Strophoids – cubic curves with remarkable properties

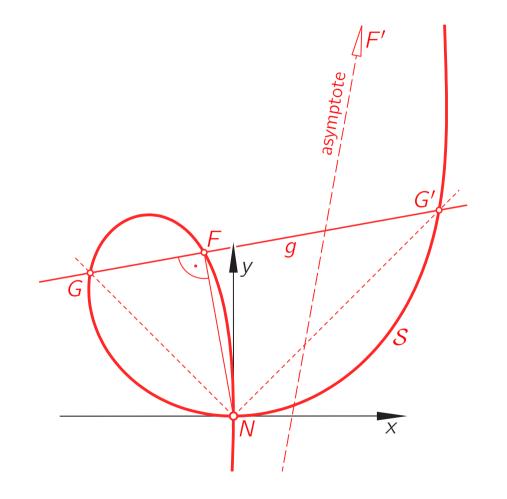
Hellmuth Stachel

stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel

Slovak–Czech Conference on Geometry and Graphics = 24th Symposium on Computer Geometry SCG'2015 = 35th Conference on Geometry and Graphics, Sept. 14–18, Terchová, Slovakia

Table of contents

- 1. Definition of Strophoids
- 2. Associated Points
- 3. Strophoids as a Geometric Locus

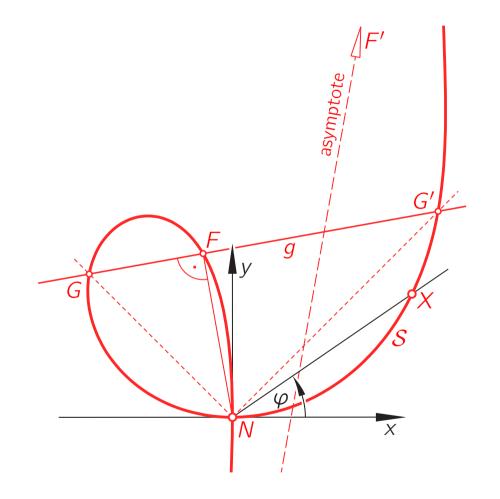


Definition: An irreducible cubic is called **circular** if it passes through the absolute circle-points.

A circular cubic is called **strophoid** if it has a double point (= node) with orthogonal tangents.

A strophoid without an axis of symmetry is called oblique, other-wise right.

 $S: (x^2 + y^2)(ax + by) - xy = 0$ with $a, b \in \mathbb{R}$, $(a, b) \neq (0, 0)$. In fact, S intersects the line at infinity at $(0:1:\pm i)$ and (0:b:-a).



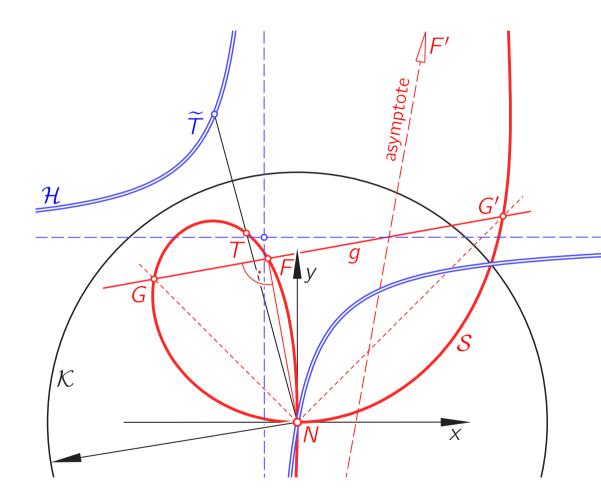
The line through N with inclination angle φ intersects S in the point

$$X = \left(\frac{\mathrm{s}\varphi \,\mathrm{c}^2\varphi}{a\,\mathrm{c}\varphi + b\,\mathrm{s}\varphi}, \frac{\mathrm{s}^2\varphi \,\mathrm{c}\varphi}{a\,\mathrm{c}\varphi + b\,\mathrm{s}\varphi}\right).$$

This yields a parametrization of \mathcal{S} .

 $\varphi = \pm 45^{\circ}$ gives the points *G*, *G'*.

The tangents at the absolute circlepoints intersect in the focus F.



The polar equation of ${\mathcal S}$ is

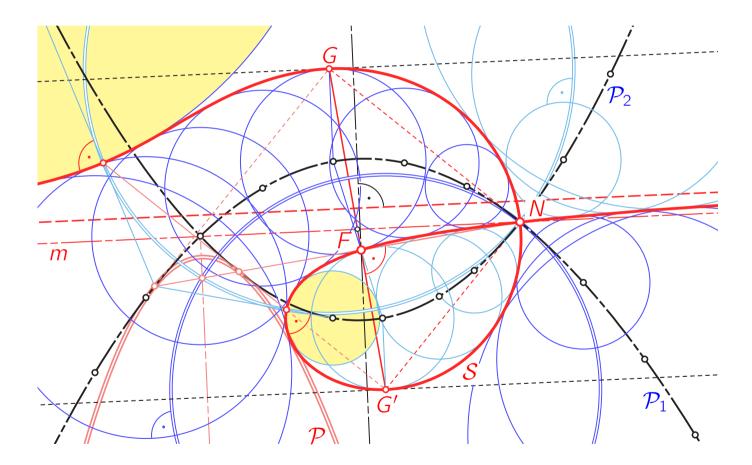
$$\mathcal{S}: r = \frac{1}{\frac{a}{\sin\varphi} + \frac{b}{\cos\varphi}}$$

