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1. Introduction

“Blue Wonder” bridge in Dresden (1893),

without supporting river piers; the name
reflects also a sceptic view of contemporary

commentators

We expect that a bridge is rigid,
i.e., that the framework admits no
self-motion.

However, we concentrate only on
the geometry of the framework.

We don’t study the influence
of clearances at the joints, of
bendings of the material or of
vibrations.

Each bar is understood as a rigid
body, each knot is a revolute joint.
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1. Introduction

“Morandi Bridge” on the motorway A10
in Genoa/Italy after Aug. 14, 2018

One can’t explain this deplorable
catastrophe with a bad geometry,

but conversely, for any structure
a correct underlying geometry is
an inevitable prerequisite for its
utilization.
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1. Introduction

Definition: A geometric structure (e.g., framework or polyhedron) is called flexible,
if its shape can continuously vary without changing its inner metric (combinatorial
struction and lengths of edges or metric of faces). Otherwise it is called rigid.

It turns out that the borderline between flexibility and rigidity is not as strict as one
might conjecture. There are different types of flexibility to distinguish.
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1. Introduction

• The structure is globally rigid when its shape in space is uniquely defined by its
inner metric — apart from movements in space.

• The structure is called locally rigid, when it is not flexible; but it admits mutually
incongruent realizations. If two realizations are sufficiently close they can be forced to
change from one realization into the other (flipping structure).

• The structure is called generically rigid if its combinatorial structure admits only
rigid poses — independently of its metric.
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1. Introduction

The computation of realizations is an algebraic problem. It has been recently proved
that a combinatorial property characterizes those generically rigid structures for which
a metric exists which makes them flexible.

G. Grasegger, J. Legerský, J. Schicho: Graphs with Flexible Labelings.

Discrete & Computational Geometry 2018
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2. Four-bar linkages

A0
A

B0

B

C

kC

A four-bar mechanism consists
of a flexible quadrangle with one
side A0B0 fixed.

The opposite side AB is called
coupler; points C attached to
this side trace coupler curves kC
of various shapes.
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2. Four-bar linkages

Four-bar linkages show up at cranes and at links
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2. Four-bar linkages

Four-bars can even be used for designing auxetic structures
(courtesy M. Stavric and A. Wiltsche, TU Graz)
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2. Four-bar linkages

A0
A

B0

B

C0

C

kC

Let an additional bar connect
point C with a fixed point C0.
Then the framework is rigid.

But it admits a second reali-
zation with C at the second point
of intersection between kC and
the circle. The framework can
flip between two poses.

When the circle touches the
coupler curve kC at C, the
mechanism is infinitesimally

flexible.
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2. Four-bar linkages

A flipping framework left and an infinitesimally flexible framework (right)

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 11/72



2.1 Projection Theorem

Suppose, the lengths of edges are only infinitesimally constant.

Definition: A polyhedron is called
infinitesimally flexible ⇐⇒

to each vertex xi a velocity vector vi can
be assigned such that

• for any edge xixj the projection
theorem holds, and

• the assignment is nontrivial, i.e., the
velocity vectors do not originate from
a motion of the framework as a rigid
body.

xi
xj

vi

vj

Projection theorem
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2.1 Projection Theorem

(xi − xj) · (xi − x) = const. =⇒

(xi − xj) · (ẋi − ẋj) = 0 ⇐⇒

(xi − xj) · ẋi︸︷︷︸
vi

= (xi − xj) · ẋj︸︷︷︸
vj

xi
xj

vi

vj

Projection theorem

A physical model of an infinitesimally flexible polyhedron or framework is really slightly
flexible due to bendings of the faces and clearances at the vertices and edges.
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2.1 Projection Theorem

x1

x2

x3

y1

y2

y3

x1,1

x2,1

x3,1

x1

x2

x3

y1 y2

y3

x1,1

x2,1

x3,1

The assignment of velocity vectors to an infinitesimally flexible framework F is not
unique. Apart from a scaling we can impose an infinitesimal motion, i.e., we can add
at each vertex xi the vector s+ Sxi where S is a skew-symmetric matrix.
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2.2 Higher order infinitesimal flexibility

Definition: If there is
a one-parameter family of
frameworks Ft with vertices
x1(t), . . . , xv(t) and F0 = F
such that the function

f (t) := ‖xi(t)− xj(t)‖ − li j

has a zero or order k at t = 0
for all bars, then F is called
infinitesimally flexible of

order k .

