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1. Billiards in ellipses and billiard motion
Billlard and associated Poncelet grid

Isometric elliptic and hyperbolic billiards
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Focal billiards In ellipsoids
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1. Billiards in ellipses and billiard motion

A billiard is the trajectory of a mass point within a domain with ideal physical reflections
In the boundary — In our case an ellipse e.
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The optical property of ellipses Is well known, and also the equivalence:
equal angles <— FHP + P =const. <— P ce.
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1. Billiards in ellipses and billiard motion

Charles Graves (1812-1899), bishop of

If any ray is reflected in a conic e then Limerick and mathematician:

the incoming and the outgoing ray are The locus of point P used to pull the
tangent to the same confocal conic ¢, string taut around c is a confocal ellipse e.

called caustic (ellipse or hyperbola). D, = PQ; + PQ, — Qfl-(\gz — const
e - o '
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1. Billiards in ellipses and billiard motion

Billiards in an ellipse e are always tangent to a confocal ellipse or hyperbola.

If one billiard I1s periodic and closes after N reflections, then all billiards close,
independent of the initial point on ¢ (Poncelet porism), and all these closed loops
have the same length — as a consequence of Graves’ theorem.

The continuous variation of the billiard in e i1s called billiard motion:
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1. Billiards in ellipses and billiard motion

For centuries, billiards (and projectively equivalent
polygons with an inscribed and a circumscribed conic)
attracted the attention of mathematicians, beginning
with J.-V. Poncelet, C.G.J. Jacobi, M. Chasles, A.

Cayley, and G. Darboux.

S. Tabachnikov: Geometry and Billiards.
American Mathematical Society, 2005

In 2020, Dan Reznik (Brazil) revitalized the interest by
computer animations showing the motion of periodic
billiards. He identified 80 invariants, e.g., a constant
sum of Cosines of interior angles.
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2. Billiard and associated Poncelet grid

The extended sides of a billiard intersect at
points of confocal ellipses and hyperbolas
and form a Poncelet grid.

affinely transformed 72-sided periodic billiard with
associated Poncelet grid (G. Glaeser, B. Odehnal,
H.S.. The Universe of Conics)
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2. Billiard and associated Poncelet grid

The extended sides of a billiard

A2 intersect at points of confocal
| , ellipses and hyperbolas and form a
| Poncelet grid.
B E
.. | t Theorem: Given a quadrilateral
As_~1 ! t, ..., t, of tangents to ¢ from
| ' A Ai,B; € ¢;. Then the range

t
\ (=‘dual pencil’) R, spanned by
- MB c and ¢; contains conics o,
K c3 passing through the remaining
< pairs of opposite vertices (A, B»)
' and (A3, 83)

M. Chasles (1843), W. Bohm (1961), Izmestiev & Tabachnikov (2016), Akopyan & Bobenko (2017).
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2. Billiard and associated Poncelet grid

RcNRy={c} = they

" spananet NV (2-parameter set).

In A, the line elements of ¢; at
t3 A1 and Bj span a range which
contains the rank-1 conic R.

R+ := {conics tangent to ti, ..., t4} c
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2. Billiard and associated Poncelet grid

In NV, the line pencils A;, B; and
ts the pencil R (2-fold) span a range
which intersects R, at ¢;. The
range contains conics sharing the
line elements at A; and B, .

The tangents to ¢; at A; and B,
pass through R.

c,c; confocal = concyclic
quadrilateral.

This holds also when B, € ¢ (t; = ).
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S =[Py, PN [Ps, Py] € e on the confocal hyperbola through P;.
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For each billiard PP, ... exists a conjugate billiard P[P} . ..
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2. Billiard and associated Poncelet grid

Clearly, a billiard motion induces a variation of the complete Poncelet grid and the
conjugate billiard.
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2. Billiard and associated Poncelet grid

lvory’s theorem implies for odd
N = 2n + 1: the length /; equals
i, , of the conjugate billiard and
the symmetric riy 1.

Theorem: ) /=) r=1./2.
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Billiards in ellipses e with a hyperbola as caustic ¢ look different (N even).

Sept. 8, 2021: 22nd Scientific-Professional Colloquium on Geometry and Graphics % 14/23



3. Isometric elliptic and hyperbolic billiards

Theorem:

1) For each billiard P{P; ... in an ellipse €' with an ellipse ¢’ as caustic there exists

an isometric billiard P{'P)' ... in an ellipse " with a hyperbola ¢" as caustic, i.e.,
PRI, = PIPL,

2) Conversely, for each billiard with a hyperbola ¢’ as caustic there exists an isometric
billiard with an ellipse ¢’ as caustic, provided that in the case of an N-periodic billiard
with N =2 (mod 4), we traverse the elliptic billiard twice.

a//2 b/2 b// b’ a//2 . b/C/2:a/CQ, 3

c C
12 _ //2 //2 AN 2 12 N2
a — bZ b.=bg, ~— bs=az”, a
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Moreover, contact points
with the caustic correspond
to Intersection points with
the principal axis, 1.e.,

PIQ; = FIQY, PIT] = FITY

PySY = pysi
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its flat limiting poses.
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Isometric elliptic and hyperbolic billiards

3.
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3. Isometric elliptic and hyperbolic billiards

If the axes of symmetry of the one-sheeted hyperboloids remain fixed, then the
hyperboloid remains confocal.

The vertices trace orthogonal trajectories of the hyperboloids which are lines of
curvature on the confocal ellipsoids and two-sheeted hyperboloids. Hence, each vertex

remains on a confocal ellipsoid.
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4. Focal billiards in ellipsoids

The generators of the one-sheeted
hyperboloids in a confocal family
are called focal lines of the
confocal ellipsoids.

The reflection in an ellipsoid maps
focal lines again on focal lines since
they are asymptotic curves on the
one-sheeted hyperboloid while the
Intersection curves with ellipsoid
are lines of curvature.

Ko — K1
ki — ko
ko, ki, ko are elliptic coordinates
of P (e.g., kg = a2 — a2).

6 __
tan§—2|2
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4. Focal billiards in ellipsoids

Ps

Let the generators on a
= _ Henrici hyperboloid end

- ‘PQ on a confocal ellipsoid
P : N £. Then they remain on
£ during the flex.

\ At the flat limits the
J \ P, generators are tangents
of the focal ellipse ¢’
or hyperbola and end on
principal sections of £.

Pio
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4. Focal billiards in ellipsoids

two poses of isometric Poncelet grids
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4. Focal billiards in ellipsoids

Here are some invariants of N-periodic focal billiards in € w.r.t. billiard motions along
curvature lines e:

Theorem: All focal billiards in £ are N-periodic and have the same length L.

Ko — ki
agbece

Theorem: vazl cosf;, = N — L e with ag, be, ce as semiaxes of £.

Theorem: If N is even, then

[1PQ =Tl =Tl r=I1PQ1=k"=cl
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Slatine Beach, Ciovo/Croatia

Thank you for your attention!
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