The inversion in the circle \mathcal{K} transforms \mathcal{S} into the curve \mathcal{H} with the polar equation

$$\mathcal{H}: \ r = \frac{a}{\sin \varphi} + \frac{b}{\cos \varphi}.$$

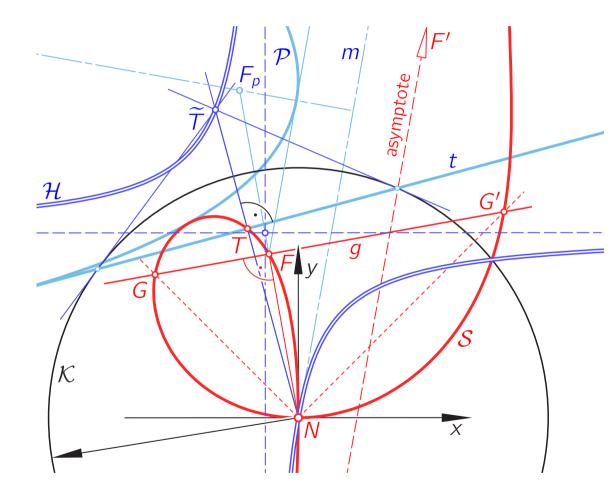
This is an equilateral hyperbola which satisfies

$$\mathcal{H}: (x-b)(y-a) = ab.$$



 \mathcal{H} has two axes of symmetry \implies the inverse curve \mathcal{S} is self-invers w.r.t. two circles through Nwith centers G, G'.

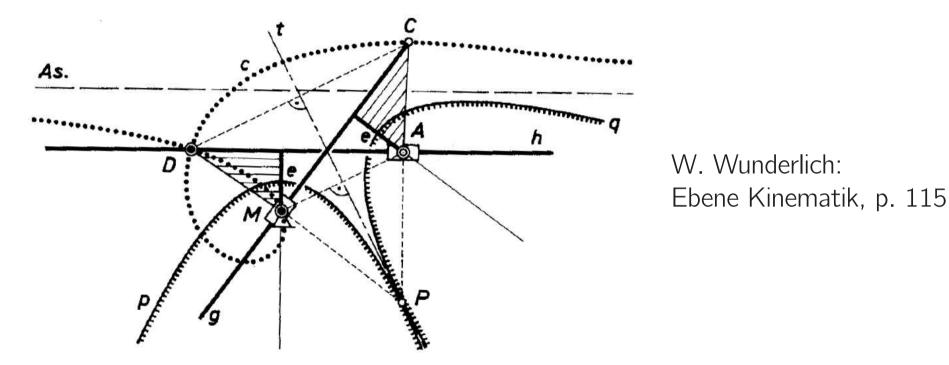
 \mathcal{S} is the envelope of circles centered on confocal parabolas \mathcal{P}_1 and \mathcal{P}_2 .



The product of the polarity and the inversion in \mathcal{K} is the pedal transformation $t \mapsto T$ w.r.t. N. Polar to \mathcal{H} is the parabola \mathcal{P} .

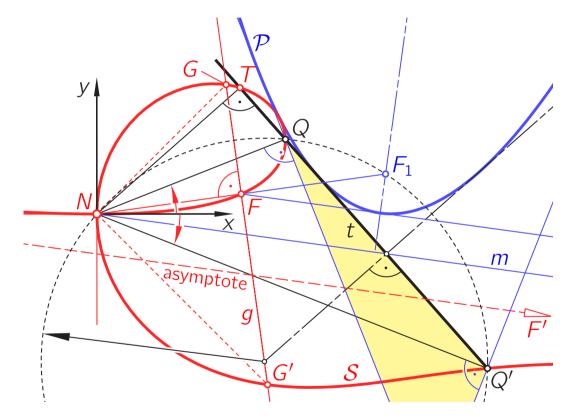
Theorem: The strophoid S is the pedal curve of the parabola \mathcal{P} with respect to N.

The parabola's directrix m is parallel to the asymptote of S. F (on the tangent at the vertex of \mathcal{P}) is the midpoint between Nand the parabola's focus F_p .



as a particular pedal curve of a parabola,

the **strophoid** is a particular trajectory during a blau symmetric rolling of parabolas

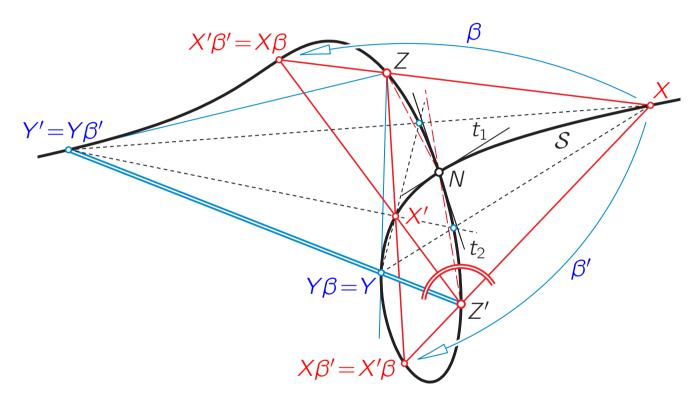


Tangents t of the parabola \mathcal{P} intersect \mathcal{S} beside the pedal point T in two real or conjugate complex points Q and Q'.

Definition: Q and Q' are called **associated points** of S.

Q and Q' are associated iff the lines QN and Q'N are harmonic w.r.t. the tangents at \overline{A} .

For given t, the points Q and Q' lie on a circle centered on g.

