Kokotsakis meshes and flexible quad meshes

Hellmuth Stachel

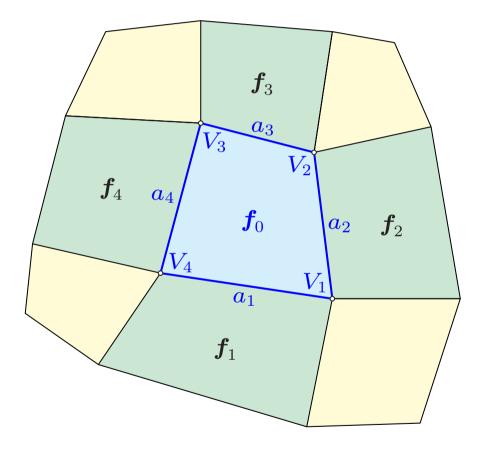
stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel

Outline

- 1. Flexible Kokotsakis meshes
- 2. Kokotsakis' flexible tesselation
- 3. Rigidity of a quadrangular cylinder tiling

Funding source: Grant No. I 408-N13 of the Austrian Science Fund FWF within the project "Flexible polyhedra and frameworks in different spaces", an internat. cooperation between FWF and RFBR (Russian Foundation for Basic Research)

Acknowledgement: Georg Nawratil, TU Wien

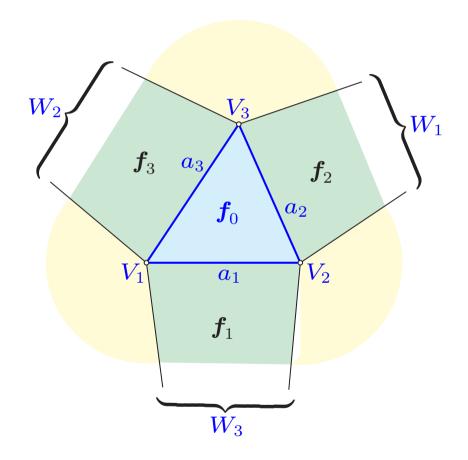


Special case n=4

A Kokotsakis mesh is a polyhedral structure consisting of an n-sided central polygon f_0 surrounded by a belt of polygons.

Each side a_i , $i=1,\ldots,n$, of f_0 is shared by a polygon f_i . At each vertex V_i of f_0 four faces are meeting.

Each face is a rigid body; only the dihedral angles can vary ('rigid origami'). Can it be continuously flexible?



