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Abstract. Henrici’s flexible hyperboloid consists of rods chosen as
generators of both reguli of a one-sheeted hyperboloid. If each crossing
point between two rods is materialized as a spherical joint, then the
hyperboloid can vary within a confocal family terminated by two flat
poses. After presenting the main properties of Henrici’s hyperboloid, we
restrict the variation to a quadrangle with sides along generators. This
induces a one-parameter transformation of the quadrangle where the
side lengths are preserved. When we connect points of opposite sides
by taut strings along additional generators, then the strings remain
taut during the transformation. However, a continuous transformation
is possible only with spherical joints at the four vertices.
As an alternative, we can pick out two sufficiently close poses. Then,
it is possible to find appropriate revolute joints at the vertices that
enable a physical model of this spatial four-bar to snap from one pose
into the other, provided that the material of the bars and clearances
of the joints admit tiny deformations. Also a converse is true: For
each snapping four-bar we find a hyperboloid such that the two poses
originate from a Henrici flex. Consequently, a net of taut strings
spanned along additional generators of the hyperboloid is compatible
with the snapping of the quadrangular frame.
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1 Introduction
At the turn from the 19th to the 20th century it became fashion to
produce physical models for visualizing mathematical objects and phe-
noma. These models were spread all over the world due to catalogues in
form of books [5]. Today only at a few places some of these historical
models are available, e.g., at the Vienna Institute of Technology under
https://www.geometrie.tuwien.ac.at/modelle/.

We begin with the explanation of Henrici’s hyperboloid (Figure 1).
It was found in 1874 by Olaus Henrici, a German mathematician, who
became director of the Laboratory of Mechanics at the University Col-
lege London. The flexibility of this structure follows from properties of
confocal central quadrics (see, e.g., [2]). A similar structure exists for
hyperbolic paraboloids.

The restriction of the hyperboloid to a quadrilateral of four generators
leads to a flexible quadrangle where the flex is compatible with a net of
taut strings spanned along additional generators between opposite sides.
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Fig. 1: Left: Henrici’s flexible hyperboloid. Right: H. Wiener’s design of
approximate spherical joints.

We discuss the question whether the spherical joints can be replaced by
revolute joints which extends the quadrangle to a spatial four-bar, i.e.,
a closed kinematic 4R-chain. It is well-known that a spatial four-bar is
continuously flexible only in three cases: Either the axes are parallel or
concurrent, or the common perpendiculars between neighboring axes form
an isogram, i.e., a quadrangle with opposite sides of equal lengths. In the
latter case we obtain a Bennet mechanism (see, e.g., [2, p. 555–559]).

2 Henrici’s hyperboloid
The one-parameter family of quadrics being confocal with the triaxial
ellipsoid E with semiaxes a, b, c is given as

Fk(x, y, z) :=
x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
= 1 (1)

with the parameter k ∈ R \ {−a2,−b2,−c2}. If a > b > c > 0, then this
family contains (see Figure 2)

for





−c2 < k < ∞ triaxial ellipsoids,

−b2 < k < −c2 one-sheeted hyperboloids,

−a2 < k < −b2 two-sheeted hyperboloids.
(2)

Their curves of intersections with the coordinate planes share the respec-
tive focal points. As the limits for k → −c2 and k → −b2 occur ‘flat’
quadrics bounded by one of the focal conics (see [1, p. 137]).
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Fig. 2: Confocal central quadrics. The curves of intersection between the
triaxial ellipsoid E and the confocal hyperboloids H and H(2) are lines of
curvature on E .

Through each given point P in space away from the common planes
of symmetry, the confocal family sends three mutually orthogonal sur-
faces, one of each type (Figure 2). Due to Dupin’s theorem, the confocal
surfaces intersect each other along curvature lines. The respective pa-
rameters (k1, k2, k3) of the ellipsoid, the one-sheeted and the two sheeted
hyperboloid passing through P are called elliptic coordinates of P , where
k1 > −c2 > k2 > −b2 > k3 > −a2. They are related to the Cartesian
coordinates (x, y, z) via

x2 =
(a2+ k1)(a

2+ k2)(a
2+ k3)

(a2 − b2)(a2 − c2)
, y2 =

(b2+ k1)(b
2+ k2)(b

2+ k3)

(b2 − c2)(b2 − a2)
,

z2 =
(c2+ k1)(c

2+ k2)(c
2+ k3)

(c2 − a2)(c2 − b2)
.

(3)

Apparently, eight points in space, symmetrically placed w.r.t. the coordi-
nate frame, share the elliptic coordinates.

Suppose that the coordinate k2 varies, while k1 and k3 and the signs
of Cartesian coordinates remain constant. Then, this induces a smooth
transformation of the one-sheeted hyperboloid H within the confocal fam-
ily, while its points run along orthogonal trajectories of the hyperboloids.
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From (3) follows that aligned points of H, i.e., points which are mutually
conjugate with respect to H, remain aligned during the flex. Thus, H
undergoes an affine motion. During the variation of k2 the angle between
any two intersecting generators of H varies as well as the distribution pa-
rameter of the generators. Therefore spherical joints are necessary at all
crossing points of Henrici’s hyperboloid (Figure 1, right).

Theorem 1. Referring to the elliptic coordinates as explained before,
when k2 varies, while k1, k3 remain unchanged, then during the induced
smooth transformation of the hyperboloid H the points placed on any gen-
erator remain aligned and their mutual distances are preserved.

A similar result holds for confocal hyperbolic paraboloids.