X2
X1

X3

Y2Y1

Y3

X2

X1

X3

Y2Y1

Y3

X1 X2

X3

Y1 Y2

Y3

Above the condition for 2nd-order flexibility, which is no more projectively invariant.
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2.2 Higher order infinitesimal flexibility

c

X1

X2

X3

Y1
Y2

Y3

c

X1

X2

X3

Y1 Y2

Y3

Two examples for 3rd-order flexible frameworks
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S1

S2
S3

S4

X

Global positioning: the position of p is
computed from measured distances to
4 satellites s1, . . . , s4. These measures
are determined up to a common additive
error.

X

S1

S2

S3

S4

E1

E2

E3

E4

The configuration is critical (high
Geometric Dilution of Precision), if the
satellites s1, . . . , s4 are instantly located
on a right cone with the apex at p.

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 17/72



2.2 Related overconstrained mechanisms

If F is flexible of sufficiently high order then F is continuously flexible (overconstrained
mechanism).

For frameworks derived from a four-bar the only continuously flexible version arises in
the case of a parallelogram.

The aligned position admits bifurcations:

The degree of freedom is still two when four
parallelograms change to antiparallelograms.

We obtain dof = 1 if only two opposite
parallelograms become antiparallelograms.
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2.2 Related overconstrained mechanisms

Coupler curves are curves of degree 6 with
triple points at the absolute circle points.

The points of intersection between corre-
sponding complex conjugate tangents
are the base points of three four-bar
mechanisms which share single coupler
curve (= Roberts’ Theorem).

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 19/72



2.2 Related overconstrained mechanisms

Overconstrained mechanisms are sensi-
tive against imprecisions.

At the Science Exposition 1991 in Zürich
the plates at this Heureka-Polyhedron

(6 m side lengths) broke several times.
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2.2 Related overconstrained mechanisms

Burmester’s mechanism:

For each four-bar there are points F such
that additional bars connecting F with
appropriate points on the sides do not
restrict the flexibility.

F is a focal point of any conic tangent to
the four sides (L. Burmester 1893). I10 I20 I30

F

K

L
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2.2 Related overconstrained mechanisms

Due to A. C. Dixon (1900), the angle ψ1
shows up two times.

The angles at F are congruent to the
interior angles of the quadrangle. Hence
they sum up to 360◦ =⇒

there is no spherical analogue!
I10 I20 I30

F

K

L

ψ1
ψ1
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3. Bipartite frameworks

Three versions of a bipartite framework, rigid (left), infinitesimally flexible of order 1
(middle) and of order 2 (right).
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3. Bipartite frameworks

ppp11p1
ppp22p2

ppp33p3

qqq11q1
qqq22q2 qqq33q3

bipartite graph K3,3

2121 3131

3232

cc

aa

ppp11p1 ppp22p2

ppp33p3

qqq11q1

qqq22q2 qqq33q3

ΣΣΣ11Σ1

ΣΣΣ22Σ2 ΣΣΣ33Σ3

Characterization of infinitesimal flexibility
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3.1 Projective invariance

Theorem: Liebmann (1920)
Infinitesimal flexibility is projectively invariant.

Proof: (B. Wegner 1984)

The planar framework F with
vertices x1, . . . , xv is located
in the plane z = 0.

We extend F to a conical
framework F ′ in R3 by adding
vertex x0 outside z = 0 and
by inserting the v edges x0xi .

x0

xj

xi
x′j,1

x′i ,1

xj,1
xi ,1

z = 0

The extended framework F ′ actually consists of triangular plates x0xixj .
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3.1 Projective invariance

F ′ flexible ⇐⇒ F is flexible.

We set x′0,1 = 0. And x′i ,1 is
specified perpendicular to x0xi
and its top view coincides with
xi ,1.
Thus all edges of F ′ the
Projection Theorem is fulfilled.

x0

xj

xi
x′j,1

x′i ,1

xj,1
xi ,1

z = 0

The proof of the converse works similar. Hence each planar section of the conical
framework F ′ is infinitesimally flexible, too.
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3.2 Flipping bipartite frameworks

Given:

Net of confocal conics in
the Euclidean plane E2:

Ivory’s Theorem:1

X1X
′
2
= X ′

1
X2

1 J. Ivory, 1809

X1

X2

X ′
1

X ′
2

F1 F2
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3.2 Flipping bipartite frameworks

Second explanation:

There is an affine transformation

(scaling) between the ellipses

α : k 7→ k ′, Xi 7→ X ′i , i = 1, 2,

and

X1 α(X2) = α(X1)X2.

