
Strophoids – cubic curves

with remarkable properties

Hellmuth Stachel

stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel

Slovak–Czech Conference on Geometry and Graphics = 24th Symposium on Computer Geometry SCG’2015

= 35th Conference on Geometry and Graphics, Sept. 14–18, Terchová, Slovakia



Table of contents

1. Definition of Strophoids

2. Associated Points

3. Strophoids as a Geometric Locus

September 17, 2015: Slovak–Czech Conference on Geometry and Graphics, Terchová/Slovakia 1/34



1. Definition of Strophoids

replacements

N

G

g

G ′

F

F ′

S

x

y

a
sy

m
p
to

te

Definition: An irreducible cubic is
called circular if it passes through
the absolute circle-points.
A circular cubic is called strophoid

if it has a double point (= node) with
orthogonal tangents.
A strophoid without an axis of
symmetry is called oblique, other-
wise right.

S : (x2 + y 2)(ax + by)− xy = 0

with a, b ∈ R, (a, b) 6= (0, 0). In
fact, S intersects the line at infinity
at (0 : 1 : ±i) and (0 : b : −a).
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1. Definition of Strophoids
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angle ϕ intersects S in the point

X =

(
sϕ c

2ϕ

a cϕ+ b sϕ
,

s
2ϕ cϕ

a cϕ+ b sϕ

)
.

This yields a parametrization of S.

ϕ = ±45◦ gives the points G,G′.

The tangents at the absolute circle-
points intersect in the focus F .
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1. Definition of Strophoids
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The polar equation of S is

S : r =
1

a
sinϕ +

b
cosϕ

.

The inversion in the circle K
transforms S into the curve H
with the polar equation

H : r =
a

sinϕ
+
b

cosϕ
.

This is an equilateral hyperbola
which satisfies

H : (x − b)(y − a) = ab.
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1. Definition of Strophoids
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H has two axes of
symmetry =⇒ the
inverse curve S is
self-invers w.r.t. two
circles through N
with centers G,G′.

S is the envelope of
circles centered on
confocal parabolas
P1 and P2.
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1. Definition of Strophoids
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The product of the polarity and
the inversion in K is the pedal
transformation t 7→ T w.r.t. N.

Polar to H is the parabola P.

Theorem: The strophoid S is
the pedal curve of the parabola
P with respect to N.

The parabola’s directrix m is
parallel to the asymptote of S.
F (on the tangent at the vertex
of P) is the midpoint between N
and the parabola’s focus Fp.
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1. Definition of Strophoids

W. Wunderlich:
Ebene Kinematik, p. 115

as a particular pedal curve of a parabola,

the strophoid is a particular trajectory during a blau symmetric rolling of parabolas
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1. Definition of Strophoids
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Tangents t of the parabola P
intersect S beside the pedal point
T in two real or conjugate complex
points Q and Q′.

Definition: Q and Q′ are called
associated points of S.

Q and Q′ are associated iff the
lines QN and Q′N are harmonic
w.r.t. the tangents at A.

For given t, the points Q and Q′ lie on a circle centered on g.
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2. Associated Points
replacements
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Projective properties of
cubics with a node:

There is a 1-1 cor-
respondance between S
and lines through N,
except N corresponds to
t1 and t2.

The involution α which
fixes t1, t2 determines
pairs X,X ′ of associated
points.

Involutions which exchange t1 and t2 determine involutions β on S with N 7→ N and
several properties, e.g., there exists an ‘associated’ involution β′ = α ◦ β = β ◦ α.
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2. Associated Points
replacements
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• β has a center Z
such that X,Xβ,Z are
collinear.

• The centers Z of β and
Z ′ of β′ are associated.

• The lines Z ′X, Z ′Xβ
correspond in an involu-
tion which fixes Z ′N and
the line through the fixed
points Y, Y ′ of β.

• For associated points, the diagonal points XY ∩X ′Y ′ and XY ′ ∩X ′Y are again on
S. The tangents at corresponding points intersect on S.
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2. Associated Points
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Addition of points

Theorem:

On each irreducible cubic S a
commutative group can be defined
with an arbitrary chosen pointO as
neutral element.

Conversely, point B is uniquely
defined by A and A+ B.
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2. Associated Points
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associative law

Theorem:

On each irreducible cubic S a
commutative group can be defined
with an arbitrary chosen pointO as
neutral element.

At cubics with a node the group is
isomorphic to (R \ {0}, · ). Pairs
of associated points differ only by
their sign. N corresponds to zero.
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2. Associated Points
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On the equicevian cubic S, the
following pairs of points are
associated:

• Q,Q′,

• the absolute circle-points,

• The focal point F and the point
F ′ at infinity,

• G,G′ on the line g ⊥ NF .
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2. Associated Points

Theorem:

• For each pair (Q,Q′) of associated points, the lines NQ, NQ′ are symmetric w.r.t.
the bisectors t1, t2 of <) BNC .

• The midpoint of associated points Q,Q′ lies on the median m = NF ′.

• The tangents of S at associated points meet each other at the point T ′ ∈ S
associated to the pedal point T on t = QQ′.

• For each point P ∈ S , the lines PQ and PQ′ are symmetric w.r.t. PN.

Other consequences: For each pair (Q,Q′) of associated points (as Laguerre-points)
the represented two complex conjugate points are again associated points of S.
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2. Associated Points
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The right-angle involution at N
induces an involution β on S.
Corresponding points P, Pβ are
collinear mit F ; their midpoint is
on m.