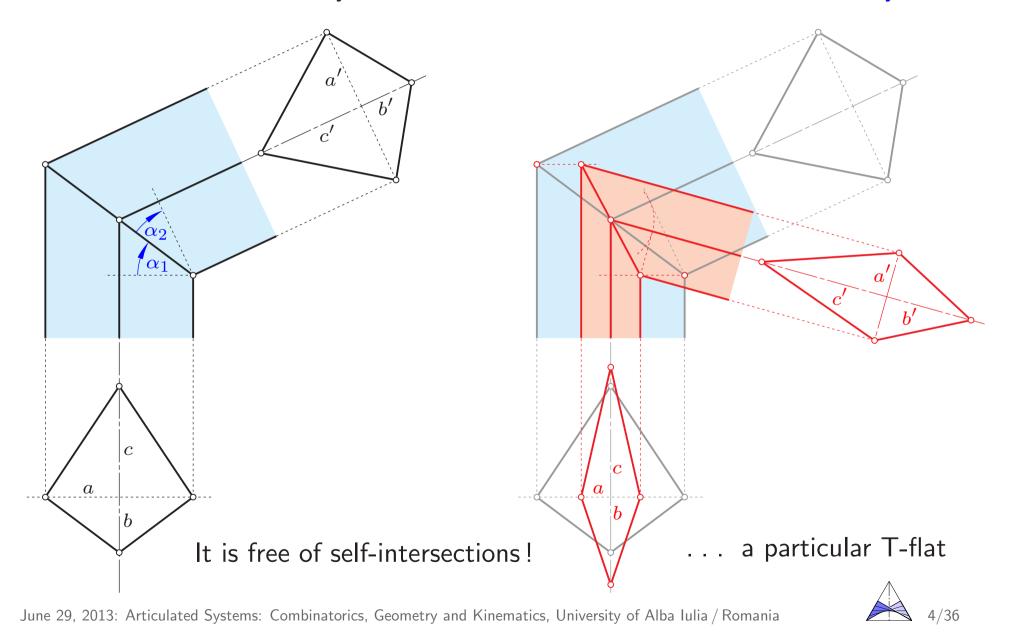
Special case: n = 3

A Kokotsakis mesh for n=4 is also called Neunflach [German] (nine-flat) (KOKOTSAKIS 1931, SAUER 1932)

For n=3 the Kokotsakis mesh is equivalent to an octahedron with $V_1V_2V_3$ and $W_1W_2W_3$ as opposite triangular faces.

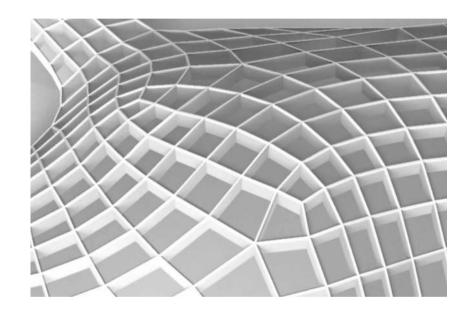
This offers an alternative approach to R. Bricard's *flexible octahedra*.

G. Nawratil: There is exactly one flexible octahedron with vertices at infinity.



In discrete differential geometry there is a interest on polyhedral structures composed of quadrilaterals (quadrilateral surfaces).

If all quadrilaterals are planar, they form a discrete conjugate net = quad mesh.



H. POTTMANN, Y. LIU, J. WALLNER, A. BOBENKO, W. WANG:

Geometry of Multi-layer Freeform

Structures for Architecture. ACM Trans.

Graphics 26 (3) (2007), SIGGRAPH 2007

In 'Freeform Architecture' most of the surfaces are designed as *polyhedral surfaces* — like the Capital Gate in Dubai (height = 160 m, inclination 18°) Steel construction: Wagner Biro, Austria

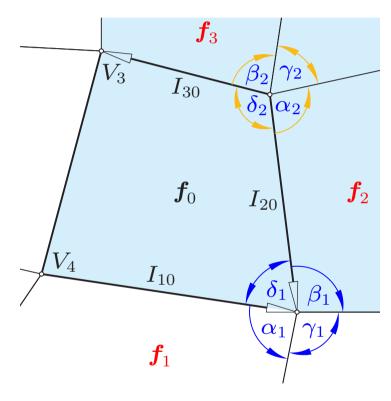
Theorem: [Bobenko, Hoffmann, Schief 2008]

A discrete conjugate net in general position is continuously flexible \iff all its 3×3 complexes are continuously flexible.

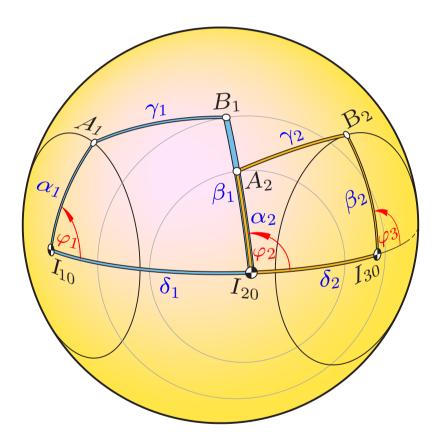
The classification of all flexible Kokotsakis meshes (n=4) has **recently** be finished:

A historical model of a flexible Kokotsakis meshes:

Ivan IZMESTIEV: Classification of flexible Kokotsakis polyhedra with quadrangular base, preprint, 74 p., May 2013



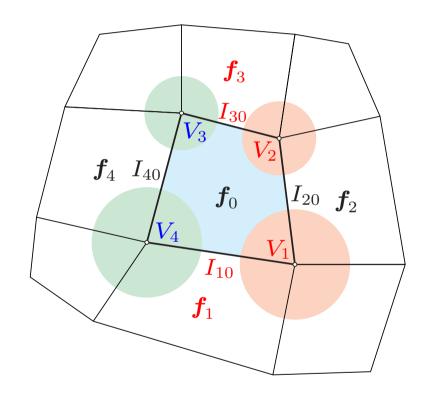
Transmission from f_1 to f_3 via V_1 and V_2 .