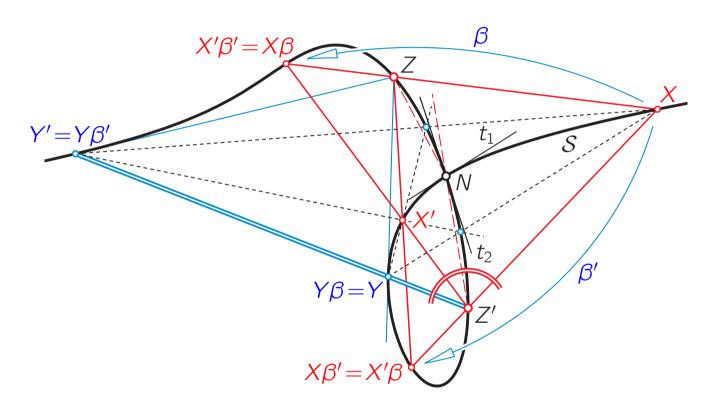


Projective properties of cubics with a node:

There is a 1-1 correspondance between Sand lines through N, except N corresponds to t_1 and t_2 .

The involution α which fixes t_1 , t_2 determines pairs X, X' of associated points.

Involutions which exchange t_1 and t_2 determine involutions β on S with $N \mapsto N$ and several properties, e.g., there exists an 'associated' involution $\beta' = \alpha \circ \beta = \beta \circ \alpha$.

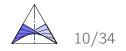


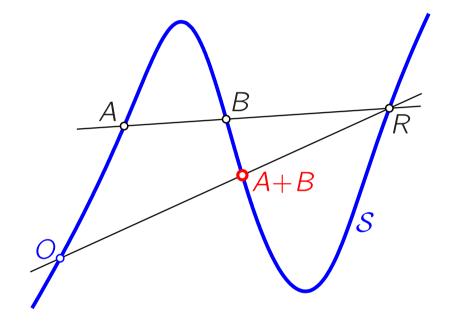
• β has a center Z such that $X, X\beta, Z$ are collinear.

• The centers Z of β and Z' of β' are associated.

• The lines Z'X, $Z'X\beta$ correspond in an involution which fixes Z'N and the line through the fixed points Y, Y' of β .

• For associated points, the diagonal points $XY \cap X'Y'$ and $XY' \cap X'Y$ are again on S. The tangents at corresponding points intersect on S.



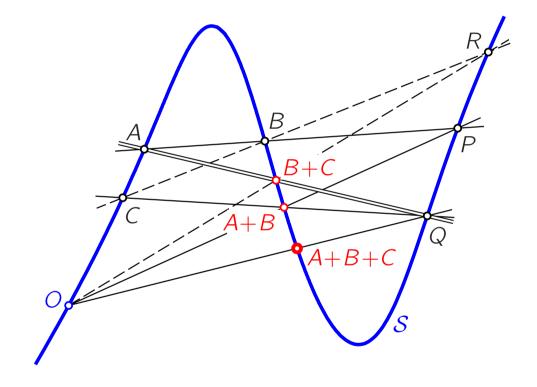


Addition of points

Theorem:

On each irreducible cubic S a commutative group can be defined with an arbitrary chosen point O as neutral element.

Conversely, point B is uniquely defined by A and A + B.

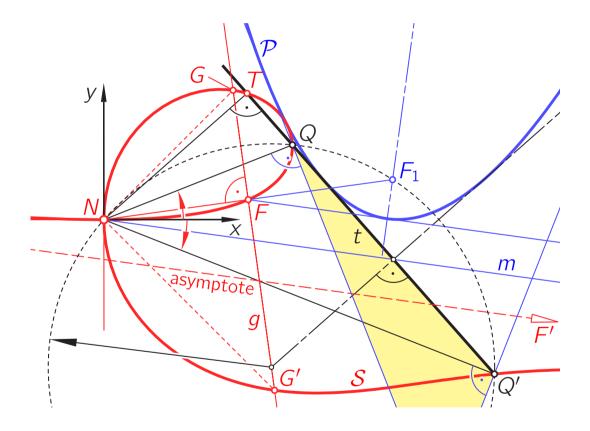


associative law

Theorem:

On each irreducible cubic S a commutative group can be defined with an arbitrary chosen point O as neutral element.

At cubics with a node the group is isomorphic to $(\mathbb{R} \setminus \{0\}, \cdot)$. Pairs of associated points differ only by their sign. *N* corresponds to zero.



On the equicevian cubic \mathcal{S} , the following pairs of points are associated:

- Q, Q',
- the absolute circle-points,
- The focal point *F* and the point *F*' at infinity,
- G, G' on the line $g \perp NF$.

Theorem:

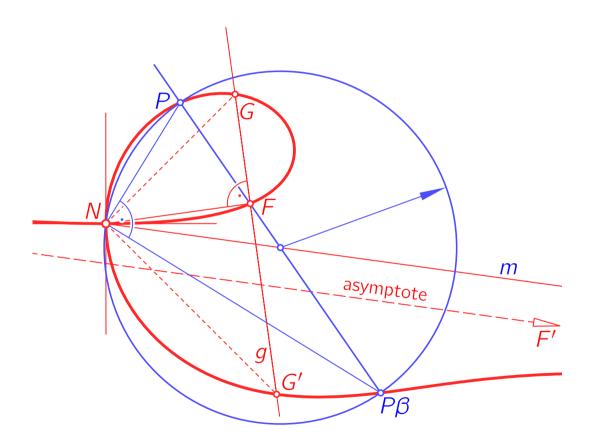
• For each pair (Q, Q') of associated points, the lines NQ, NQ' are symmetric w.r.t. the bisectors t_1 , t_2 of $\Rightarrow BNC$.

• The midpoint of associated points Q, Q' lies on the median m = NF'.