Xi and α(Xi) are located on the
same confocal hyperbola hi , which
intersects the ellipses orthogonally.

k
X1

X2

k ′X ′
1

X ′
2

F1 F2

h1

h2
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3.2 Flipping bipartite frameworks

a1

a2

a3

b1

b2

k

k ′

k and k ′ are confocal parabolas

Ivory’s Theorem applied to
bipartite frameworks:

Let the knots ai and bj of the
two classes be placed on k and k ′,
respectively.
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3.2 Flipping bipartite frameworks

a1

a2

a3

b1

b2

a′
1

a′
2

a′
3

b′
1

b′
2k

k ′

k and k ′ are confocal parabolas

Ivory’s Theorem applied to
bipartite frameworks:

Now we replace the knots ai and
bj by their respectively conjugate
knots a′i and b′j and obtain a
second incongruent realization of
the same framework.
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3.2 Flipping bipartite frameworks

Converse of Ivory’s Theorem:

Let F and F ′ be two incongruent realizations of a complete bipartite framework in
E
n.

• There is an appropriate displacement β : En → En such that for F and the displaced
β(F ′) are in Ivory position with respect to two confocal quadrics.

Confocal quadrics are characterized by confocal principal sections.
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3.2 Flipping bipartite frameworks

a1

a2

a3
b1

b2

β(a′
1
)

β(a′
2
)

β(a′
3
)

β(b′
1
)

β(b′
2
)

a′
1

a′
2

a′
3

b′
1

b′
2

α
αad

β
Φ

Ψ

Φ′

β−1(Φ)

‖α(ai)− b
′
j‖ = ‖ai − α

ad(b′j)‖

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 32/72



3.3 Infinitesimal flexibility of order 1

a+ba+b

a-b
a-b

c
ppp11p1

ppp22p2

ppp33p3

qqq11q1

qqq22q2
qqq33q3

β(

αα

ββ

two examples with infinitesimal mobility

c

ppp11p1

ppp22p2

ppp33p3

qqq11q1

qqq22q2

qqq33q3

The velocity vectors are orthogonal to the conic c
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3.3 Infinitesimal flexibility of order 1

W. Whiteley, 1984:
Bipartite framework in Pn with vertices pi ,qj .

Let q(x) = xTM x be a quadratic form vanishing on

all pi and qj . Then the assignment of velocities

p 7→ vp = M p, q 7→ vq = −M q

gives an infinitesimal flex.

Proof: pTM p = qTM q = 0 =⇒ (Proj.Th.)

(p− q)T (vp − vq) =(p− q)
T (M p+M q) =

= pTM p− qTM q+ pTM q− qTM p= 0.

Also the converse is true.

ppp11p1

ppp22p2

ppp33p3

qqq11q1

qqq22q2

qqq33q3

c
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3.3 Infinitesimal flexibility of order 1

yj
xj y′j

F̃

yi

xi

y′i

Theorem (W. Whiteley (1990)), Principle of averaging:

Let y1, . . . , yv and y′1, . . . , y
′
v be vertices of two incongruent realizations of a

framework F . Then the midpoints xi =
1

2
(yi + y

′
i) constitute an infinitesimally flexible

framework F̃ of the same combinatorial structure with velocity vectors xi ,1 =
1

2
(yi−y

′
i),

and vice versa — provided . . .
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3.3 Infinitesimal flexibility of order 1

yj
xj y′j

F̃

yi

xi

y′i

Proof: The condition (yi − yj)
2 − (y′i − y

′
j)
2 = 0 can be rewritten as

(yi − yj + y
′
i − y

′
j) · (yi − yj − y

′
i + y

′
j) = 0(

(yi + y
′
i)︸ ︷︷ ︸

2xi

− (yj + y
′
j)︸ ︷︷ ︸

2xj

)
·
(
(yi − y

′
i)︸ ︷︷ ︸

2 vi

− (yj − y
′
j)︸ ︷︷ ︸

2 vj

)
= 0 . . . Projection Thm.
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3.4 Dixon’s flexible bipartite frameworks

Due to A.C. Dixon (1899) there are two continuously flexible bipartite frameworks in
E
2:

a1 a2 a3

b1

b2

b3

Dixon I (unsymmetric):
x ′
2 = x2 + c , y ′2 = y 2 − c

a1 a2

a3a4

b1 b2

b3b4

Dixon II (symmetric)
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3.4 Dixon’s flexible bipartite frameworks

We prove the flexibility of the Dixon II framework with the help of Ivory’s Theorem:

There is a one-parameter set of conics
k passing through a1, . . . , a4. They
have the same axes.