The composition of two spherical four-bars.

Continuous flexibility of a Kokotsakis mesh for n=4 means:

The transmission from f_1 to f_3 can be decomposed in two different ways, via V_1 and V_2 – or via V_4 and V_3 .



Conditions for one flexible case:

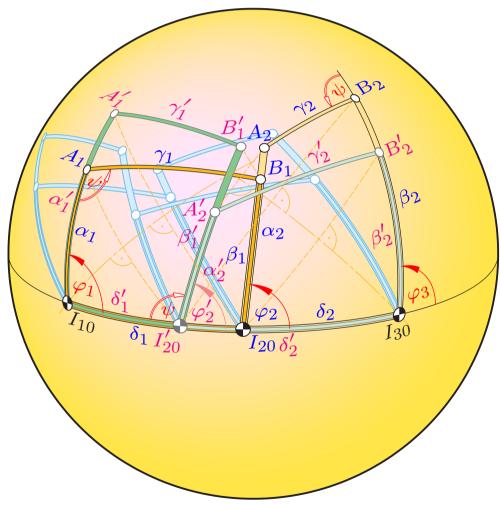
$$\alpha_1 + \beta_2 = \delta_1 + \delta_2$$

$$s\alpha_1 s\gamma_1 : s\beta_2 s\gamma_2 = s\beta_1 s\delta_1 : s\alpha_2 s\delta_2 =$$

$$(c\beta_1 c\delta_1 - c\alpha_1 c\gamma_1) : (c\beta_2 c\gamma_2 - c\alpha_2 c\delta_2)$$

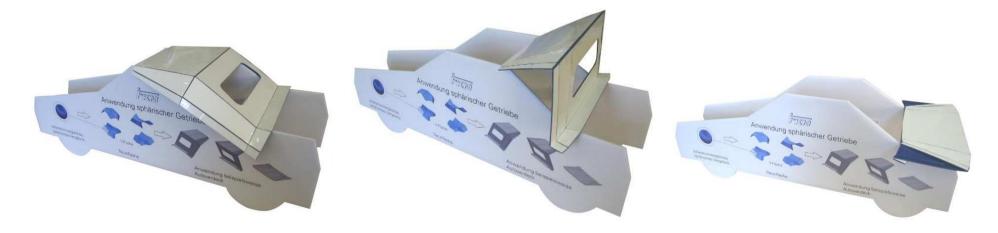
Right: The spherical image of this case with two decompositions.

A second pose is shown in light-blue.

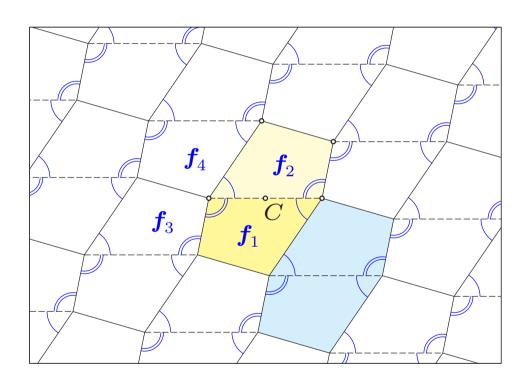


Only in very particular cases we know something about the geometry of the flexions obtained during the self-motions of continously flexible Kokotsakis meshes and quad meshes,

e.g., application of a discrete Voss surface in



Nadja Posselt: Synthese von zwangläufig beweglichen 9-gliedrigen Vierecksflachen, diploma thesis, TU Dresden 2010



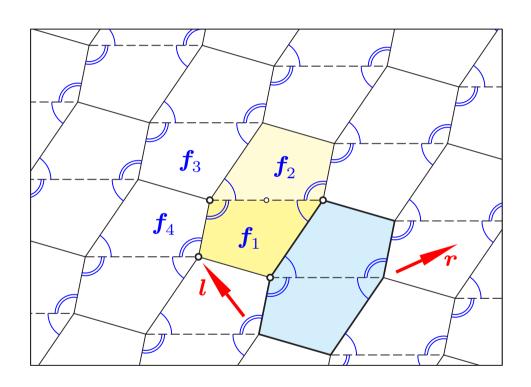
A. Kokotsakis, 1932 Athens

Any plane quadrangle is a tile for a regular tessellation of the plane (wallpaper group **p2**, generically).