• The tangents of S at associated points meet each other at the point $T' \in S$ associated to the pedal point T on t = QQ'.

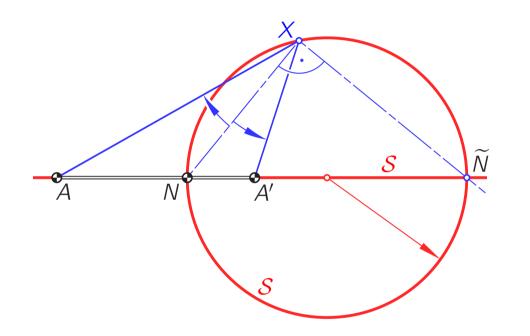
• For each point $P \in S$, the lines PQ and PQ' are symmetric w.r.t. PN.

Other consequences: For each pair (Q, Q') of associated points (as Laguerre-points) the represented two complex conjugate points are again associated points of S.



The right-angle involution at Ninduces an involution β on S. Corresponding points P, $P\beta$ are collinear mit F; their midpoint is on m.

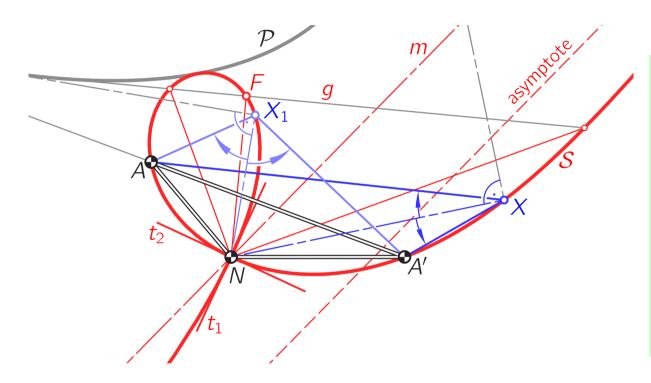
Given $m, N \in m$ and $F \notin m$, the strophoid S is the locus of intersection points between circles through N and centered on m with diameter lines through F.



We recall:

Theorem: Given three aligned points A, A' and N, the locus of points X such that the line XN bisects the angle between XA and XA', is the Apollonian circle.

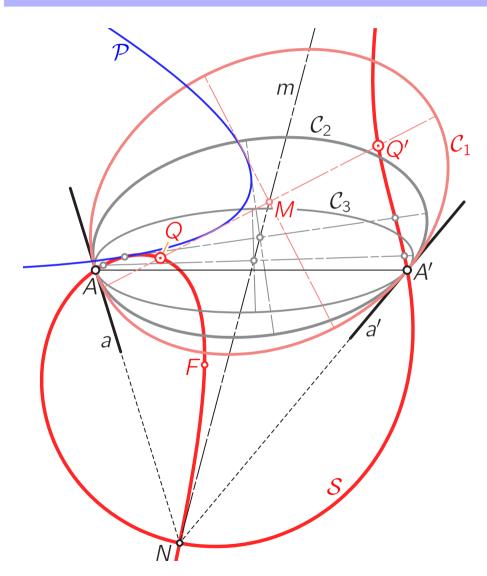
The second angle bisector passes through the point \widetilde{N} harmonic to N w.r.t. A, A'.



Theorem: Given the noncollinear points *A*, *A*' and *N*, the locus of points *X* such that the line *XN* bisects the angle between *XA* and *XA*', is a strophoid with node *N* and associated points *A*, *A*'. This holds also when *A* is at infinity.

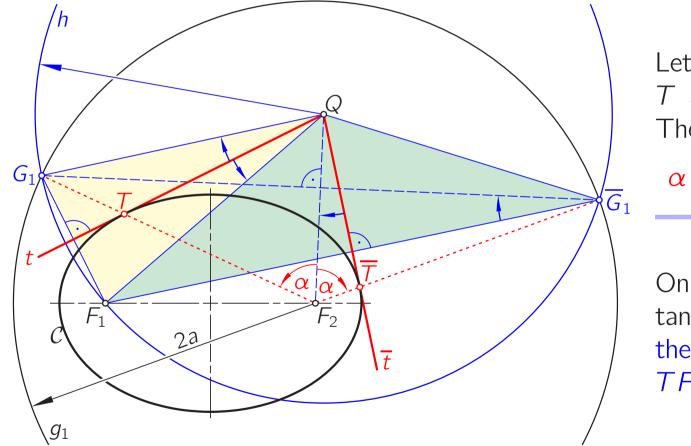
The respectively second angle bisectors are tangent to the parabola \mathcal{P} .

When N is at infinity, then the locus is an equilateral hyperbola.



Theorem: The strophoid S is the locus of focal points (Q, Q') of conics \mathcal{N} which contact line AN at A and line A'N at A'.

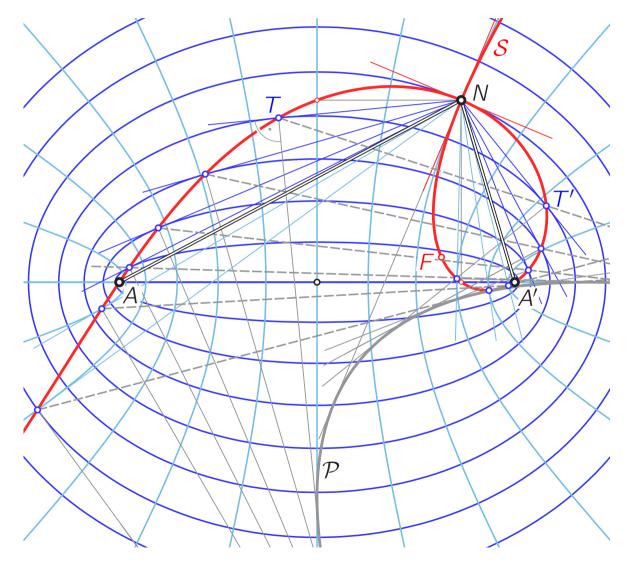
The axes of these conics are tangent to the negative pedal curve, the parabola \mathcal{P} . Therefore, the real focal points are associated — as well as the complex conjugate point.



