Canal surfaces containing four straight lines

Hellmuth Stachel

stachel@dmg.tuwien.ac.at — https://www.geometrie.tuwien.ac.at/stachel

24th Scientific-Professional Colloquium on Geometry and Graphics, Senj/Croatia, September 1–5, 2024

Table of contents

- Canal surfaces in general 1.
- 2. Plücker's conoid and concyclic lines
- Generic case and singularities 3.
- Symmetric canal surfaces through four lines 4.

Acknowledgement:

Georg Glaeser Boris Odehnal University of Applied Arts Vienna, for support with figures

A canal surface (chan-

nel surface) \mathcal{E} is the envelope of a one-parameter family of spheres \mathcal{S} with (in general) variable radius.

The path of the spheres' centers Q is called **spine curve** q.

Each sphere S contacts \mathcal{E} along a circle c called **characteristic** with center M (in general $\neq Q$). The tangent planes to \mathcal{E} along c envelop a cone of revolution.

- 1. If all spheres of a canal surface contact a line g, then the points of contact belong to the envelope \mathcal{E} , i.e., $g \subset \mathcal{E}$.
- 2. If $Q \in q$ is the center of an enveloping sphere S, then the pedal point of Q on g belongs to the characteristic c of S.
- 3. If \mathcal{E} contains **four** lines g_1, \ldots, g_4 , then for each $Q \in q$ the four pedal points must be **coplanar** and **concircular**.

Given two skew lines g_1, g_2 , the **bisector**, i.e., $\{X \mid \overline{X}g_1 = \overline{X}g_2\}$, is an orthogonal parabolic hyperboloid \mathcal{P} .

 $2d := \overline{g_1 g_2}, 2\varphi := \gtrless g_1 g_2$ $\mathcal{P}: \ z + \frac{\sin 2\varphi}{2d} xy = 0.$

The axes of symmetry c_1 , c_2 of g_1 and g_2 are the vertex generators of \mathcal{P} .

If all spheres contact **two** lines g_1, g_2 , then the spine curve q lies on the bisector, for skew lines an orthogonal hyperbolic paraboloid \mathcal{P}_{12} , otherwise the two planes of symmetry.

If all spheres contact **three** lines g_1, g_2, g_3 , then q is the **quartic** $\mathcal{P}_{12} \cap \mathcal{P}_{13}$, a pair of parabolas or a line,

Can a fourth line be tangent to infinitely many spheres?

Theorem. (H.S. 1995)

There are only two cases where **four** mutually skew lines g_1, \ldots, g_4 have a continuum of contacting spheres: The given lines either belong to a hyperboloid of revolution or they are **concyclic**, i.e., they belong to a Plücker conoid C and their points of intersection with a tangent plane to C are located on a circle.

In the latter case, the six bisecting hyperbolic paraboloids \mathcal{P}_{ij} of the pairs (g_i, g_j) , $i, j \in \{1, \ldots, 4\}, i \neq j$, belong to a pencil. In the first case, the paraboloids share the hyperboloid's axis.

Corollary.

If all spheres of an irreducible algebraic canal surface contact a finite number of lines, then this number is less or equal to **four**.

Plücker's conoid (or **Cylindroid**) C is a ruled surface of degree three with a finite double line d.

In cylinder coordinates (r, φ, z) the conoid satisfies

 $z = c \cdot \sin 2\varphi$

with the width c = const.

Cartesian equation: $(x^2 + y^2)z - 2cxy = 0$.

The equation $z = c \cdot \sin 2\varphi$ implies:

The curve of intersection c_{cyl} of Plücker's conoid C with a right cylinder about the *z*-axis appears in the cylinder's development as two periods of a Sine curve. The generators of C connect opposite points of c_{cyl} .

C has two torsal generators t_1 , t_2 and two central generators c_1 , c_2 in the [xy]-plane as axes of symmetry.

C contains a two-parameter set of ellipses e_X . The tangent plane τ_X at the point X intersects C along the generator g_X and the ellipse e_X .

The top view of $z = c \cdot \sin 2\varphi$ reveals:

The intersection of the conoid C with a right cylinder through the double line d gives only one period of the Sine curve in the cylinder's development.

This results in an ellipse on Plücker's conoid.

The top view reveals:

H is the pedal point of the generator $h \subset C$ for all points *P* with the top view *P*'; the ellipse $e \subset C$ is the **pedal curve** of *P*.

Theorem.

All pedal curves of Plücker's conoid C are planar.

Due to P. Appell (1900) Plücker's conoid is the only algebraic non-torsal ruled surface with this property.