It is obtained by applying

- iterated 180°-rotations about the midpoints of the sides of an initial quadrangle or
- by applying iterated translations on a centrally symmetric hexagon.

For a convex f_1 this polyhedral structure is continuously flexible.



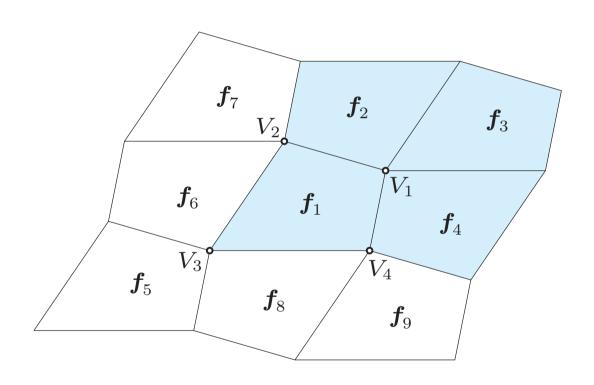
A. Kokotsakis, 1932 Athens

Any plane quadrangle is a tile for a regular tessellation of the plane.

It is obtained by applying

- iterated 180° -rotations about the midpoints C of the sides of an initial quadrangle or
- by applying iterated translations
 l, r on a centrally symmetric hexagon.

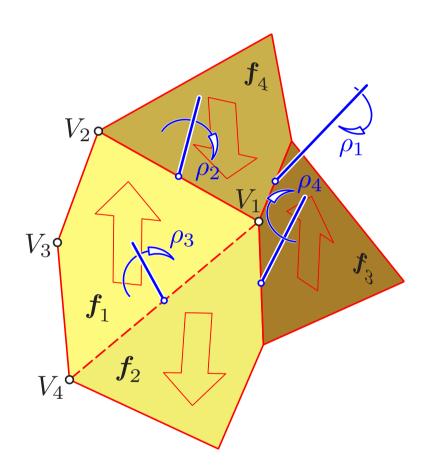
For a convex f_1 this polyhedral structure is continuously flexible.



We pick out a 3×3 complex from this tessellation. Why it is flexible?

We first focus on the four-sided pyramide with vertex V_1 .

Due to the required convexity no interior angle is $>\pi$. Therefore this pyramid is continuously flexible.



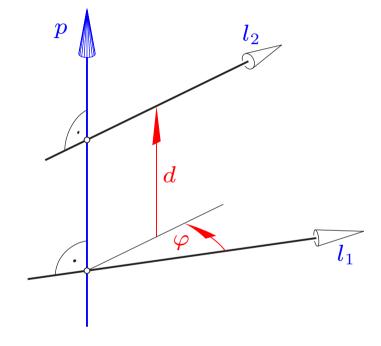
In each pose for any two neighbouring faces there is a 180° -rotation ρ_i which interchanges these two faces.

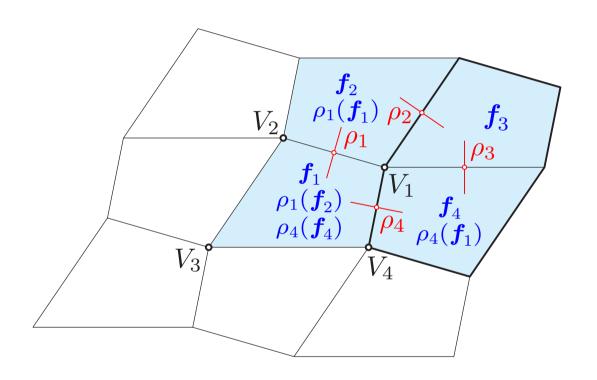
The axis is located in a bisector plane and passes through the midpoint of the common edge.

