STRING CONSTRUCTIONS OF QUADRICS REVISITED

hellmuth stachel VIENNA UNIVERSITY OF TECHNOLOGY

Table of Contents

1. Introduction
2. Confocal central quadrics
3. String constructions of ellipsoids
4. String constructions of paraboloids

1. Introduction

Wellknown string constructions of ellipses are the gardener's construction and Graves's construction based on the confocal smaller ellipse c

1. Introduction

- It is natural to ask for string constructions of quadrics.
- The first solution, given in 1882 by Otto Staude, is based on an ellipse e and its focal hyperbola h.
- Later in 1896, Staude presented a second type of string constructions where e and h are replaced by an ellipsoid \mathcal{E}_{0} and a confocal hyperboloid \mathscr{H}_{0}.
- We present new proofs for these constructions.

2. Confocal central quadrics

The family of confocal quadrics
$\frac{x^{2}}{a^{2}+k}+\frac{y^{2}}{b^{2}+k}+\frac{z^{2}}{c^{2}+k}=1, k \in \mathbb{R} \backslash\left\{-a^{2}, b^{2}, c^{2}\right\}$
(ellipsoids, one- and two-sheeted hyperboloids) sends through each point P three mutually orthogonal surfaces, one of each type.

2. Confocal central quadrics

The three surface normals at any point P determine an orthogonal frame.
The tangent cones from any point P to the confocal quadrics are confocal, too. The said orthogonal frame determines the common axes of these cones

2. Confocal central quadrics

2. Confocal central quadrics

The ,flat' surfaces in the confocal family determine the two focal conics of the quadrics, the focal ellipse e and the focal hyperbola h.

2. Confocal central quadrics

The connecting cone of any point P on h with the focal conic e is a cone of revolution with the tangent to e at P as axis, and vice versa.

3. String constructions of ellipsoids

O. Staude's first string construction of the ellipsoid \mathcal{E} (1882) is based on the focal ellipse e and the focal hyperbola h of \mathcal{E}.
The strengthened string forces P to move locally on the ellipsoid \mathcal{E}.

3. String constructions of ellipsoids

Abstract

Lemma 1: If the string from F_{1} to F_{2} is strengthened at G over the curve c, then the two segments $F_{1} G$ and $G F_{2}$ belong to the same cone of revolution with the tangent at G as axis.

Moreover, the normal plane of c at G must separate F_{1} from F_{2}

3. String constructions of ellipsoids

The cone of revolution through P and F_{1} with apex G_{1} passes through e. Hence, the extensions of $P G_{1}$ and $P G_{2}$ meet both conics e and h and are symmetric w.r.t. the normal n_{P} at P.

3. String constructions of ellipsoids

Lemma 2:

A point P, which is fixed on the left part of the string with endpoint F_{1}, moves orthogonal to $G_{1} P$.
Due to the constant length, if for P the distance to F_{1} along the string increases, then that to F_{2} decreases by the same amount.
\Rightarrow P moves orthogonal to n_{P}

3. String constructions of ellipsoids

The cones from P to e and h share four generators.

At Staude's first string construction for the ellipsoid \mathcal{E}, simultaneously two strings can be used, the red and the green one.

3. String constructions of ellipsoids

Finally, at Staude's first string construction for the ellipsoid \mathcal{E}, the endpoints F_{1} on e and F_{2} on h can vary on the respective conics.

3. String constructions of ellipsoids

Staude's string construction of type 2
(1896) for the ellipsoid \mathcal{E} is based on the two components e_{1}, e_{2} of the line of curvature $\mathcal{E}_{0} \cap \mathscr{H}_{0}$

4. String constructions of paraboloids

Elliptic paraboloid with its two focal parabolas on p_{1} and p_{2}.

If Staude's string construction of type 1 works also for paraboloids, then it must be based on p_{1} and p_{2}.

4. String constructions of paraboloids

The construction fails for the elliptic paraboloid, since the normal plane of p_{2} at G_{2} does not separate P from F_{2}

4. String constructions of paraboloids

The construction fails for the hyperbolic paraboloid, since n_{P} is not the interior angle bisector of $G_{1} P G_{2}$.
However, the difference of lengths $F_{1} G_{1} P$ and $F_{2} G_{2} P$ is constant.

4. String constructions of paraboloids

Schönbrunn Castle, Vienna
Thank you for your attention!

References

D. Hilbert, St. Cohn-Vossen: Anschauliche Geometrie, 2nd ed., Springer, Berlin 1996. English translation: Geometry and the Imagination. Chelsea Publ., reprinted by American Mathematical Society, Providence, RI, 1999.
B. Odehnal, H. Stachel, G. Glaeser: The Universe of Quadrics. Springer Verlag Berlin Heidelberg 2020.
O. Staude: Über Fadenconstructionen des Ellipsoides. Mathematische Annalen 20, 147-185 (1882).
O. Staude: Die Focaleigenschaften der Flächen zweiter Ordnung. B.G. Teubner, Leipzig 1896.