For each k there is a confocal conic k ′

through b1, . . . ,b4. Hence, by Ivory’s
Theorem we can switch to conjugate
points thus obtaining a one-parameter
set of incongruent realizations of the
same framework.

a1
a2

a3a4

b1 b2

b3
b4

k

k ′
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3.4 Dixon’s flexible bipartite frameworks

We prove the flexibility of the Dixon II framework with the help of Ivory’s Theorem:

There is a one-parameter set of conics
k passing through a1, . . . , a4. They
have the same axes.

For each k there is a confocal conic k ′

through b1, . . . ,b4. Hence, by Ivory’s
Theorem we can switch to conjugate
points thus obtaining a one-parameter
set of incongruent realizations of the
same framework.

a1
a2

a3a4

b1 b2

b3
b4

k

k ′
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3.4 Dixon’s flexible bipartite frameworks

Spherical case:

Ivory’s Theorem is true on the sphere
S
2 (∼ elliptic plane).

There is a linear map

α : k 7→ k ′, ai 7→ a
′
i , i = 1, 2,

and
α(a1) · a

′
2 = a1 · α

ad(a′2).

The spherical version of the Dixon-II
framework is called O. Bottema’s 16-
bar framework

a1

a2

k

a′1

a′2

k ′
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3.5 Confocal ruled quadrics

For two confocal one-sheet hyperboloids
the affinity according to Ivory’s Theorem
preserves distances along the generators.

a′

This is the basis for
O. Henrici’s flexible
hyperboloid (1874).
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3.5 Confocal ruled quadrics

The flat limiting poses give tangent lines of the focal hyperbola and focal ellipse, the
singular surfaces in the range of confocal hyperboloids.
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3.5 Confocal ruled quadrics

The length-preserving property along the generators holds also for confocal hyperbolic
paraboloids. This is used at a flexible model of hyperbolic paraboloids. All strings
remain under tension during the flex.
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3.5 Confocal ruled quadrics

Φ

x1

x2x3

x4

y1
y2

An octahedron, i.e., a
four-sided double-pyramid,
is infinitesimally flexible
⇐⇒ there is a quadric
containing the sides of the
basis x1x2x3x4 and the two
apices y1y2.
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4.1 Unfolding and folding

unfold

fold

There are standard procedures provided for the
construction of the unfolding (development,
net) of polyhedra or developable surfaces.

The result is unique, apart from the placement
of the different components, and it shows the
intrinsic metric of the spatial structure.
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4.1 Unfolding and folding

unfold

fold

The inverse problem, i.e., the determination of
a folded structure from a given unfolding is
more complex. In the smooth case we obtain
a continuum of bent poses.

In the polyhedral case the computation leads to
a system of algebraic equations. Also here the
corresponding spatial object needs not be unique.
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A cube together with its translated copy (in blue)
in the 4-space and the trajectories of the vertices
(in red) form a hypercube.

It has 8 cells (= 3-cubes). Each of the 24 faces is
the meet of two cells.

Iterated rotations of cells about a face into the
hyperplane of the neighboring cell results in a
three-dimensional unfolding.

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 47/72



4.1 Unfolding and folding

Salvador Dalí: Corpus Hypercubus, 1954
194× 124 cm, Metropolitan Museum of Art,
New York

Instead of adhesive strips there are adhesive
faces between different cells
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4.1 Unfolding and folding

Only if the polyhedron bounds a convex solid then the result is unique, due to Aleksandr
Danilovich Alexandrov (1941).

In this case, for each vertex the sum of intrinsic angles for all adjacent surfaces is
< 360◦ (= convex intrinsic metric).

Theorem: [Uniqueness Theorem]
For any convex intrinsic metric there is a unique convex polyhedron.

A.I. Bobenko and I. Izmestiev (2006) developed an algorithm for constructing the
convex polyhedron with given intrinsic metric.
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4.1 Unfolding and folding

If convexity is not required the unfolding
of a polyhedron needs not define its
spatial shape uniquely !

A tetrahedron or compounds of
tetrahedra are globally rigid.

 

 

 

 

 

 

f1

f2

f
4

f5

f 6

 

 

 

 

 

f1

f2

f4

f
6

f7
A flipping (or snapping) polyhedron
admits two sufficiently close realizations
– by applying a slight force.
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4.1 Unfolding and folding
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Even a regular octahedron is flexible — after being re-assembled. The regular pose on
the left hand side is called locally rigid.