Given m, N ∈ m and F /∈ m,
the strophoid S is the locus of
intersection points between circles
through N and centered onm with
diameter lines through F .
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2. Associated Points
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We recall:

Theorem: Given three
aligned points A,A′ and N,

the locus of points X such
that the line XN bisects the
angle between XA and XA′,
is the Apollonian circle.

The second angle bisector passes through the point Ñ harmonic to N w.r.t. A,A′.
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2. Associated Points
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Theorem: Given the non-
collinear points A,A′ and N,
the locus of points X such
that the line XN bisects the
angle between XA and XA′,
is a strophoid with node N
and associated points A,A′.

This holds also when A is at
infinity.

The respectively second angle bisectors are tangent to the parabola P.

When N is at infinity, then the locus is an equilateral hyperbola.
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3. Strophoids as a Geometric Locus
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Theorem: The strophoid S is the
locus of focal points (Q,Q′) of conics
N which contact line AN at A and
line A′N at A′.

The axes of these conics are tangent
to the negative pedal curve, the
parabola P. Therefore, the real focal
points are associated — as well as the
complex conjugate point.
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3. Strophoids as a Geometric Locus
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Let the tangents to C at
T and T ′ intersect at Q.
Then

α =<) TF2Q =<)QF2T .

On the other hand, the
tangent t at T bisects
the angle between TF1 and
TF2.
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3. Strophoids as a Geometric Locus
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The points of contact of
tangents drawn from a
fixed point N to confocal
conics as well as the

pedal points of normals
drawn through N lie on a
strophoid.

The strophoid intersects
any conic in 2 points of
contact and 4 pedal points.
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3. Strophoids as a Geometric Locus
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The curve V of intersection
between the sphere (radius 2r )
and the vertical right cylinder
(radius r ) is called Viviani’s
window.

Central projections with
center C ∈ V and a horizontal
image planes map V onto a
strophoid.
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3. Strophoids as a Geometric Locus
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V lies also on a cone of revolution and on a torus.

Points of V have equal geographic longitude and
latitude.
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3. Strophoids as a Geometric Locus
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Two particular examples
of flexible octahedra
where two faces are
omitted. Both have an
axial symmetry (types 1
and 2)

Below: Nets of the two
octahedra.

B C

B′ C ′C ′ A

A′A′ B
C
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3. Strophoids as a Geometric Locus
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According to R. Bricard there are
3 types of flexible octahedra (four-
sided double-pyramids). Those of
type 3 admit two flat poses. In
each such pose, the pairs (A,A′),
(B,B′), and (C,C′) of opposite
vertices are associated points of a
strophoid S.
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3. Strophoids as a Geometric Locus
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According to Bricard’s
construction, all bisectors must
pass through the midpoint N of
the concentric circles.

The two flat poses of a type-
3 flexible octahedron, when ABC
remains fixed.
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3. Strophoids as a Geometric Locus
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In plane kinematics, points with trajectories of stationary curvature is a strophoid S as well as the

locus C of corresponding centers of curvature. They are images of lines in a cubic transformation.
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3. Strophoids as a Geometric Locus

The elementary geometry of triangles seems to be an endless story.

• Clark Kimberling’s Encyclopedia of Triangle Centers shows a list of 8.116 remarkable
points (available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html)

• Bernard Gibert’s Cubics in the Triangle Plane shows a list of 724 related cubics
(available at http://bernard.gibert.pagesperso-orange.fr/index.html)
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3. Strophoids as a Geometric Locus
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For any point P 6= A,B, C the
segments AAP , BBP , and CCP , are
called cevians of the point P .

Giovanni Ceva, 1647-1734,
Milan/Italy.
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3. Strophoids as a Geometric Locus
S
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The point E is called equicevian,
if its three cevians have the same
lengths, i.e., AAE = BBE = CCE.

An equicevian point is called
improper if it lies on one side line
of the triangle (like P ), otherwise
proper (like E).

There exist ≤ 6 improper equicevian
points. We focus in the sequel on
proper ones.
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3. Strophoids as a Geometric Locus
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A point P is called A-equicevian iff
BBP = CCP .

Theorem: All A-equicevian points lie
on the line BC or on the A-equicevian

cubic SA : HA(X, Y ) = 0, where

HA(X, Y ) = (vX−uY )(X
2+Y 2)+uv(X2−Y 2)−(u2−v 2+1)XY − (vX+uY )−uv .

Analogue B-equicevian points (ABP = CCP ) and C-equicevian points (ABP = BCP ).
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3. Strophoids as a Geometric Locus

SA

SB

SC

A

B C

E1 E2

A

BC

All equicevian cubics are oblique strophoids. E1, E2∈ SA ∩ SB ∩ SC are proper equicevian points.

September 17, 2015: Slovak–Czech Conference on Geometry and Graphics, Terchová/Slovakia 31/34



3. Strophoids as a Geometric Locus

A

AE
B

BE

C

CE

E

G

BC

AB

S

Theorem: For each triangle
ABC, the remaining equicevian
points are identical with the two
real and two complex conjugate
focal points of the Steiner
circumellipse S.

The Steiner circumellipse S of ABC
is the (unique) ellipse centered at the
centroid G and passing through its
vertices.
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Theorem: When a and b, with a ≥ b, denote the semiaxes of the Steiner circumellipse
S of ABC, the cevians of the real foci have the length 3a/2 . The length of the cevians
through the imaginary foci is 3b/2 .

S. Abu-Saymeh, M. Hajja, H.S.: Equicevian Points of a Triangle. Amer. Math. Monthly (to appear)

G. Brocard: Centre de transversales angulaires éqales. Mathésis, Ser. 2, 6 (1896) 217–221
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S∗

Thank you

for your attention !
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