a way that $p_{4} \subset \Sigma_{4}$ rolls on p_{2} and p_{3} and all mutual contacts take place at the pitch point $I_{42}=I_{43}=I_{32}$ fixed in Σ_{1}. If C is any point attached to Σ_{4} and different from I_{32}, then the trajectories c_{2} and c_{3} of C under the relative motions Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3}, respectively, are in contact at C, since the respective path normals pass through the common pitch point $I_{42}=I_{43}=I_{32}$. Hence, $c_{2} \subset \Sigma_{2}$ and $c_{3} \subset \Sigma_{3}$ satisfy the planar Law of Gearing.

As an extension of Camus's classical result, not only the trajectories of points attached to Σ_{4}, but also the envelopes of curves attached to Σ_{4} under the motions Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3} are conjugate profiles.

Fig. 2. Left: The dual angle $\widehat{\varphi}=\varphi+\varepsilon \varphi_{0}$ between two oriented lines \hat{g} and \hat{h} is a composition of the signed angle φ and the distance φ_{0} with the dual unit ε. Right: The instantaneous screw motion with the twist $\hat{q}_{32}=\widehat{\omega}_{32} \widehat{p}_{32}$ is defined by the oriented axis \hat{p}_{32} and the dual angular velocity $\widehat{\omega}_{32}=\omega_{32}+\varepsilon \omega_{320}$.

[^0]
1.3 Basics of spatial gearing

From now on the axes \hat{p}_{21} and \hat{p}_{31} of the two wheels are supposed to be skew. For the mathematical description, dual vectors are an adequate tool to represent oriented lines in space as well as instant screw motions (twists). For the sake of brevity, we skip the introduction into the dual vector calculus and refer only to the literature, e.g., to [8, 2]. At a few places below we will apply this tool. Therefore, we use the usual symbols for dual vectors and numbers as the labels of oriented lines, twists, dual angles, and dual angular velocities (note Fig. 2).

Instead of the pitch circles in the plane, we have in spatial gearing two hyperboloids as the axodes of the relative motion Σ_{3} / Σ_{2} between the two wheels which rotate with the velocities ω_{21} and ω_{31} about the respective axes. The axodes are in contact along the instant screw axis $\widehat{\boldsymbol{p}}_{32}$ called ISA, in short.

Without going into detail, we recall from [6], Chapter 2:
Theorem 2 (Law of Gearing, spatial version). For gears with skew axes \hat{p}_{21} and \hat{p}_{31}, the point C is a meshing point of conjugate tooth flanks $\mathcal{F}_{2}, \mathcal{F}_{3}$ if and only if the common surface normal n_{C} to the flanks at C encloses dual angles $\hat{\beta}_{2}, \widehat{\beta}_{3}$ with the axes \hat{p}_{21} and \hat{p}_{31} (see Fig. 3) such that ${ }^{2}$

$$
\frac{\beta_{20} \sin \beta_{2}}{\beta_{30} \sin \beta_{3}}=\frac{\omega_{31}}{\omega_{21}}
$$

Fig. 3. Law of Gearing for skew gears.

2 PHILLIPS'S SPATIAL INVOLUTE GEARS

In 2003 Jack Phillips published a book [6] where he proved that helical involutes provide a uniform transmission not only for wheels with parallel axes but also for those with skew shafts. Moreover, as well as in the planar case, there is no transmission error in the case of misplacement. In the following, we present some basic results of this type of gearing, but we also focus on one inherent problem which hasn't been extensively discussed in [6] and in the related literature so far.

2.1 The role of helical developables

According to Phillips's definition, spatial involute gears are defined by the condition that during the mesh each meshing point C runs w.r.t. the gear box Σ_{1} along its meshing normal n_{C}. According to the Law of Spatial Gearing (Theorem 2), the contact normal n_{C} at a single meshing point C outside ISA is sufficient

[^1]to determine the transmission ratio of a given spatial gearing. Therefore, Phillips's condition for a fixed meshing normal yields gears for a uniform transmission.
How can we find appropriate tooth flanks?

Fig. 4. The slip tracks are orthogonal trajectories of one regulus of the hyperboloid \mathscr{H}_{2}. Left: The rulings of \mathscr{H}_{2} are normal lines of the helical developable \mathscr{F}_{2} along the slip track c_{2}. Right: Lower sheet of the helical developable \mathscr{F}_{2} with possible slip tracks.