Let the tangents to C at T and T' intersect at Q. Then

 $\alpha = \cancel{T} F_2 Q = \cancel{Q} F_2 \overline{T}.$

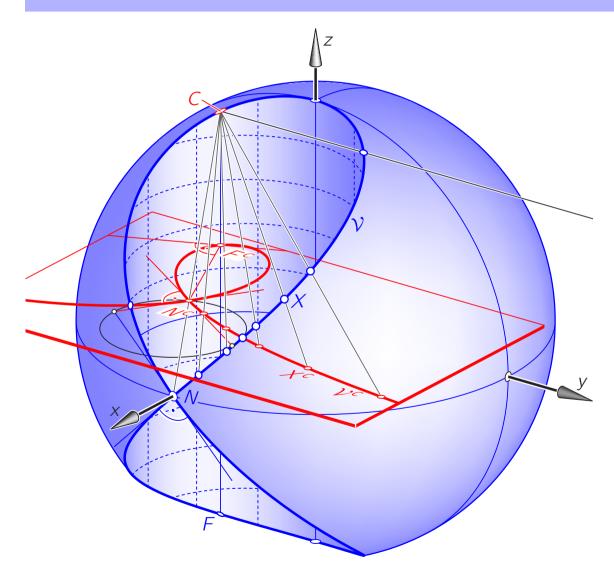
On the other hand, the tangent t at T bisects the angle between TF_1 and TF_2 .



The points of contact of tangents drawn from a fixed point *N* to confocal conics as well as the

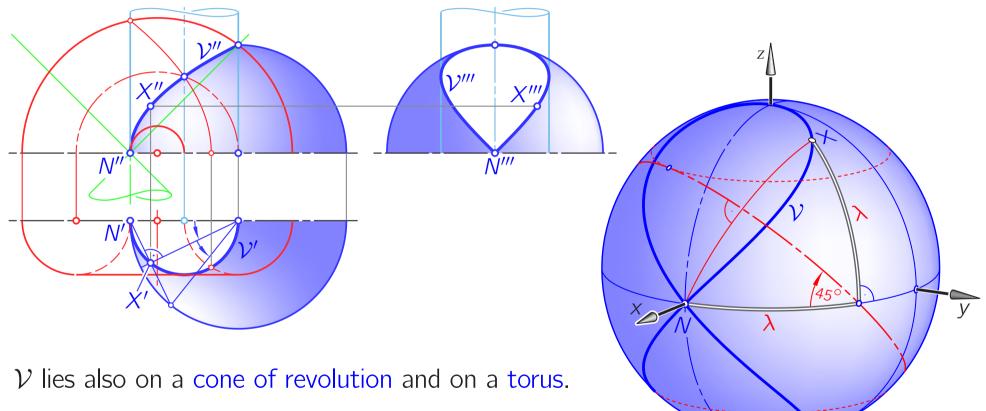
pedal points of normals drawn through *N* lie on a strophoid.

The strophoid intersects any conic in 2 points of contact and 4 pedal points.

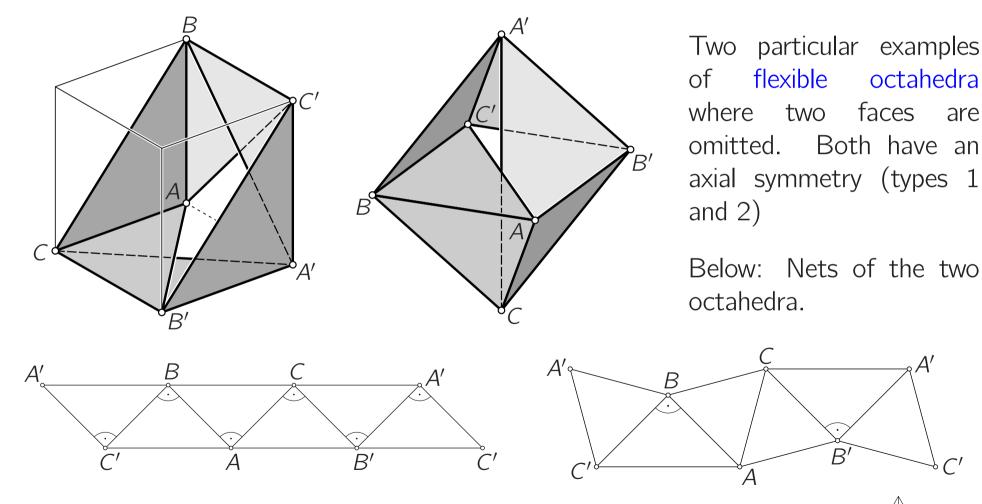


The curve \mathcal{V} of intersection between the sphere (radius 2r) and the vertical right cylinder (radius r) is called Viviani's window.

Central projections with center $C \in \mathcal{V}$ and a horizontal image planes map \mathcal{V} onto a strophoid.