3 Snapping spatial four-bars
Let P1P2P3P4 be a quadrangle with sides located on generators of the
hyperboloid H. Then during the flex of H we obtain spatial quadran-
gles P ′

1P
′
2P

′
3P

′
4 with equal side lengths, i.e., PiPi+1 = P ′

iP
′
i+1 for all

i ∈ {1, . . . , 4} (subscripts modulo 4); we call two quadrangles with equal
side lengths isometric. Moreover, as shown in Figure 3, in the interior of
the quadrangles additional generators of H can be materialized as strings,
and they remain taut during the flex.

For any given quadrangle, there exists a two-parametric set of isomet-
ric quadrangles, up to rigid motions, since there is a free choice of the
interior angle <) P4P1P2 and of the bending angle along the diagonal P4P2

between the planes [P4, P1, P2] and [P2, P3, P4]. The pairs of isometric
quadrangles P1 . . . P4 and P ′

1 . . . P
′
4 obtained by Henrici’s movement are

in a particular relative position: The pedal points of the common perpen-
dicular between the lines [Pi, Pi+1] and [Pi, Pi+1] are corresponding under
the induced isometry between the generators. Also a converse is true.

Theorem 2. For any two isometric quadrangles P1 . . . P4 and P ′
1 . . . P

′
4

there exists either a hyperboloid H or a hyperbolic paraboloid P pass-
ing through the sides of P1 . . . P4 such that we obtain a congruent copy
of P ′

1 . . . P
′
4 according to Henrici’s transition from H or P to a confocal

quadric.

The proof is based on the singular-value decomposition of the unique
affine transformation the sends P1 . . . P4 and P ′

1 . . . P
′
4. This result reveals

that Henrici’s flexing hyperboloid is not such a particular event as one
could presume.

From now on we concentrate on two poses of a flexing isometric quad-
rangle and ask if the spherical joints at the vertices can be replaced by
revolute joints. This results in a spatial four-bar which possibly can snap
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Fig. 3: Snapping spatial four-bar with the poses P1 . . . P4 and P ′
1 . . . P

′
4,

while the base Σ1 with P1P2 and the axes p1 and p2 is kept fixed.

between two poses, due to slight deformations of the sides and clearances
of the joints. We speak of a snapping four-bar (Figure 4).

Contrary to the situation in the plane or on the sphere, in space there
is a difference between spatial quadrangles and spatial four-bars: The
quadrangle P1 . . . P4 consists of four sides only, while the four-bar is a
loop of four rigid bodies Σ1, . . . ,Σ4 with four revolute joints. We assume
that the body Σi for i ∈ {1, . . . , 4} contains the vertices Pi and Pi+1, and
the corresponding revolute axes pi and pi+1. Then, the two poses of any
snapping four-bar define four displacements

δi : Σi → Σ′
i, Pi 7→ P ′

i , Pi+1 7→ P ′
i+1, pi 7→ p′i, pi+1 7→ p′i+1.

The composition δ−1
i−1 ◦δi must be a rotation as it keeps the point Pi fixed.

Consequently, once the displacements δ1, . . . , δ4 are defined, the axis pi
is uniquely determined as the line which remains pointwise fixed under
δ−1
i−1 ◦ δi.

This leads to a four-parametric choice of revolute axes for any two
given isometric quadrangles. We emphasize one solution which is based
on the Henrici-position according to Theorem 2. We define δi for all i
as the screw motion along the common perpendicular of [Pi, Pi+1] and
[P ′

i , P
′
i+1], that sends the quadrangle’s side PiPi+1 to P ′

iP
′
i+1.

As shown in Figure 3 with the fixed body Σ1, the displacement of Σ3
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Fig. 4: Physical model of a snapping four-bar, produced by D. Huczala

to Σ′
3 is induced by the rotations ρ4 about p4 through ϕ4 and ρ1 about

p1 through ϕ1. However, the same displacement is the composition of the
rotation ρ−1

3 of Σ3 against Σ2 about p3 through −ρ3 and ρ−1
2 about p2

through −ϕ2. This means,

ρ1 ◦ ρ4 = ρ−1
2 ◦ ρ−1

3 . (4)

Conversely, this condition implies that the displacement of Σ3 to Σ′
3 can

be obtained in two ways which defines a 4R-loop-structure. This condition
can easily be expressed in terms of dual unit quaternions. When expanded
in coordinates, it results in necessary and sufficient conditions for snapping
four-bars in the form of the solvability of an overdetermined system of six
equations for the unkonwn angles ϕ1, . . . , ϕ4.

Note that this condition for snappability depends on the relative po-
sitions of the revolute axes p1, . . . , p4, but not on the specification of the
vertices Pi on the respective axes pi. With other words, one snapping
four-bar implies a four-parametric set of snapping four-bars, since the
four vertices of the quadrangle can independently be modified on the cor-
responding axes. This means, for example, that each Bennet-mechanism
leads to numerous continuously flexible four-bars just by changing the
vertices Pi on the corresponding axes pi.

References
[1] G. Glaeser, H. Stachel, B. Odehnal: The Universe of Conics,

Springer Spectrum, Berlin, Heidelberg 2016
[2] B. Odehnal, H. Stachel, G. Glaeser: The Universe of Quadrics,

Springer Spectrum, Berlin, Heidelberg 2020
[3] H. Stachel: On the flexibility and symmetry of overconstrained mech-

anisms, Phil. Trans. R. Soc. A 372, num. 2008, 20120040 (2014)
[4] W. Wunderlich: Starre, kippende, wackelige und bewegliche Ge-

lenkvierecke im Raum, Elem. Math. 26 (1971), 73–83
[5] H. Wiener: H. Wiener’s Sammlung mathematischer Modelle, B.G.

Teubner, Leipzig 1905

104 Stachel Hellmuth