The product of any two 180° -rotations ρ_1, ρ_2 about respective axes l_1 and l_2 is a helical motion $\rho_2 \circ \rho_1$ about the common perpendicular p:

angle of rotation: 2φ

length of translation: 2d

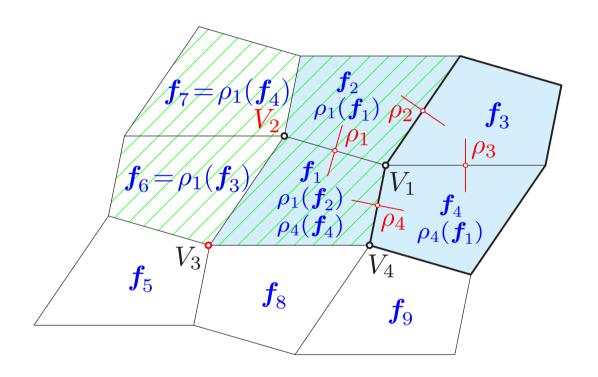




After applying all four 180° rotations consecutively to the
quadrangle f_1 , this is mapped
via f_2 , f_3 , f_4 onto itself, hence

$$\rho_3 \circ \rho_4 = \rho_2 \circ \rho_1$$

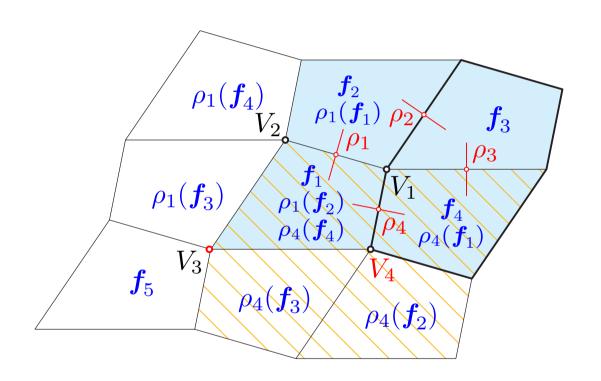
 \implies the four axes have a common perpendicular p, and all vertices V_1, \ldots, V_4 are at the same distance from p.



 ρ_1 maps the pyramide with vertex V_1 onto the pyramide with vertex V_2 .

(There would also be a second possibility to continue the flection of the 2×2 mesh to f_6 and f_7 .)

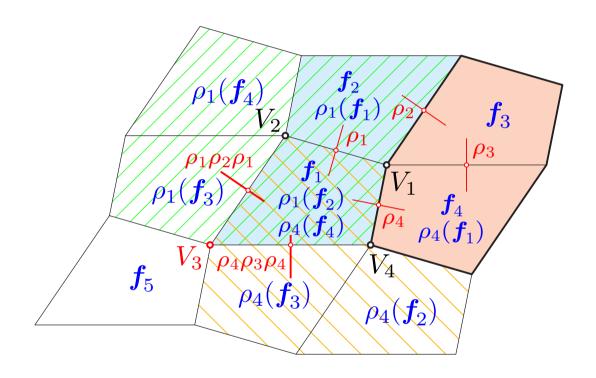
There are two possibilities to continue the flection onto the fourth pyramide with vertex V_3 .



 ρ_1 maps the pyramide with vertex V_1 onto the pyramide with vertex V_2 .

 ho_4 maps the pyramide with vertex V_1 onto the pyramide with vertex V_4 .

There are two possibilities to continue the flection onto the fourth pyramide with vertex V_3 .