During the mesh, the wheel Σ_{2} rotates w.r.t. Σ_{1} about the axis \hat{p}_{21} with the angular velocity ω_{21}, while the contact point C runs along the fixed line n_{C}. On the other hand, w.r.t. Σ_{2}, point C traces on the tooth flank \mathcal{F}_{2} a curve c_{2} called slip track in [6]. At each point of c_{2} the pose of n_{C} is orthogonal to \mathcal{F}_{2} and therefore also orthogonal to $C_{2} \subset \mathscr{F}_{2}$.

The movement of C against Σ_{2} along c_{2} is the composition C 's movement along n_{C} w.r.t. Σ_{1} and the inverse motion Σ_{1} / Σ_{2} which is the rotation about \hat{p}_{21} with the angular velocity $-\omega_{21}$. During this rotation the line n_{C} sweeps out a one-sheeted hyperboloid of revolution \mathcal{H}_{2} in Σ_{2}. The trace c_{2} of the contact point C w.r.t. Σ_{2} belongs to this hyperboloid and is an orthogonal trajectory of one family of generators on \mathscr{H}_{2}. In Fig. 4, left, such orthogonal trajectories c_{2} are depicted; they have the shape of a 'bed spring curve'.

Each surface that passes through c_{2} with tangent planes τ_{C} orthogonal to the corresponding generators $n_{C} \subset \mathscr{H}_{2}$ serves as a tooth flank \mathcal{F}_{2} for a single point contact on a contact normal n_{C}, which remains fixed in the machine frame Σ_{1}. The simplest choice is the envelope of these planes τ_{C} w.r.t. Σ_{2}.

Theorem 3. Let skew gears with a uniform transmission from Σ_{2} to Σ_{3} be given. If the respective tooth flanks \mathcal{F}_{2} and \mathcal{F}_{3} are in permanent single point contact such that the meshing normal n_{C} remains fixed in the gear box Σ_{1}, then the envelopes of the common tangent planes τ_{C} at the meshing points C w.r.t. Σ_{2} and Σ_{3} are helical developables. For a constant driving velocity ω_{21} the meshing point C runs w.r.t. Σ_{1} with a constant velocity along n_{C}.

Proof. The movement of C w.r.t. Σ_{1} along the fixed line n_{C} is the composition of a rotation about \hat{p}_{21} and a movement along the slip track c_{2}. Therefore, the velocity vector $\boldsymbol{v}_{C \mid 1}$ of C along n_{C} is the sum of the velocity vector $\boldsymbol{v}_{C \mid 21}$ caused by the rotation of Σ_{2} about \hat{p}_{21}, and a tangent vector $\boldsymbol{v}_{C \mid 2}$ to c_{2} orthogonal
to n_{C} and $\boldsymbol{v}_{C \mid 1}$. Fig. 5 shows this decomposition in the top view, i.e., after projection in direction of \hat{p}_{21}, and in a front view, obtained by orthogonal projection into a plane parallel to \hat{p}_{21} and n_{C}.

The rotation about \hat{p}_{21} assigns to C the velocity with

$$
\left\|\boldsymbol{v}_{C \mid 21}\right\|=\left\|\boldsymbol{v}_{C \mid 21}{ }^{\prime}\right\|=\omega_{21} \operatorname{dist}\left(C^{\prime} \hat{p}_{21}{ }^{\prime}\right)=\frac{\left|\omega_{21} \beta_{20}\right|}{|\cos \gamma|} .
$$

This yields for the front view $\left\|v_{C \mid 21}{ }^{\prime \prime}\right\|=\left|\omega_{21} \beta_{20}\right|$. In other words, for each choice of C on the line n_{C} the front view $v_{C \mid 21}$ " has the same length, provided that ω_{21} is constant. Therefore, the velocity $v_{C \mid 1}$ of C along n_{C} is constant, too, namely (Fig. 5) $v_{C \mid 1}=\left\|\boldsymbol{v}_{C \mid 1}\right\|=\left|\omega_{21} \beta_{20} \sin \beta_{2}\right|$ with β_{2} as the slope angle of τ_{c}.

Fig. 5. Velocity analysis of the meshing point C, shown in the front view (above) and the top view (bottom).

The common tangent plane τ_{C} to the tooth flanks at the meshing point C intersects the axis \hat{p}_{21} at a point S, which moves along the axis with the constant velocity $\left|v_{S \mid 1}\right|=\| \boldsymbol{v}_{C \mid 1}| | / \cos \beta_{2}=\left|\omega_{21} \beta_{20} \tan \beta_{2}\right|$. Hence, τ_{C} envelops a helical developable with the axis \hat{p}_{21} and the pitch $h_{2}=\beta_{20} \tan \beta_{2}$. This confirms that each orthogonal trajectory of one regulus on a one-sheeted hyperboloid belongs also to a helical developable (see Fig. 4, right, and note [9], p. 438, or [4], p. 408). ${ }^{3}$ The line g_{2} in τ_{C} with the top view $g_{2}{ }^{\prime}$ coinciding with n_{C} ' (see Fig. 5) is a generator of the envelope.