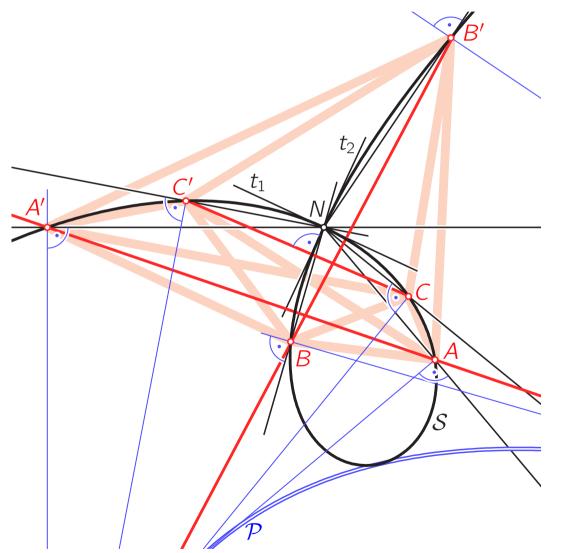


Points of $\ensuremath{\mathcal{V}}$ have equal geographic longitude and latitude.



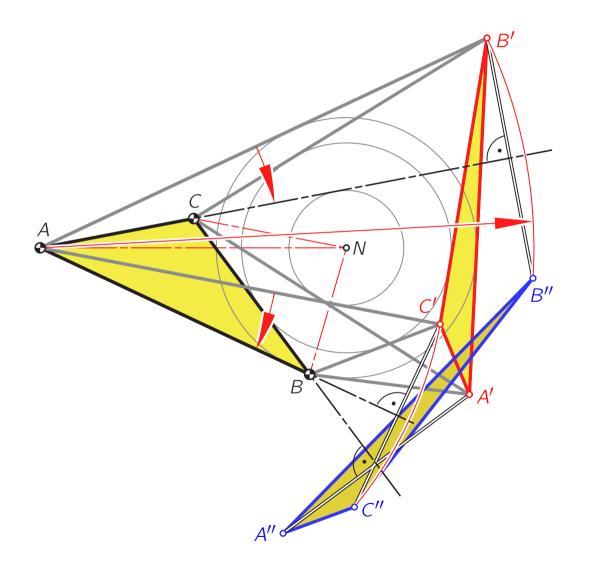
September 17, 2015: Slovak–Czech Conference on Geometry and Graphics, Terchová/Slovakia

23/34



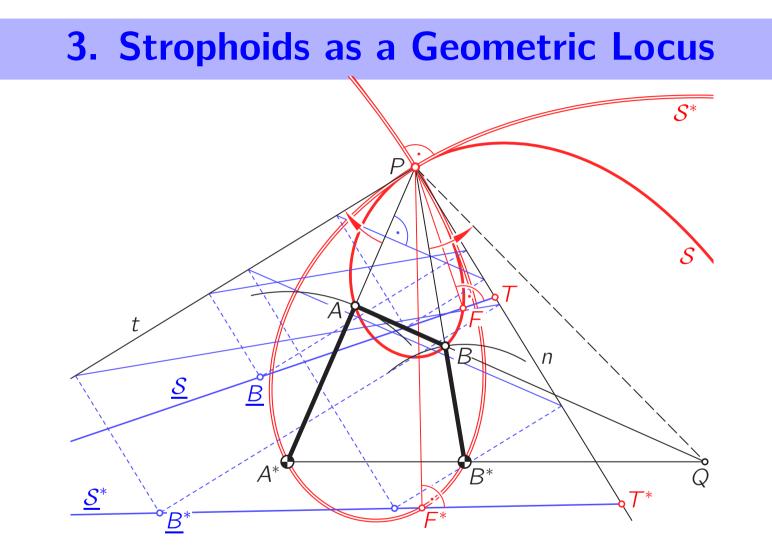
According to R. Bricard there are 3 types of flexible octahedra (foursided double-pyramids). Those of type 3 admit two flat poses. In each such pose, the pairs (A, A'), (B, B'), and (C, C') of opposite vertices are associated points of a strophoid S.

24/34



According to Bricard's construction, all bisectors must pass through the midpoint N of the concentric circles.

The two flat poses of a type-3 flexible octahedron, when *ABC* remains fixed.

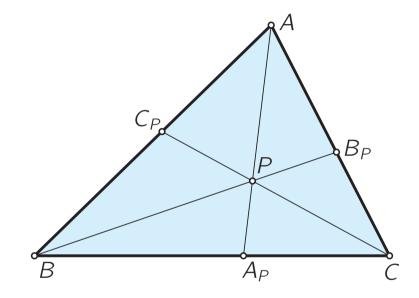


In plane kinematics, points with trajectories of stationary curvature is a **strophoid** S as well as the locus C of corresponding centers of curvature. They are images of lines in a cubic transformation.

The *elementary geometry of triangles* seems to be an endless story.

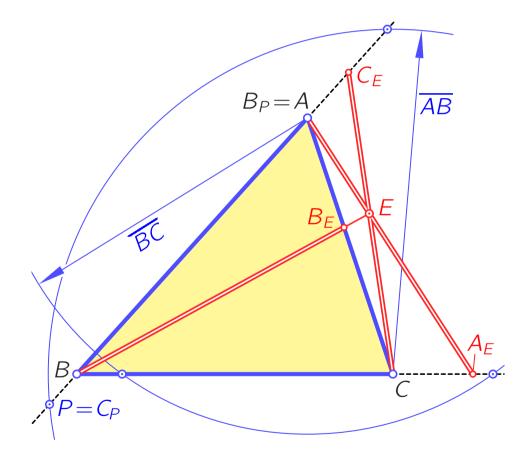
• Clark Kimberling's *Encyclopedia of Triangle Centers* shows a list of **8.116** remarkable points (available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html)

• Bernard Gibert's *Cubics in the Triangle Plane* shows a list of **724** related cubics (available at http://bernard.gibert.pagesperso-orange.fr/index.html)



For any point $P \neq A, B, C$ the segments AA_P , BB_P , and CC_P , are called **cevians** of the point P.