Sept. 24, 2018: Workshop on “Rigidity and Flexibility of Geometric Structures”, ESI Vienna/Austria 51/72



4.1 Unfolding and folding

Milestones:

• A.L. Cauchy (1813): Each convex polyhedron is locally rigid.

• A.D. Alexandrov (1941): For each convex polyhedral metric there exists exactly one
convex polyhedron.

• R. Bricard (1897): There exist flexible octahedra (four-sided double pyramides) —
however with self-intersections.

• R. Connelly (1977): There is a “flexing sphere”, d.h., a flexible polyhedron which is
homeomorphic to a sphere.

• I.Kh. Sabitov (1996): The volume of a triangulated polyhedron is a root of a
polynomial, whose coefficients depend only on the combinatorial structure and the
edge length of the polyhedron.
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4.1 Unfolding and folding
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This polyhedron called
“Vierhorn” is locally
rigid, but can flip
between its spatial
shape and two flat
realizations in the
planes of symmetry
(W. Wunderlich, C.
Schwabe).

At the science exposition “Phänomena” 1984 in Zürich this polyhedron was exposed
and falsely stated that this polyhedron is flexible.
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4.1 Unfolding and folding
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The volume of the
“Vierhorn” changes
between the two
poses. This already
disproves continuous
flexibility, because 1996
I. Kh. Sabitov proved
the famous Bellows

Conjecture

stating that for every flexible polyhedron in E3 the volume keeps constant during the
flex.
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4.1 Unfolding and folding
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the “Vierhorn” and its unfolding

Wolfram MathWorld: A flexible polyhedron which flexes from one totally flat configuration to another, passing through

intermediate configurations of positive volume.
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4.1 Continuously flexible octahedra

R. Bricard (1897): Apart from trivial cases, there are three types of flexible octahedra
in the Euclidean 3-space.

Typ 1: Octahedron with a plane of symmetry, passing through two opposite
vertices;

Typ 2: Octahedron, where all pairs of opposite vertices are symmetric w.r.t. an
axis;

Typ 3: Octahedron without any symmetry, but with two flat poses.

Bricard’s octahedra are the basis of all known flexible polyhedra without self-
intersections (R. Connelly 1978, K. Steffen 1980).
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4.1 Continuously flexible octahedra
ad

M

A1

A2

B1

B2

C1

C2

kAB

kAC

Bricard octahedron of type 3
in a flat pose. Given: vertices A1, A2

and concentric circles kAB, kAC

Unfolding of Steffen’s flexing sphere
(with 9 vertices) as a compound

of two Bricard octahedra
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4.1 Continuously flexible octahedra

A comment in between:

Bricard octahedra are flexible closed 6R chains where consecutive axes of rotations
intersect each other.

In the year 2012 G. Hegedüs, J. Schicho and H.-P. Schröcker could prove that there is a
one-to-one correspondence between these chains and the factorizations of a polynomial
dual quaternion Q(t) of degree 6 into a product of linear factors.

G. Hegedüs, J. Schicho, H.-P. Schröcker: Factorization of rational curves in the Study quadric and

revolute linkages. Mech. Mach. Theory 69(1), 142–152 (2013)
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4.1 Continuously flexible octahedra
′

N
A

A′B

B′

C

C ′

A′′

B′′

C ′′

According to Bricard’s construc-
tion, all bisectors must pass
through the midpoint N of the
concentric circles.

The two flat poses of a type-3
flexible octahedron, when ABC

remains fixed.
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4.1 Continuously flexible octahedra
α

B

C

B′

C ′

A

A′

B

C

B′

C ′

A

A′

Two particular examples
of flexible octahedra
where two faces are
omitted. Both have an
axial symmetry (types 1
and 2)

Below: Nets of the two
octahedra.

′
1

B C

B′ C ′C ′ A

A′A′ B
C

B′ C ′C ′ A

A′A′
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4.1 Continuously flexible octahedra
′

a1

b1

c1

a2

b2
c2

α1

α2

without
self-intersection!

Front, top and side view of a flexible
octahedron with two vertices at infinity.

This is the only nontrivial example of
a flexible octahedron in E3 with infinite
vertices (Nawratil 2010).

a1

cosα1
=

a2

cosα2
, b2 = b1, c2 = c1
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4.1 Continuously flexible octahedra
′

a′
1

b′
1

c ′
1

a′
2

b′
2

c ′
2

without
self-intersection!