Conversely, let \mathcal{F}_{2} be the helical developable with axis \hat{p}_{21} and with the cuspidal edge s_{2} on the base cylinder with radius β_{20} and pitch h_{2}. A rotation of \mathcal{F}_{2} about its axis \hat{p}_{21} through the angle φ_{21} together with a translation along \hat{p}_{21} by $\varphi_{21} h_{2}$ transforms \mathscr{F}_{2} into itself. Hence, a pure rotation through φ_{21} has the same effect on \mathcal{F}_{2} (as a whole) like a translation by $-\varphi_{21} h_{2}$. This translation sends a generator g_{2} of \mathcal{F}_{2} with its tangent plane into a parallel line and plane at the distance $-\varphi_{21} h_{2} \cos \beta_{2}$ where tan $\beta_{2}=h_{2} \beta_{20}$ is the slope of s_{2} (see Fig. 5). Consequently, the rotation about its axis through φ_{21} transforms a helical

[^2]involute into an offset ${ }^{4}$ at the distance $-\varphi_{21} \beta_{20} \sin \beta_{2}$, and in accordance with our previous result for $\left\|v_{C \mid 1}{ }^{\prime}\right\|$ we obtain for the signed velocity in the direction of n_{C}
\[

$$
\begin{equation*}
v_{C \mid 1}=-\omega_{21} \beta_{20} \sin \beta_{2} \tag{1}
\end{equation*}
$$

\]

where $\pi / 2+\widehat{\beta}_{2}$ is the dual angle between g_{2} and the axis \hat{p}_{21} (see also Fig. 4 , right).
When \mathscr{F}_{2} rotates with the angular velocity ω_{21}, then the generator $g_{2} \subset \mathscr{F}_{2}$ through the meshing point C remains parallel to itself and moves together with the tangent plane τ_{C} in the direction of $n_{C} \perp \tau_{C}$ with the velocity $v_{C \mid 1}$ given in (1). Suppose that a second helical developable \mathscr{F}_{3} is in contact with \mathscr{F}_{2} at the point C with the common tangent plane τ_{C}. If the two surfaces rotate about their respective axes \hat{p}_{21}, \hat{p}_{31} with angular velocities ω_{21}, ω_{31} such that

$$
\frac{\omega_{31}}{\omega_{21}}=\frac{\beta_{20} \sin \beta_{2}}{\beta_{30} \sin \beta_{3}}
$$

then in both cases the point C together with the common tangent plane τ_{C} is shifted orthogonally to τ_{C} with the same velocity. This means that the contact between the two surfaces is preserved, wheresoever the axes of the two wheels have been located. We realize that the condition above is equivalent to the Law of Gearing in Theorem 2.

Theorem 4 (Jack Phillips's spatial involute gearing). Whenever two helical developables \mathscr{F}_{2} and \mathcal{F}_{3} are in contact at a single point C and rotate about their axes $\hat{p}_{21}, \hat{p}_{31}$ with respective velocities ω_{21}, ω_{31} such that the dual angles $\widehat{\beta}_{2}, \widehat{\beta}_{3}$ between any orientation of the contact normal n_{C} and the axes satisfy the Law of Gearing (Theorem 2, note Fig. 3), then the two surfaces remain in contact with a fixed contact normal n_{C}.Therefore, these surfaces serve as tooth flanks with single point contact for a uniform transmission from \hat{p}_{21} to \hat{p}_{31}, and they sustain errors upon assembly.

Fig. 6. At skew involute gearing the generators g_{2}, g_{3} through the meshing point C enclose a constant angle θ, while they are translated within tangent planes to the respective base cylinders $\mathscr{B}_{2}, \mathscr{B}_{3}$. Simultaneously the osculating cones (green) along the generators g_{2} and g_{3} are translated along their axes $g_{2}{ }^{*} \subset \mathscr{B}_{2}$ and $g_{3}{ }^{*} \subset \mathscr{B}_{3}$.

Remark 1. Note that Theorem 4 includes the case of bevel gears and spur gears, the latter only in the case $\theta=0$. In [6], Chapter 7, involute gears are used for worm gears. A similar application is discussed in [10].