If $g_1, \ldots, g_4 \subset C$ are **concyclic** generators, then they intersect each tangent plane of C in concyclic points.

Infinitely many spheres are tangent to g_1, \ldots, g_4 .

The circle k is a characteristic \iff the axis of k lies in the vertical plane through P and X orthogonal to g.

A part of one component of the canal surface \mathcal{E} through mutually skew concyclic lines g_1, \ldots, g_4 along with the locus m of characteristics' centers. The second component is symmetric w.r.t. the *z*-axis.

 \mathcal{E} has always singularities. The black curve is a cuspidal edge. The points of the lines are biplanar or uniplanar points of the complete surface.

Top view of circles of the previous canal surface \mathcal{E} through skew concyclic lines g_1, \ldots, g_4 .

The **hyperbola** *q'* is the top view of the spine curve and *m'* that of the curve of blau circles' centers.

Not all points of g_1 are contact points with a sphere.

Top view of circles of the previous canal surface \mathcal{E} through skew concyclic lines g_1, \ldots, g_4 .

The **hyperbola** *q'* is the top view of the spine curve and *m'* that of the curve of blau circles' centers.

Not all points of g_1 are contact points with a sphere.

Top view of circles of the canal surface \mathcal{E} through skew concyclic lines g_1 , ..., g_4 .

The curve *s* is the cuspidal edge. It passes through the uniplanar points of g_1 and g_4 .

 k_0 is the smallest circle.

The characteristic's planes contact the Plücker conoid C along an asymptotic curve b with a lemnniscate of Bernoulli b' as top view.

Hence, *b* is the edge of regression of the developable formed by the characteristics' planes. Tangents of *b* intersect the characteristics at singular points.

There are two symmetric cases: Either the center M of k lies on the secondary axis of e (left) on the principal axis.

In the first case the concyclic lines are **skew**.

In the latter case the pairs (g_1, g_2) and (g_3, g_4) are **intersecting**, and C is symmetric w.r.t. the *z*-axis and the plane x = y.

Skew symmetric case with edges of regression (black) and the smallest circle (double line).

This is the symmetric intersecting case. The lines (g_1, g_2) and (g_3, g_4) are intersecting.

The canal surface \mathcal{E} is symmetric w.r.t. the *z*-axis and the plane x = y through one torsal generator of \mathcal{C} .

Front view of the right half of one $g_1''=g_2''$ component of the canal surface \mathcal{E} in the intersecting case with the parabola q as spine curve.

The border line is the intersection with a plane orthogonal to t_2 . Other contour lines are depicted in magenta.

One component of the canal surface \mathcal{E} through g_1, \ldots, g_4 . The second component looks similar.

The fifth line g_5 is the limit of a characteristic.

If more than four lines contact all spheres, then infinitely many $\Rightarrow \mathcal{E}$ is a right cone or cylinder or a onesheeted hyperboloid.

The limit $g_1 = g_3$ is a parabolic **Dupin ring cyclide** \mathcal{D} .

Like all Dupin cyclides, it can be generated in two ways as a canal surface.

The spine curves are focal parabolas.

All four lines coincide when k is hyperosculating circle of e at a principal vertex. In this limit of the symmetric intersecting case we obtain a **parabolic Dupin needle cyclide**.

Thank you for your attention!

References

- P. Appell: *Propriété caractéristique du cylindroïde*. Bull. Soc. Math. France **28**, 261–265 (1900).
- G. Glaeser, H. Stachel, B. Odehnal: *The Universe of Conics*. Springer Spectrum, Berlin, Heidelberg 2016.
- E. Müller, J.L. Krames: *Vorlesungen über Darstellende Geometrie. Band III: Konstruktive Behandlung der Regelflächen*. B.G. Teubner, Leipzig, Wien 1931.
- B. Odehnal, H. Stachel, G. Glaeser: *The Universe of Quadrics*. Springer Spectrum, Berlin, Heidelberg 2020.
- G. Salmon, W. Fiedler: *Die Elemente der analytischen Geometrie des Raumes*. B.G. Teubner, Leipzig 1863.

- M. Schilling: *Catalog mathematischer Modelle*. 7. Auflage, Martin Schilling, Leipzig 1911.
- H. Stachel: *Unendlich viele Kugeln durch vier Tangenten*. Math. Pannonica **6**, 55–66 (1995).
- H. Stachel: *Plücker's Conoid Revisited*. G, Slov. Čas. Geom. Graf. **19**, no. 38, 21–34 (2022).
- T. Theobald: *New Algebraic Methods in Computational Geometry*. Habilitation thesis, TU München 2003.
- W. Wunderlich: *Darstellende Geometrie II*. BI Mannheim 1967.

