Plücker's conoid, hyperboloids of revolution and orthogonal hyperbolic paraboloids

Hellmuth Stachel

$\begin{array}{ll}\text { TECHNISCHE } \\ \text { UNIVERSITÄT } \\ \text { WIEN } & \text { WIEN }\end{array}$

stachel@dmg.tuwien.ac.at — https://www.geometrie.tuwien.ac.at/stachel

Table of contents

1. Plücker's conoid (Cylindroid)
2. Bisector of two skew lines
3. Hyperboloids of revolution with line-contact

Acknowledgement:

$\left.\begin{array}{l}\text { Georg Glaeser } \\ \text { Boris Odehnal }\end{array}\right\}$ University of Applied Arts Vienna, for support with figures

1. Plücker's conoid

Plücker's conoid (or Cylindroid) \mathcal{C} is a ruled surface of degree three with a finite double line.

In cylinder coordinates (r, φ, z) the conoid satisfies $z=c \sin 2 \varphi$ with $c=$ const.

Cartesian equation: $\left(x^{2}+y^{2}\right) z-2 c x y=0$.

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade

1. Plücker's conoid

two string models of the Plücker conoid
The generators connect opposite points of two periods of a Sine-curve wrapped around a right cylinder.

1. Plücker's conoid

\mathcal{C} has
two torsal generators t_{1}, t_{2} and
two central generators c_{1}, c_{2} in the [xy]-plane.
$\mathcal{C} \cap \tau_{X}=g_{X} \cup e_{X}$

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade

1. Plücker's conoid

Top view along the z-axis:
The tangent plane τ_{X} at $X \in \mathcal{C}$ intersects the conoid along the generator g_{X} through X and an ellipse e_{X} with a circle as top view.

This ellipse has the principal vertices on the torsal lines and the minor axis in the [xy]-plane.

1. Plücker's conoid

Each ellipse $e \subset \mathcal{C}$ is the intersection of \mathcal{C} with a cylinder of revolution through the directrix d.
\mathcal{C} contains only planar pedal curves, and e is one of them.

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade

1. Plücker's conoid

Plücker's conoid \mathcal{C} with several ellipses

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade

2. Bisector of two skew lines

Given two skew lines ℓ_{1}, ℓ_{2}, the bisector, i.e., $\left\{X \mid \overline{X \ell_{1}}=\overline{X \ell_{1}}\right\}$, is an orthogonal parabolic hyperboloid \mathcal{P}.
$2 d:=\overline{\ell_{1} \ell_{2}}, 2 \varphi:=\Varangle \ell_{1} \ell_{2}$
$\mathcal{P}: z+\frac{\sin 2 \varphi}{2 d} x y=0$.
The axes of symmetry c_{1}, c_{2} of ℓ_{1} and ℓ_{2} are the vertex generators of \mathcal{P}.

2. Bisector of two skew lines

The tangent plane to \mathcal{P} at X is the plane of symmetry of the two pedal points F_{1}, F_{2} of X on ℓ_{1}, ℓ_{2}.

The generators of \mathcal{P} are the axes of rotations which send ℓ_{1} to ℓ_{2}. Hence, they are axes of one-sheeted hyperboloids of revolution through ℓ_{1} and ℓ_{2}.

2. Bisector of two skew lines

Two hyperboloids of revoIution $\mathcal{H}_{1}, \mathcal{H}_{2}$ through the given skew lines ℓ_{1} and ℓ_{2}. Both hyperboloids have the same secondary axis b.

If two hyperboloids $\mathcal{H}_{1}, \mathcal{H}_{2}$ share two skew generators, then their complete intersection contains two other (not necessarily real) generators of the complementary regulus.

2. Bisector of two skew lines

Gorge circles of hyperboloids of revolution passing through ℓ_{1} and ℓ_{2}.
Their axes g form one regulus of the bisecting hyp. paraboloid \mathcal{P}.

Their centers M lie on c_{1}.