[^3]According to Fig. 5, the generator $g_{2} \subset \mathcal{F}_{2}$ through the meshing point C spans with n_{C} a plane which contacts the base cylinder of \mathcal{F}_{2}. Consequently, g_{2} is orthogonal to the common normal m_{2} of \hat{p}_{21} and n_{C}. Similarly, the plane connecting the generator $g_{3} \subset \mathcal{F}_{3}$ through C with n_{C} contacts the base cylinder of \mathcal{F}_{3} and is orthogonal to the common normal m_{3} of \hat{p}_{21} and n_{C}. Since the four lines g_{2}, g_{3}, m_{2}, and m_{3} are orthogonal to n_{C}, we can conclude from $g_{2} \perp m_{2}$ and $g_{3} \perp m_{3}$ that the angles $\Varangle m_{2} m_{3}$ and $\Varangle g_{2} g_{3}$ are congruent. This confirms a result which was first stated in [7]:

Theorem 5. At spatial involute gearing, the angle θ between the tooth flanks' generators g_{2} and g_{3} through the meshing point C remains constant during the mesh. This angle is congruent to the angle enclosed by the common perpendiculars m_{2} and m_{3} between the meshing normal n_{C} and the respective axes \hat{p}_{21} and \hat{p}_{31} (Fig. 6). In the particular case $\theta=0$ the flanks \mathcal{F}_{2} and \mathcal{F}_{3} are even in permanent contact along a line $g_{2}=g_{3}$, the two axes $\hat{p}_{21}, \hat{p}_{31}$ and the fixed meshing normals n_{C} are parallel to a plane, and the base cylinders of \mathcal{F}_{2} and \mathcal{F}_{3} contact each other.

Remark 2. The case $\theta=0$ is a spatial analogue of involute spur gears with vanishing pressure angle. These gears are not feasible due to the osculation between the conjugate involutes. By the way, the case $\theta=0$ with permanent line contact between the conjugate developable tooth flanks has been included, but not explicitly mentioned in 1922 by E. Stübler in [9], Satz I, where all spatial gears with developable tooth flanks and permanent line contact are characterized.

2.1 Conditions for a physical contact between the tooth flanks

While the meshing point C is running along n_{C} during the mesh, the generator g_{2} varies on \mathcal{F}_{2}. However, w.r.t. the gear box Σ_{1} the line g_{2} remains in the plane through n_{C} and parallel to the axis \hat{p}_{21}. This plane contacts the base cylinder of \mathscr{F}_{2} along the line $g_{2}{ }^{*}$, the locus of the respective cuspidal points $C_{2}{ }^{*}$ of g_{2} and common axis of the cones that osculate \mathscr{F}_{2} along the moving line g_{2} (Fig. 6).

Fig. 7. Two mating involute gears schematically depicted in a view along the common normal n of the two axes \hat{p}_{21} and \hat{p}_{31}. The crossing angle between the axes varies between $\alpha=\Varangle \hat{p}_{21} \hat{p}_{31}=50^{\circ}$ (left) and $\alpha=70^{\circ}$ (right). In both cases, the meshing normal n_{C} (red) is determined as a common tangent of the base cylinders \mathscr{B}_{2} und \mathscr{B}_{3}. It contacts the cylinders at the respective extreme meshing points $C_{2}{ }^{*}$ and $C_{3}{ }^{*}$.

Similarly, the cuspidal points $C_{3}{ }^{*}$ of the generators $g_{3} \subset \mathscr{F}_{3}$ are located on the generator $g_{3}{ }^{*}$ of the base cylinder of \mathscr{F}_{3}, and $g_{3}{ }^{*}$ is the common axis of the osculating cones of \mathscr{F}_{3} along the moving generator g_{3} through the meshing point.
As long as the meshing point C lies between $C_{2}{ }^{*}$ and $C_{3}{ }^{*}$, we have external gears and the convex sides of the developables \mathcal{F}_{2} and \mathcal{F}_{3} are meeting. Otherwise there is an undercut since the convex side of one developable meets the concave side of the other; the helical developables intersect each other in the
neighbourhood of the contact point. The only exception with locally non-intersecting internal gears is possible for $\theta=0$.