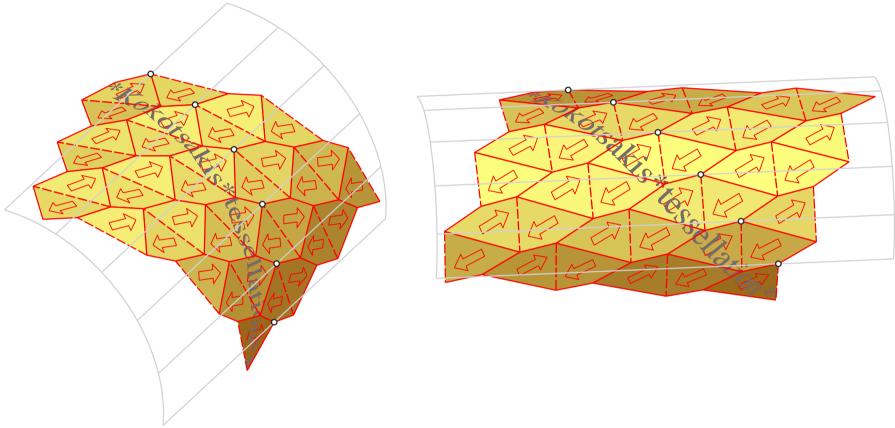


 $\rho_1 \circ \rho_2 \circ \rho_1$ maps the pyramide with vertex V_2 onto the pyramide with vertex V_3 .

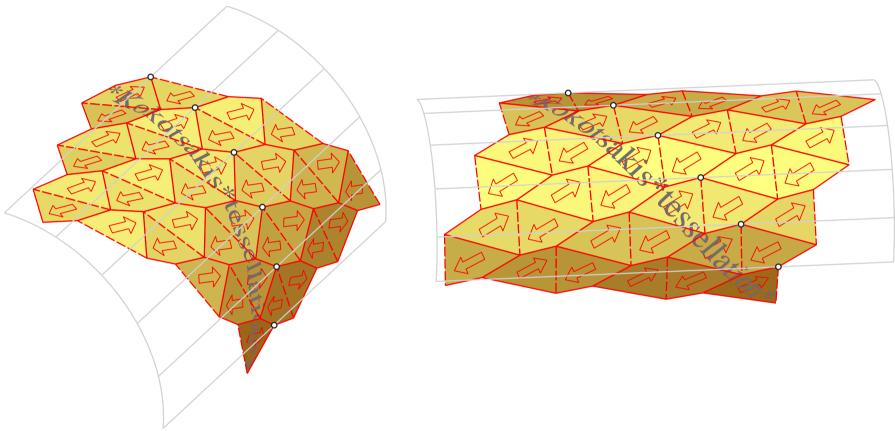
 $\rho_4 \circ \rho_3 \circ \rho_4$ maps the pyramide with vertex V_4 onto the pyramide with vertex V_3 .

 $m{f}_5$ is the image of $m{f}_2=
ho_1(m{f}_1)$ under $ho_1\circ
ho_2\circ
ho_1$, and image of $m{f}_4=
ho_4(m{f}_1)$ under $ho_4\circ
ho_3\circ
ho_4$, as $m{f}_5=
ho_1\circ
ho_2(m{f}_1)=
ho_4\circ
ho_3(m{f}_1)$.

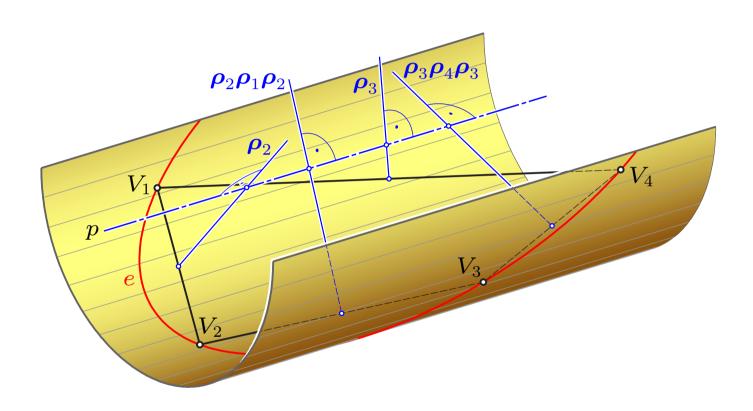
The complete pose arises from the "hexagon" $f_3 \cup f_4$ under iterations of the helical motions $r = \rho_2 \circ \rho_1$ and $l = \rho_4 \circ \rho_1$. This can be continued to a $m \times n$ mesh.



