

The 19th International Conference on Geometry and Graphics (ICGG 2020)

STRING CONSTRUCTIONS OF QUADRICS REVISITED

HELLMUTH STACHEL VIENNA UNIVERSITY OF TECHNOLOGY

Table of Contents

- 1. Introduction
- 2. Confocal central quadrics
- 3. String constructions of ellipsoids
- 4. String constructions of paraboloids

1. Introduction

Wellknown string constructions of ellipses are the gardener's construction and Graves's construction based on the confocal smaller ellipse *c*

1. Introduction

- It is natural to ask for string constructions of quadrics.
- The first solution, given in 1882 by Otto Staude, is based on an ellipse *e* and its focal hyperbola *h*.
- Later in 1896, Staude presented a second type of string constructions where e and h are replaced by an ellipsoid \mathcal{E}_0 and a confocal hyperboloid \mathcal{H}_0 .
- We present new proofs for these constructions.

The family of confocal quadrics

 $\frac{x^2}{a^2+k} + \frac{y^2}{b^2+k} + \frac{z^2}{c^2+k} = 1, \ k \in \mathbb{R} \setminus \{-a^2, b^2, c^2\}$

(ellipsoids, one- and two-sheeted hyperboloids) sends through each point *P* three mutually orthogonal surfaces, one of each type.

The three surface normals at any point *P* determine an orthogonal frame.

The **tangent cones** from any point *P* to the confocal quadrics are **confocal**, too. The said orthogonal frame determines the **common axes** of these cones

The ,flat' surfaces in the confocal family determine the two focal conics of the quadrics, the *focal ellipse e* and the *focal hyperbola h*.

The connecting cone of any point *P* on *h* with the focal conic *e* is a cone of revolution with the tangent to *e* at *P* as axis, and vice versa.

O. Staude's first string construction of the ellipsoid \mathcal{E} (1882) is based on the *focal ellipse e* and the *focal hyperbola h* of *E*. The strengthened string forces P to move locally on the ellipsoid \mathcal{E} .

Lemma 1:

If the string from F_1 to F_2 is strengthened at G over the curve c, then the two segments F_1G and GF_2 belong to the same cone of revolution with the tangent at G as axis.

Moreover, the normal plane of c at G must separate F_1 from F_2

The cone of revolution through *P* and *F*₁ with apex *G*₁ passes through *e*. Hence, the extensions of *PG*₁ and *PG*₂ meet both conics *e* and *h* and are symmetric w.r.t. the normal n_p at *P*.

Lemma 2:

A point *P*, which is fixed on the left part of the string with endpoint F_1 , moves orthogonal to G_1P .

Due to the constant length, if for Pthe distance to F_1 along the string increases, then that to F_2 decreases by the same amount.

 \Rightarrow *P* moves orthogonal to n_P

The cones from *P* to *e* and *h* share four generators.

At Staude's first string construction for the ellipsoid \mathcal{E} , simultaneously two strings can be used, the red and the green one.

Finally, at Staude's first string construction for the ellipsoid \mathcal{E} , the endpoints F_1 on e and F_2 on h can vary on the respective conics.

Staude's string construction of type 2 (1896) for the ellipsoid \mathcal{E} is based on the two components e_1 , e_2 of the line of curvature $\mathcal{E}_0 \cap \mathcal{H}_0$

Elliptic paraboloid with its two focal parabolas on p_1 and p_2 . If Staude's string construction of **type 1** works also for paraboloids, then it

must be based on p_1 and p_2 .

The construction fails for the elliptic paraboloid, since the normal plane of p_2 at G_2 **does not** separate *P* from F_2

The construction fails for the hyperbolic paraboloid, since n_p is not the interior angle bisector of G_1PG_2 . However, the difference of lengths F_1G_1P and F_2G_2P is constant.

Re

Ph

Only Staude's string construction of **type 2** holds also for the elliptic paraboloid *J*

Schönbrunn Castle, Vienna

Thank you for your attention !

References

- D. Hilbert, St. Cohn-Vossen: *Anschauliche Geometrie*, 2nd ed., Springer, Berlin 1996. English translation: *Geometry and the Imagination*. Chelsea Publ., reprinted by American Mathematical Society, Providence, RI, 1999.
- B. Odehnal, H. Stachel, G. Glaeser: *The Universe of Quadrics*. Springer Verlag Berlin Heidelberg 2020.
- O. Staude: *Über Fadenconstructionen des Ellipsoides*. Mathematische Annalen **20**, 147-185 (1882).
- O. Staude: *Die Focaleigenschaften der Flächen zweiter Ordnung*. B.G. Teubner, Leipzig 1896.