Case $\boldsymbol{\theta} \neq 0$: A feasible contact between \mathscr{F}_{2} and \mathscr{F}_{3} can only take place between the respective cross sections in planes passing through $C_{2}{ }^{*}$ and $C_{3}{ }^{*}$. This terminates the mesh of the developables \mathscr{F}_{2} and \mathcal{F}_{3} without restricting the uniform transmission. We demonstrate this in an example:
Fig. 7 shows the schematic contours of two involute gears if seen along the common perpendicular n of the axes \hat{p}_{21} and \hat{p}_{31}. The two pictures show the gears in two different meshing poses. While the distance α_{0} between the axes remains the same, the crossing angle α varies between 50° and $70^{\circ} .{ }^{5}$ The respective meshing normal n_{C} is determined as a common tangent of the respective base cylinders \mathscr{B}_{2} und \mathscr{B}_{3} and encloses given angles β_{2} and β_{3} with the axes. Moreover, depending on the given helical tooth flanks \mathscr{F}_{2} and \mathcal{F}_{3}, the meshing normal must be respectively right-twisted or left-twisted to the axes. Apparently, the variation of the crossing angle α influences the extreme meshing points $C_{2}{ }^{*} \in \mathscr{B}_{2}$ and $C_{3}{ }^{*} \in \mathscr{B}_{3}$ as well as that of the extreme crossing sections, and moreover the addendum- and dedendumhyperboloids (not depicted).
In order to obtain involute gears for the reversed rotation or the driving wheel, we exchange the upper and lower helical developables as tooth flanks. ${ }^{6}$ This can be carried out by reflecting \mathscr{F}_{2} and \mathscr{F}_{3} simultaneously in the common normal n of the axes, called center distance line. This reflection does not change the base cylinders while their common tangent n_{C} is sent to the meshing normal \bar{n}_{C} of the reflected surfaces $\overline{\mathcal{F}}_{2}$ and $\overline{\mathcal{F}}_{3}$ (Fig. 8 , left ${ }^{7}$). The reflected extreme meshing points $\bar{C}_{2}{ }^{*}$ and $\bar{C}_{3}{ }^{*}$ indicate the terminating cross sections from the viewpoint of the reversed rotations. Consequently, involute gears can be used for rotations in both driving directions only if the common perpendicular n lies between the terminating cross sections of both wheels. However, this is necessary, but not sufficient, as Theorem 6 reveals.

Case $\boldsymbol{\theta}=0$: As stated in Theorem 5, in this case the two base cylinders contact each other, i.e. $\alpha=\beta_{2}$ $+\beta_{3}$ and $\alpha_{0}=\beta_{20}+\beta_{30}$ (see Fig. 8, right). The conjugate sheets of the tooth flanks contact along a line. This means that the meshing normal n_{C} is not unique but can be translated locally within the common tangent plane of the two base cylinders \mathscr{B}_{2} and \mathscr{B}_{3}. It is still true that on each meshing normal n_{C} at all points C between the contact points $C_{2}{ }^{*}$ and $C_{3}{ }^{*}$ the convex side of \mathscr{F}_{2} touches the convex side of \mathscr{F}_{3} (Fig. 6).
This case is sensitive against misplacement. If there is any incorrectness, then instead of a line contact between the tooth flanks there will only be a single point contact.
In the summary below the term interior of a wheel stands for the space inside the addendum hyperboloid or cylinder and between the terminating cross sections.

Theorem 6. Referring to the previous notation with n_{C} and \bar{n}_{C} being symmetric w.r.t. the center distance line n, a pair of skew involute gears can transmit rotations in both directions with the same dual angles $\widehat{\beta}_{2}, \widehat{\beta}_{3}$ if and only if
(i) The point of the meshing normals n_{C} and \bar{n}_{C} in the interiors of the wheels lie between the terminating points $C_{2}{ }^{*}, C_{3}{ }^{*}$ and their mirrors $\bar{C}_{2}{ }^{*}, \bar{C}_{3}{ }^{*}$, respectively, and

[^4](ii) the interiors of both wheels share a common segment on n_{C} as well as on \bar{n}_{C}. In the case $\theta=0$ one meshing normal n_{C} out of infinitely many is sufficient.

Fig. 8. Left: This view in direction of the common perpendicular n shows schematically the maximum dimensions of involute gears which can transmit rotations in both directions. Right: Case $\theta=0$ with a permanent contact of the tooth flanks (indicated by the green osculating cones) along $g_{2}=g_{3}$.

3 THE SPATIAL CAMUS PRINCIPLE

Martin Disteli was the first who proved that a version of Camus's principle (Theorem 1) is even valid in space. It yields conjugate tooth flanks in the form of non-developable ruled surfaces which are in permanent contact along a straight line. Here we only lay out the basic ideas.

Let the motions of two gears be given, i.e., the rotations $\Sigma_{2} / \Sigma_{1}, \Sigma_{3} / \Sigma_{1}$ about fixed skew axes \hat{p}_{21} and \hat{p}_{31} with angular velocities ω_{21}, ω_{31}, respectively. Similar to the planar case we ask: is there an auxiliary system Σ_{4} which can move in such a way that the motions Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3} have twists with the same axis \hat{p}_{32} and the same pitch $h_{32}=\omega_{320} / \omega_{32}$, as pertaining to the relative motion Σ_{3} / Σ_{2} of the two gears?