The dimensions a′1, . . . , c
′
2 and α′1, α

′
2 of

the flexion are for t ∈ (1− ε, 1 + ε)

a′1 =
√
a2
1
− t,

b′1 =
√
b2
1
+ t, c ′1 =

√
c2
1
+ t

The planar section remains planar.

tanα′i =
ai

a′
i

tanαi , i = 1, 2

and still

a′
1

cosα′
1

=
a′
2

cosα′
2

, b′2 = b
′
1, c ′2 = c

′
1
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4.1 Continuously flexible octahedra

Ivory’s Theorem even shows the
flexibility of the unsymmetric
Type 3 of R. Bricard’s flexible
octahedron (1897).

The two confocal ‘surfaces’ for
applying Ivory’s Theorem are a
one-sheet hyperboloid and its focal
ellipse.

A1

A2

B1
B2

C1
C2

A′
1

A′
2B′

1
B′
2

C ′
1

C ′
2

c
c ′

Φ

Φ′
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4.1 Continuously flexible octahedra
α

M

A1

A2

B1

B2

C1

C2

kAB

kAC

Bricard octahedron of type 3
in a flat pose.

The analogues of Bricard octahedra are
also flexible in the hyperbolic 3-space H3

— also in the case where some vertices
are on the absolute or outside.

A long-standing open problem, whether
there exist flexible cross-polytopes in
higher dimensions, has recently be solved
for Euclidean, hyperbolic and elliptic
spaces; the answer is ‘yes‘.

Alexander A. Găıfullin: Flexible cross-polytopes

in spaces of constant curvature.

arXiv:1312.7608, 38 p.
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4.1 Continuously flexible octahedra

Also the bellows conjecture for Euclidean spaces of dimension ≥ 4 found a positive
answer. There exists a ‘Sabitov-Polynomial’ in all dimensions:

Alexander A. Găıfullin: Sabitov polynomials for volumes of polyhedra in four dimensions. Adv. Math.

252 (2014), 586–611

(arXiv:1108.6014, Oct.2011)

Alexander A. Găıfullin: Generalization of Sabitov’s Theorem to Polyhedra of Arbitrary Dimensions.

arXiv:1210.5408, May2014
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4.2 Curved folding, Example 1

A common way of producing small boxes is to push up appropriate planar cardbord
forms Φ0 with prepared creases. Below the case of creases along circular arcs c0.

a′ )

c0

Φ0

planar version with circular creases

Φ

c

corresponding box with planar creases
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4.2 Curved folding, Example 1

c ′

Φ′

e ′

c ′′ Φ′′

e ′′

β c ′′′Φ′′′

e ′′′

β0

e

The creases at the spatial form are planar and meridians of surfaces of revolution
with constant Gaussian curvature
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4.3 Curved folding, Example 2

c

Φ

Unfolding and corresponding spatial form (photos: G. Glaeser)

The crucial point is here that the ruling is unknown.

M. Kilian, S. Flöry, Z. Chen, N.J. Mitra, A. Sheffer, H. Pottmann: Curved Folding.

ACM Trans. Graphics 27/3 (2008), Proc. SIGGRAPH 2008.
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4.3 Curved folding, Example 2
′

A0

B0C0

D0

M0
Φ0

c10

c ′
10

c20

c ′
20

r

A physical model shows:

• The spatial body with its developable boundary Φ
is convex and uniquely defined.

• The helix-like curve c = c1 ∪
c2 is a proper edge of Φ; the
resulting solid is the convex hull
of c .

• The semicircular disks are
bent to cones with apices A
and C. Hence, Φ is a C1-
compound of two cones and a
torse between.

• The body has an axis a of
symmetry which connects the
midpoint M with the remaining
transition point B = D on c .
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4.3 Curved folding, Example 2

A0

B0C0

B′
0
=D0

M0

E10

E ′
10

E ′
20

E20

Φ0

c10

c ′
10

c20

c ′
20

gM

r
ψ

• The tangent at the point E2 ∈ c2 of transition
between the cone with apex A and the torse must
be parallel to tA.

• The tangent at the analogue
point E1 ∈ c1 is parallel to the
final tangent tC of c2.

• The subcurves AE1 ⊂ c1
and E2C ⊂ c2 have conciding
tangent indicatrices.
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Approximation 2 shows an excellent
accordance with the physical model.

. . . but there remains a contradiction.

A

B

C

E1

E2

F1

F2

c1

c20

a

a1

a2
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Thank you for your attention!
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