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1. Spiral grids and spiral polyhedra

Given: two stretch-rotations oy, 05
with common center O, with respec-
tive signed angles a;, ap of rotations
and dilation factors 61, 0, # 1.

For any_innt P, the set of points
P = ci05(P), i,j € Z, is called a
spiral grid.

The spiral grnid Is called closed <=

3 ny, my € N such that o}* and 052
differ by a full rotation about O.
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1. Spiral grids and spiral polyhedra

The same spiral grid can also be
generated by other pairs o7, 0, of
stretch rotations, when

dp

C C d
/ to0y’, 0y =0y 00y,

C1,Co,d,db € Z, c1dr— cody = 1.
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1. Spiral grids and spiral polyhedra

Spiral grids play a role
iIn  Phyllotaxis, a topic of
plantmorphogenesis.

The grnid approximates the
position of leaves.
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_ Closed spiral grid

(Pis17j = Pij+3)
and 1ts mutually sim-
Ilar Voronoi cells

S o



K. Myrianthis (2017): In general, the Voronoi cells are concircular hexagons with
concurrent main diagonals ... we apply an appropriate stereographic projection:
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spherical spiral polyhedron and a net of circumcircles of the hexagonal faces
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Stereographic projection transforms the
central dilation with center O onto a
hyperbolic translation.

generated by hyperbolic screw motion
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...a research drawn from ‘die Freude an der Gestalt”, 1.e., by an appreciation for
aesthetics: A 3-web of coaxial screws in the conformal model of the elliptic 3-space.
The screws are loxodromes (by courtesy of Georg Glaeser).
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2. A spherical incircular net

| h /
/ |. Izmestiev, S. Tabachnikov
(2016):
Theorem:

For any two points A, B on the
ellipse e the diagonal points C, D
of the quadrilateral circumscribed
to the confocal ellipse ey belong
to the same confocal hyperbola h.

Chasles 1843, \W. Bohm 1961
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2. A spherical incircular net

|Izmestiev and Tabachnikov use
differential geometry in their
proof. But the background of the
problem is of projective nature.

The remaining diagonal points

E, F of the circumscribed quadri-

lateral are again located on a conic
- ¢ confocal with 5 and e.

@ August 4, 2018: 18th International Conference on Geometry and Graphics, Milan (Italy) g 12/20



2. A spherical incircular net

Proof with Ivory’s Theorem:

There 1s a curvilinear quadrangle
PQ'QP’" such that e and h are
confocal conics passing through
the ‘midpoint” S, the point of
intersection PQ N P'Q’.

AC=PS BD=QS, ... =
AC+ BD = PQ =AD + BC
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2. A spherical incircular net

AC + BD = AD + BC = PQ

In the quadrangle AC BD opposite
sides lengths give the same sum
PQ. The quadrangle is ‘incircular’.

A.W. Akopyan, A.l. Bobenko:
Incircular nets and confocal

conics, Trans. Amer. Math. Soc.,
Nov. 16, 2017

Chasles 1843, \W. Bohm 1961
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2. A spherical incircular net

The tangents at A, B to e, at
E,F to € and at C, D to h pass
through point 7.
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Generalising theorems of
Michel Chasles (1843) and
Wolfgang Bohm (1961)
concerning two-parametric
linear systems of conics:

Theorem: There is a net
of conics spanned by ¢y, ¢;
and the pair of line pencil
with carriers (A1, Bo).

If the pair (X1, X5) is
included in this net then
there is a conic tangent
to t1,..., t, and passing
through X7 and Xb.
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Ao
The net is a projective plane

spanned by two ranges R, i la
and R through ¢p:
t3
Rc
1
P
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All presented results are
also valid on the sphere.

Left:

An incircular net of 13
great circles, each tangent
to the spherical conic e.
The great circles extend the
sides of a closed billiard.

This net has no rotational
symmetry!
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Left: A spherical net of 7
great circles, each tangent
to the spherical conic, and
42 enclosed Incircles.

Instead of pairs of consecu-
tive great circles, one can
also select every second
circle (or every third ...)
In order to obtain incircular
quadrangles.
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quad-

all
ruples of admissible points

version:

©
)
§S,

7'} have a

out of {1%, ...
circumcircle.
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Thank you for your attention!
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