This means in terms of dual vectors: Given the twists $\hat{q}_{21}=\omega_{21} \hat{p}_{21}$ and $\hat{q}_{31}=\omega_{31} \hat{p}_{31}$ with $\omega_{21}, \omega_{31} \in \mathbb{R}$ (note Fig. 2), we seek a system Σ_{4} such that $\hat{p}_{42}=\hat{p}_{43}=\hat{p}_{32}$ and the dual velocities are proportional, i.e., there are factors $\lambda_{2}, \lambda_{3} \in \mathbb{R}$ such that $\widehat{\omega}_{42}=\lambda_{2} \widehat{\omega}_{32}, \widehat{\omega}_{43}=\lambda_{3} \widehat{\omega}_{32}$ and consequently $\hat{q}_{42}=\lambda_{2} \hat{q}_{32}$ and $\hat{q}_{43}=$ $\lambda_{3} \hat{q}_{32}$.

Upon recalling the spatial Aronhold-Kennedy Theorem we obtain $\hat{q}_{41}-\hat{q}_{21}=\lambda_{2}\left(\hat{q}_{31}-\hat{q}_{21}\right)$ and $\hat{q}_{41}-\hat{q}_{31}=$ $\lambda_{3}\left(\hat{q}_{31}-\hat{q}_{21}\right)$, hence, $\lambda_{2}-\lambda_{3}=1$ and

$$
\begin{equation*}
\hat{q}_{41}=\widehat{\omega}_{41} \hat{p}_{41}=\lambda_{2} \hat{q}_{31}+\left(1-\lambda_{2}\right) \hat{q}_{21}=\lambda_{2} \omega_{31} \hat{p}_{31}+\left(1-\lambda_{2}\right) \omega_{21} \hat{p}_{21} . \tag{2}
\end{equation*}
$$

The twist \hat{q}_{41} is an affine combination of \hat{q}_{21} and \hat{q}_{31}. This implies (see, e.g., [1]) that the instant axis \hat{p}_{41} is located on Plücker's conoid \boldsymbol{e} (Fig. 9) defined by the given gear axes \hat{p}_{21} and \hat{p}_{31}. Conversely, as long as \hat{p}_{41} lies on \mathcal{C} and the dual velocity $\widehat{\omega}_{41}$ satisfies (2), Σ_{4} serves as an auxiliary frame. For details, the reader is referred to [2].

Theorem 7 (Spatial Camus's Theorem). Let two wheels Σ_{2}, Σ_{3} with skew axes $\hat{p}_{21}, \hat{p}_{31}$ and angular velocities ω_{21}, ω_{31} be given. If an auxiliary system Σ_{4} moves such that the instant screw axis \hat{p}_{41} of Σ_{4} / Σ_{1} is permanently located on Plücker's conoid \mathcal{E} and the twist \hat{q}_{41} satisfies (2), then for any line g attached to Σ_{4} the ruled surfaces $\mathscr{F}_{2}, \mathcal{F}_{3}$ traced by g under the relative motions Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3}, respectively, are conjugate tooth flanks of Σ_{3} / Σ_{2}. During the mesh these flanks remain in contact along straight lines.

Fig. 9. Plücker conoid \mathbb{e} with the wheels' axes \hat{p}_{21} and \hat{p}_{31}, with the ISA \hat{p}_{32} and the instant screw axis \hat{p}_{41} of an auxiliary system Σ_{4}.

If a parametrized set of instant axes $\hat{p}_{41} \subset \boldsymbol{e}$ is given, then in general an integration is necessary to get an explicit representation of the auxiliary motion Σ_{4} / Σ_{1}. However, we can follow M. Disteli on his approach to generalizing the planar or spherical cycloidal gearing: We keep the axis \hat{p}_{41} of Σ_{4} / Σ_{1} fixed in the machine frame on \mathcal{C} and simultaneously move Σ_{2} with the twist \hat{q}_{21} and Σ_{3} with the twist \hat{q}_{31}. Furthermore, we move Σ_{4} about the fixed axis \hat{p}_{41} with the pitch $h_{4}=\omega_{410} / \omega_{41}$ such that the relative axes \hat{p}_{42} and \hat{p}_{43} coincide permanently with \hat{p}_{32}. Under these motions the axodes of the relative motions $\Sigma_{3} / \Sigma_{2}, \Sigma_{4} / \Sigma_{2}$ and Σ_{4} / Σ_{3} are obtained by applying the inverse motions, $\Sigma_{1} / \Sigma_{2}, \Sigma_{1} / \Sigma_{3}$ and Σ_{1} / Σ_{4}, to the ISA \hat{p}_{32}, which is fixed in Σ_{1} (Fig. 10). Note that the spatial analogues of the circles p_{2} and p_{3} from Theorem 1 are one-sheeted hyperboloids, while the circle p_{4} is replaced by a helical ruled surface, the trace of the ISA \hat{p}_{32} under the helical motion Σ_{4} / Σ_{1}.