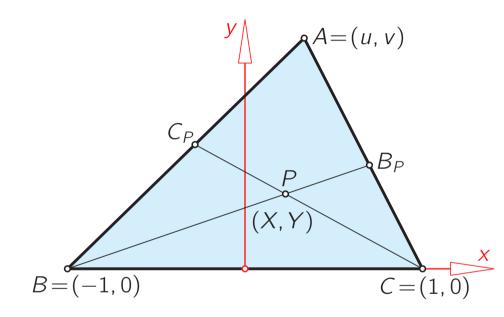
Giovanni Ceva, 1647-1734, Milan/Italy.



The point *E* is called **equicevian**, if its three cevians have the same lengths, i.e., $\overline{AA_E} = \overline{BB_E} = \overline{CC_E}$.

An equicevian point is called **improper** if it lies on one side line of the triangle (like P), otherwise **proper** (like E).

There exist \leq 6 improper equicevian points. We focus in the sequel on proper ones.

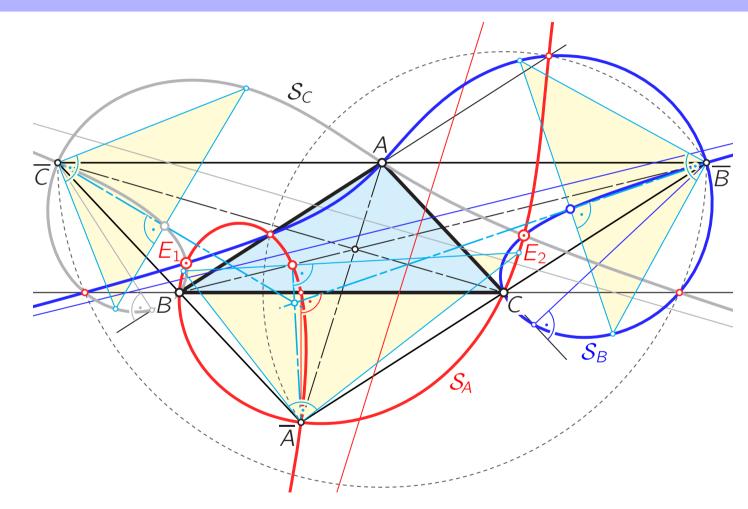


A point *P* is called *A*-equicevian iff $\overline{BB_P} = \overline{CC_P}$.

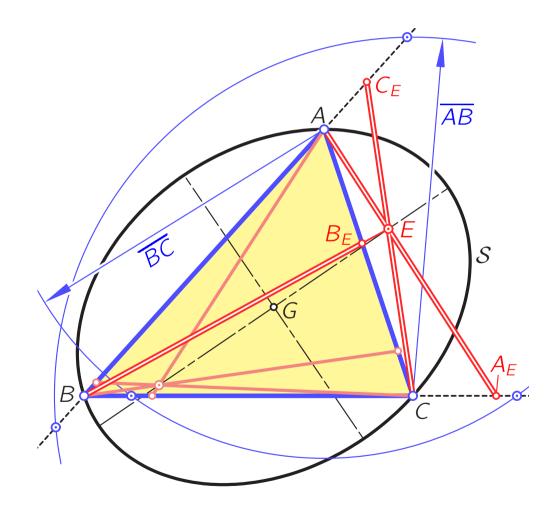
Theorem: All A-equicevian points lie on the line BC or on the **A-equicevian cubic** S_A : $H_A(X, Y) = 0$, where

 $H_A(X,Y) = (vX - uY)(X^2 + Y^2) + uv(X^2 - Y^2) - (u^2 - v^2 + 1)XY - (vX + uY) - uv.$

Analogue *B*-equicevian points $(\overline{AB_P} = \overline{CC_P})$ and *C*-equicevian points $(\overline{AB_P} = \overline{BC_P})$.

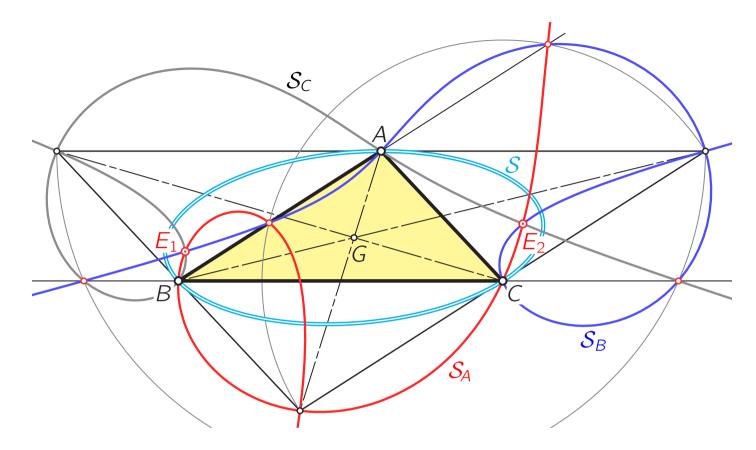


All equicevian cubics are oblique strophoids. E_1 , $E_2 \in S_A \cap S_B \cap S_C$ are proper equicevian points.



Theorem: For each triangle ABC, the remaining equicevian points are identical with the two real and two complex conjugate focal points of the Steiner circumellipse S.