2. Bisector of two skew lines

All pairs of skew lines $\left(\ell_{1}, \ell_{2}\right)$ sharing the bisector
$\mathcal{P}: z+\frac{\sin 2 \varphi}{2 d} x y=0$ are located on Plücker's conoid

$$
\mathcal{C}: z=c \sin 2 \varphi .
$$

Generators g of \mathcal{P} are axes of hyperboloids \mathcal{H} which intersect \mathcal{C} in two symmetric lines $\left(\ell_{1}, \ell_{2}\right)$.

2. Bisector of two skew lines

If ℓ_{1}, ℓ_{2} coincide in c_{1}, the hyperboloid \mathcal{H} contacts \mathcal{C}.
Normals of \mathcal{C} along c_{1} are generators of \mathcal{P}.

String model of Plücker's conoid \mathcal{C} together with \mathcal{P}, the normal surface of \mathcal{C} along c_{1} and c_{2}.
This is model XXIII, no. 10, of Schilling's famous collection of mathematical models.

2. Bisector of two skew lines

Plücker's conoid \mathcal{C} together with \mathcal{P}, the normal surface along c_{1} and c_{2}.

3. Hyperboloids of revolution with line-contact

For given skew axes ℓ_{1}, ℓ_{2}, find pairs of hyperboloids $\mathcal{H}_{1}, \mathcal{H}_{2}$ with contact along a line ℓ_{12}.

Kinematics: the hyperboloids are the axodes of the relative motion of two bodies rotating about ℓ_{1} and ℓ_{2} with constant velocities ω_{1}, ω_{2}.

The common normal lines along ℓ_{12} must meet ℓ_{1} and ℓ_{2}. They form an orthogonal hyperbolic paraboloid with vertex generator $\ell_{12} \Longrightarrow$

3. Hyperboloids of revolution with line-contact

A result well-known in spatial gearing:

The locus of the lines of contact ℓ_{12} (instant screw axes) for variable ratio ω_{1} : ω_{2} is a Plücker conoid \mathcal{C} through ℓ_{1} and ℓ_{2} with the axes of symmetry c_{1}, c_{2} of ℓ_{1}, ℓ_{2} as central axes.

On \mathcal{C}, every symmetric choice of ℓ_{1}, ℓ_{2} and of ℓ_{12} yields contacting hyperboloids of revolution.

Schönbrunn Castle, Vienna
Thank you for your attention!

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade

References

References

[1] G. Figliolini, H. Stachel, J. Angeles: A new look at the Ball-Disteli diagram and its relevance to spatial gearing. Mech. Mach. Theory 42/10, 1362-1375 (2007).
[2] M. Husty, H. Sachs: Abstandsprobleme zu windschiefen Geraden I. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. KI. 203, 31-55 (1994).
[3] J. Krames: Über die in einem Strahlnetz enthaltenen Drehhyperboloide. Rad, Jugosl. Akad. Znan. Umjet., Mat. Znan. 2, 1-7 (1983).
[4] E. Müller, J.L. Krames: Vorlesungen über Darstellende Geometrie. Band III: Konstruktive Behandlung der Regelflächen. B.G. Teubner, Leipzig, Wien, 1931.

Sept. 21, 2020: moNGeometrija2020 - The $7^{\text {th }}$ Internat. Conference on Engineering Graphics and Design, Belgrade
[5] B. Odehnal, H. Stachel, G. Glaeser: The Universe of Quadrics. Springer Spectrum, Berlin, Heidelberg, 2020.
[6] J. Phillips: General Spatial Involute Gearing. Springer, Berlin, Heidelberg, 2003.
[7] G. Salmon, W. Fiedler: Die Elemente der analytischen Geometrie des Raumes. B.G. Teubner, Leipzig, 1863.
[8] M. Schilling: Catalog mathematischer Modelle. 7. Auflage, Martin Schilling, Leipzig, 1911.
[9] H. Stachel: Unendlich viele Kugeln durch vier Tangenten. Math. Pannonica 6, 55-66 (1995).
[10] W. Wunderlich: Darstellende Geometrie II. BI Mannheim, 1967.
[11] W. Wunderlich: Die Netzflächen konstanten Dralls. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. KI. 191, 59-84 (1982).