3.1 A generalization

The formal replacement of unit vectors of \mathbb{R}^{3} by dual vectors allows to transfer theorems from spherical geometry to spatial geometry. This process, which sends points of the unit sphere to oriented lines in 3space, is called Principle of Transference or Dualization. In this sense, the dualization of conjugate spherical tooth profiles yields ruled tooth flanks for skew gears. For the dualization of the Camus principle it is important to notice that the real coefficients in (2), namely λ_{2} and ($1-\lambda_{2}$), are already known from the spherical analogue. Hence, there is a unique solution for the twists of the corresponding spatial auxiliary motion which leads to conjugate skew ruled tooth flanks.

We can generalize: For each auxiliary system Σ_{4}, chosen according to Theorem 7, the twists $\hat{q}_{42}, \hat{q}_{43}$ and \hat{q}_{32} of the respective motions $\Sigma_{4} / \Sigma_{2}, \Sigma_{4} / \Sigma_{3}$ and Σ_{3} / Σ_{2} are proportional over \mathbb{R}. Consequently, each space point C attached to Σ_{4} has proportional tangent velocity vectors $\boldsymbol{v}_{C \mid 42}, \boldsymbol{v}_{C \mid 43}$, and $\boldsymbol{v}_{C \mid 32}$. Hence, the tangent lines at C to the respective trajectories are identical. Therefore, we can replace the line g (which is strictly dual to a point on the unit sphere) by an arbitrary curve c through C and attach it to Σ_{4}. Then the surfaces $\mathscr{F}_{2}, \mathscr{F}_{3}$ swept out by c under Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3} are conjugate tooth flanks, since at each point $C \in c$ the tangent plane to both flanks is spanned by the tangent lines to c and to the respective
trajectory. This is true even when the path contacts c since in this case the contact point C is a singularity of \mathscr{F}_{2} and \mathscr{F}_{3}.

Moreover, we can even replace the curve c by any surface S attached to the auxiliary system Σ_{4}. The conditions for being an enveloping point of S under Σ_{4} / Σ_{2} and Σ_{4} / Σ are the same, namely, that the contact normal is included in the linear complex associated to the twists \hat{q}_{42} and \hat{q}_{43}, which are real multiples of \widehat{q}_{32}.

Fig. 10. Spatial cycloid gearing: The skew ruled surfaces \mathscr{F}_{2} and \mathscr{F}_{3} are in contact along the line g.

Theorem 8 (Spatial Camus's Principle, generalized). Referring to Theorem 7, let Σ_{4} be an appropriate auxiliary system. Then each curve c attached to Σ_{4} traces conjugate tooth flanks F_{2}, F_{3} under the relative motions Σ_{4} / Σ_{2} and Σ_{4} / Σ_{3}, where the flanks are in permanent line contact along the respective poses of c under Σ_{4} / Σ_{1}. More general, each surface attached to Σ_{4} envelopes conjugate tooth flanks under these motions.

4 CONCLUSIONS

We discussed two methods for designing tooth flanks of spatial gears from the geometric point of view. Further studies will be necessary to optimize the design by checking the quality of the transmission. We are convinced that the spatial involute gearing is important in practice, in particular when the relative position of the wheels' axes, i.e., the crossing angle α and the shortest center distance α_{0}, need to be locally variable. In view of the spatial Camus principle, it remains open whether non-developable ruled surfaces with their hyperbolic surface points can be used as tooth flanks in practice. However, this method as well as its generalizations deserve interest as they provide flanks with a permanent line contact.