The Steiner circumellipse S of ABC is the (unique) ellipse centered at the centroid G and passing through its vertices.



Theorem: When *a* and *b*, with $a \ge b$, denote the semiaxes of the Steiner circumellipse S of ABC, the cevians of the real foci have the length 3a/2. The length of the cevians through the imaginary foci is 3b/2.

S. Abu-Saymeh, M. Hajja, H.S.: *Equicevian Points of a Triangle.* Amer. Math. Monthly (to appear)
G. Brocard: *Centre de transversales angulaires éqales.* Mathésis, Ser. 2, 6 (1896) 217–221

Thank you for your attention !

References

- S. Abu-Saymeh, M. Hajja: *More on the Steiner-Lehmus theorem*. J. Geom. Graphics **14**, 127–133 (2010).
- S. Abu-Saymeh, M. Hajja: *Equicevian points on the medians of a triangle*. preprint.
- S. Abu-Saymeh, M. Hajja: *Equicevian points on the altitudes of a triangle*. Elem. Math. **67**, 187–195 (2012).
- S. Abu-Saymeh, M. Hajja, H. Stachel: *Equicevian Points and Cubics of a Triangle*.
 J. Geom. Graphics **18**/2, 133–157 (2014).
- S. Abu-Saymeh, M. Hajja, H. Stachel: *Equicevian Points of a Triangle*. Amer. Math. Monthly (accepted).

- A.V. Akopyan, A.A. Zaslavsky: *Geometry of Conics*. Math. World 26, American Mathematical Society, Providence/RI, 2007.
- T. Andreescu, Z. Feng, G. Lee, Jr. (eds.): *Mathematical Olympiads 2000–2001, Problems and Solutions From Around the World*. Math. Assoc. America, Washington DC 2003.
- E. Badertscher: *A Simple Direct Proof of Marden's Theorem*. Amer. Math. Monthly **121**, 547–548 (2013).
- R. Bix: *Conics and Cubics*. Springer-Verlag, New York 1998.
- O. Bottema: On some remarkable points of a triangle. Nieuw Arch. Wiskd., III. Ser. 19, 46–57 (1971).
- R. Bricard: *Leçon de Cinématique, Tome II, de Cinématique appliqueé*. Gauthier-Villars et C^{ie}, Paris 1927.

- G. Brocard: *Centre de transversales angulaires éqales*. Mathésis, Ser. 2 **6**, 217–221(1896).
- W. Burau: *Algebraische Kurven und Flächen, Bd. I: Algebraische Kurven der Ebene.* Sammlung Göschen, Bd. 435, Walter de Gruyter, Berlin 1962.
- O. Dunkel: *Problem 3637*. Amer. Math. Monthly **40**, 496 (1933); solution by E.H. Cutler, ibid **42**, 178–180 (1935).
- M. Fox: On notes 90.76 and 90.81, Feedback. Math. Gaz. 92, 165–166 (2008).
- F. G.-M.: *Exercises de Géometrie*. Éditions Jacques Gabay, Paris 1991. Reprint of the 6th ed., A. Mame et Fils, J. de Gigord, 1920.
- M. Hajja: *Triangle centres: some questions in Euclidean geometry*. Int. J. Math. Educ. Sci. Technol. **32**, 21–36 (2001).

- J.J.L. Hinrichsen: *Problem 3576*. Amer. Math. Monthly **39**, 549 (1932); solution by E.H. Cutler, ibid **42**, 178–180 (1935).
- D. Kalman: An Elementary Proof of Marden's Theorem. Amer. Math. Monthly 115, 330–338 (2008).
- C. Kimberling: *Encyclopedia of Triangle Centers*. Available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- G. Kohn, G. Loria: *Spezielle algebraische Kurven*. In Encyklopädie der Mathematischen Wissenschaften III C 5, B.G. Teubner, Leipzig 1903–1915.
- A. Liu: *Hungarian Problem Book III*. Anneli Lax New Mathematical Library 42, The Mathematical Association of America, Washington DC 2001.
- E.H. Lockwood: *A Book of Curves*. Cambridge University Press 1961.

- G. Loria: *Spezielle algebraische und transzendente ebene Kurven, Bd.* 1. B.G. Teubner, Leipzig, Berlin 1910.
- M. Marden: *A note on the zeroes of the sections of a partial fraction*. Bulletin of the Amer. Math. Society **51**, 935–940 (1945).
- J. Neuberg: Note sur l'article précédent. Mathésis, Ser. 2 6, 221–225 (1896).
- V. Nicula, C. Pohoață: *A stronger form of the Steiner-Lehmus theorem*. J. Geom. Graphics **13**, 25–27 (2009).
- V. Oxman: *Two cevians intersecting on an angle bisector*. Math. Mag. **85**, 213–215 (2012).
- J.R. Pounder: *Equal cevians*. Crux Math. **6**, 98–104 (1980).
- J.R. Pounder: *Postscript to 'Equal cevians*. Crux Math. **6**, 239–240 (1980).

- C.R. Pranesachar: *Problem 10686*. Amer. Math. Monthly **105**, 496 (1998); solution, ibid **107**, 656–657 (2000).
- H. Schmidt: *Ausgewählte höhere Kurven*. Kesselringsche Verlagsbuchhandlung, Wiesbaden 1949.
- E. Schmidt: *Strophoiden*. http://eckartschmidt.de/Stroid.pdf, accessed Nov. 2014.
- J.A. Scott: *A new triangle point*. Math. Gaz. **90**, 486–487 (2006).
- H. Wieleitner: *Spezielle Ebene Kurven*. G.J. Göschen'sche Verlagsbuchhandlung, Leipzig 1908.

