Plücker's conoid, hyperboloids of revolution and orthogonal hyperbolic paraboloids

Hellmuth Stachel

stachel@dmg.tuwien.ac.at — https://www.geometrie.tuwien.ac.at/stachel

moNGeometrja 2020 – The 7th International Conference on Engineering Graphics and Design Sept. 18–21, 2020, Belgrade

Table of contents

- 1. Plücker's conoid (Cylindroid)
- 2. Bisector of two skew lines
- Hyperboloids of revolution with line-contact 3.

Acknowledgement:

Georg Glaeser Boris Odehnal University of Applied Arts Vienna, for support with figures

Plücker's conoid (or **Cylindroid**) C is a ruled surface of degree three with a finite double line.

In cylinder coordinates (r, φ, z) the conoid satisfies $z = c \sin 2\varphi$ with c = const.

Cartesian equation: $(x^2 + y^2) z - 2c xy = 0$.

two string models of the Plücker conoid

The generators connect opposite points of two periods of a Sine-curve wrapped around a right cylinder.

Sept. 21, 2020: moNGeometrija2020 – The 7th Internat. Conference on Engineering Graphics and Design, Belgrade

cements

Top view along the *z*-axis:

The tangent plane τ_X at $X \in C$ intersects the conoid along the generator g_X through X and an ellipse e_X with a circle as top view.

This ellipse has the principal vertices on the torsal lines and the minor axis in the [xy]-plane.

Each ellipse

 $e \subset C$ is the intersection of C with a cylinder of revolution through the directrix d.

 \mathcal{C} contains only planar pedal curves, and e is one of them.

Given two skew lines ℓ_1, ℓ_2 , the bisector, i.e., $\{X \mid \overline{X\ell_1} = \overline{X\ell_1}\}$, is an orthogonal parabolic hyperboloid \mathcal{P} .

$$2d := \overline{\ell_1 \ell_2}, \ 2\varphi := \gtrless \ell_1 \ell_2$$
$$\mathcal{P}: \ z + \frac{\sin 2\varphi}{2d} xy = 0.$$

The axes of symmetry c_1 , c_2 of ℓ_1 and ℓ_2 are the vertex generators of \mathcal{P} .

The tangent plane to \mathcal{P} at X is the plane of symmetry of the two pedal points F_1 , F_2 of X on ℓ_1 , ℓ_2 .

The generators of \mathcal{P} are the axes of rotations which send ℓ_1 to ℓ_2 . Hence, they are axes of one-sheeted hyperboloids of revolution through ℓ_1 and ℓ_2 .

Two hyperboloids of revolution \mathcal{H}_1 , \mathcal{H}_2 through the given skew lines ℓ_1 and ℓ_2 . Both hyperboloids have the same secondary axis *b*.

If two hyperboloids \mathcal{H}_1 , \mathcal{H}_2 share two skew generators, then their complete intersection contains two other (not necessarily real) generators of the complementary regulus.

Sept. 21, 2020: moNGeometrija2020 – The 7th Internat. Conference on Engineering Graphics and Design, Belgrade

Gorge circles of hyperboloids of revolution passing through ℓ_1 and ℓ_2 .

Their axes g form one regulus of the bisecting hyp. paraboloid \mathcal{P} .

Their centers M lie on c_1 .

All pairs of skew lines (ℓ_1, ℓ_2) sharing the bisector

$$\mathcal{P}: \ z + \frac{\sin 2\varphi}{2d} xy = 0$$

are located on Plücker's conoid

 $\mathcal{C}: \ z = c \sin 2\varphi.$

Generators g of \mathcal{P} are axes of hyperboloids \mathcal{H} which intersect \mathcal{C} in two symmetric lines (ℓ_1, ℓ_2) .

If ℓ_1, ℓ_2 coincide in c_1 , the hyperboloid \mathcal{H} contacts \mathcal{C} .

Normals of C along c_1 are generators of \mathcal{P} .

String model of Plücker's conoid C together with P, the normal surface of C along c_1 and c_2 .

This is model XXIII, no. 10, of Schilling's famous collection of mathematical models.

Plücker's conoid Ctogether with \mathcal{P} , the normal surface along c_1 and c_2 .

3. Hyperboloids of revolution with line-contact

For given skew axes ℓ_1 , ℓ_2 , find pairs of hyperboloids \mathcal{H}_1 , \mathcal{H}_2 with contact along a line ℓ_{12} .

Kinematics: the hyperboloids are the axodes of the relative motion of two bodies rotating about ℓ_1 and ℓ_2 with constant velocities ω_1, ω_2 .

The common normal lines along ℓ_{12} must meet ℓ_1 and ℓ_2 . They form an orthogonal hyperbolic paraboloid with vertex generator $\ell_{12} \implies$

3. Hyperboloids of revolution with line-contact

cements

A result well-known in spatial gearing:

The locus of the lines of contact ℓ_{12} (instant screw axes) for variable ratio ω_1 : ω_2 is a Plücker conoid C through ℓ_1 and ℓ_2 with the axes of symmetry c_1 , c_2 of ℓ_1 , ℓ_2 as central axes.

On C, every symmetric choice of ℓ_1 , ℓ_2 and of ℓ_{12} yields contacting hyperboloids of revolution.

Schönbrunn Castle, Vienna

Thank you for your attention!

References

References

- [1] G. Figliolini, H. Stachel, J. Angeles: *A new look at the Ball-Disteli diagram and its relevance to spatial gearing*. Mech. Mach. Theory **42**/10, 1362–1375 (2007).
- M. Husty, H. Sachs: Abstandsprobleme zu windschiefen Geraden I. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 203, 31–55 (1994).
- [3] J. Krames: Über die in einem Strahlnetz enthaltenen Drehhyperboloide. Rad, Jugosl. Akad. Znan. Umjet., Mat. Znan. 2, 1–7 (1983).
- [4] E. Müller, J.L. Krames: *Vorlesungen über Darstellende Geometrie. Band III: Konstruktive Behandlung der Regelflächen*. B.G. Teubner, Leipzig, Wien, 1931.

Sept. 21, 2020: moNGeometrija2020 – The 7th Internat. Conference on Engineering Graphics and Design, Belgrade

- [5] B. Odehnal, H. Stachel, G. Glaeser: *The Universe of Quadrics*. Springer Spectrum, Berlin, Heidelberg, 2020.
- [6] J. Phillips: General Spatial Involute Gearing. Springer, Berlin, Heidelberg, 2003.
- [7] G. Salmon, W. Fiedler: *Die Elemente der analytischen Geometrie des Raumes*. B.G. Teubner, Leipzig, 1863.
- [8] M. Schilling: *Catalog mathematischer Modelle*. 7. Auflage, Martin Schilling, Leipzig, 1911.
- [9] H. Stachel: *Unendlich viele Kugeln durch vier Tangenten*. Math. Pannonica **6**, 55–66 (1995).
- [10] W. Wunderlich: *Darstellende Geometrie II*. Bl Mannheim, 1967.
- [11] W. Wunderlich: *Die Netzflächen konstanten Dralls*. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. **191**, 59–84 (1982).