REFERENCES

[1] Disteli, M. (1911). Über die Verzahnung der Hyperboloidräder mit geradlinigem Eingriff. Z. Math. Phys. 59, pp. 244-298.
[2] Figliolini, G., Stachel, H., Angeles, J. (2007). A new look at the Ball-Disteli diagram and its relevance to spatial gearing. Mech. Mach. Theory 42(10), pp. 1362-1375.
[3] Figliolini, G., Stachel, H., Angeles, J. (2013). On Martin Disteli's spatial cycloidal gearing. Mech. Mach. Theory 60(1), pp. 73-89.
[4] Odehnal, B., Stachel, H., Glaeser, G. (2020). The Universe of Quadrics. Springer Spectrum, Berlin, Heidelberg.
[5] Pennock, G.R. (2023). Jack Raymond Phillips (1923-2009). In Ceccarelli, M., Gasparetto, A. (eds). Distinguished Figures in Mechanism and Machine Science. History of Mechanism and Machine Science, vol. 41. Springer, Cham, pp. 137-161, https://doi.org/10.1007/978-3-031-18288-4_5
[6] Phillips, J. (2003). General Spatial Involute Gearing. Springer, Berlin, Heidelberg.
[7] Stachel, H. (2004). On Jack Phillips' Spatial Involute Gearing. Proceedings 11th International Conference on Geometry and Graphics, Guangzhou, P.R. China, pp. 43-48.
[8] Stachel, H. (2006). Teaching Spatial Kinematics for Mechanical Engineering Students. Proceedings 5th Aplimat, Bratislava/Slovak Republic (ISSN 80-967305-4-1), Part I, pp. 201-209.
[9] Stübler, E. (1922). Über hyperboloidische Verzahnung. Z. Angew. Math. Mech. 2, pp. 429-446.
[10] Xinxin Ye, Yonghong Chen, Binbin Lu, Wenjun Luo, Bingkui Chen (2022). Study on a novel back-lash-adjustable worm drive via the involute helical beveloid gear meshing with dual-lead involute cylindrical worm. Mech. Mach. Theory 167, https://doi.org/10.1016/j.mechmachtheory.2021.104466

[^0]: ${ }^{1}$ To be precise, all profiles except their points which are located on the tangent to the pitch circles at the common pitch point.

[^1]: ${ }^{2}$ The following formula is equivalent to the statement that n_{C} belongs to the linear line complex of path normals of the relative motion Σ_{3} / Σ_{2} with the twist $\hat{q}_{32}=\omega_{31} \hat{p}_{31}-\omega_{21} \hat{p}_{21}$.

[^2]: ${ }^{3}$ The top view of c_{2} is the trajectory of a point under an involute motion where a line as the moving pitch curve rolls on a circle. For points C of c_{2} on the generator g_{2} of \mathscr{F}_{2}, the distance d to the cuspidal point C^{*} of g_{2} increases with the constant signed velocity $v_{S} \sin \beta_{2}$ (note Fig. 5). Therefore, two different slip tracks cut the generators of \mathcal{F}_{2} in pieces of equal lengths.

[^3]: ${ }^{4}$ This is the spatial counterpart to a similar property of circular involutes in the plane.

[^4]: ${ }^{5}$ The other data used in Fig. 7 are $\alpha_{0}=62.4 \mathrm{~mm}$ (= distance $\hat{p}_{21} \hat{p}_{31}$), $\beta_{2}=\Varangle \hat{p}_{21} n_{C}=54.0^{\circ}, \beta_{20}=33.6 \mathrm{~mm}, \beta_{3}=\Varangle \hat{p}_{31} n_{C}=47.347^{\circ}$, $\beta_{30}=24.6 \mathrm{~mm}$ (compare with Fig. 3), $\theta=114.27^{\circ}$ (left) and $\theta=84.58^{\circ}$ (right), transmission ratio $\omega_{31}: \omega_{21}=-3: 2$. The upper sheet of \mathscr{F}_{2} contacts the lower sheet of \mathcal{F}_{3}.
 ${ }^{6}$ Phillips mentions in [6] that for the backs of the teeth once more the principles of involute actions have to be applied. His book [6] shows pictures with flanks on one side (e.g., Fig. 4.11) and others with complete teeth (e.g., Figs. 5B.13 or 7.04). The latter indicate that the base cylinders and the angles β_{2} and β_{3} for both sides seem to be rather the same. In our study we restrict us only to this assumption and exchange upper and lower sheets of the developables.
 ${ }^{7}$ The dimensions of the example depicted in Fig. 8, left, are: $\alpha=\Varangle \hat{p}_{21} \hat{p}_{31}=62.0^{\circ}$, distance between the axes $\alpha_{0}=70.6 \mathrm{~mm}, \beta_{2}$ $=\Varangle \hat{p}_{21} n_{C}=54.0^{\circ}, \beta_{20}=33.0 \mathrm{~mm}, \beta_{3}=\Varangle \hat{p}_{31} n_{C}=43.147^{\circ}, \beta_{30}=26.0 \mathrm{~mm}, \theta=94.21^{\circ}$, transmission ratio $\omega_{31}: \omega_{21}=-3: 2$. The upper sheet of \mathscr{F}_{2} contacts the lower sheet of \mathscr{F}_{3}.