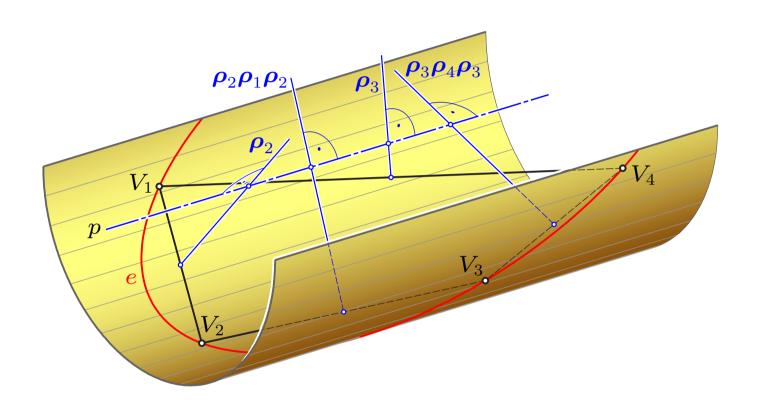
At each flexion obtainable by a continuous self-motion of an $m \times n$ tesselation mesh all vertices are located on a right circular cylinder (discrete conjugate quadrangular net on this cylinder)



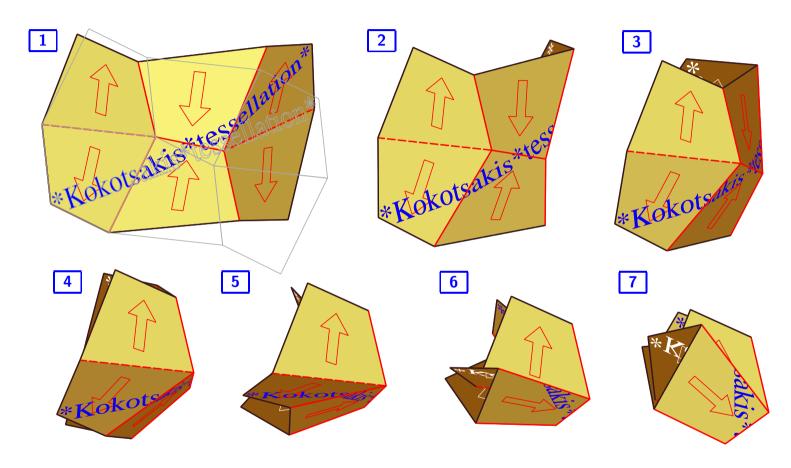
Each flexion of an $\infty \times \infty$ tesselation mesh is periodic. Generically, its group of isomorphisms is generated by coxial helical motions $\boldsymbol{l}, \boldsymbol{r}$ and by ρ_4 . It is isomorphic to that of the flat case $(\mathbf{p2})$.



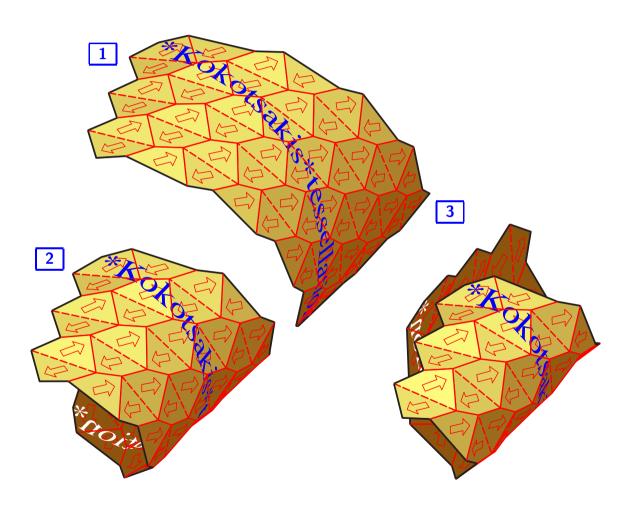
Another method to obtain the flexions: The plane spanned by f_{11} intersects the circumcylinder along an ellipse e.



Conversely, there is a one-parameter set of ellipses passing through a given convex quadrangle. For each ellipse there are two cylinders of revolution passing through. Each such cylinder defines a flexion of a tessellation mesh (TM).



For quadrangles with circumcircle the mesh (= Voss surface) admits a second flat pose with coinciding circumcircles coincide (not free of self-intersections!)

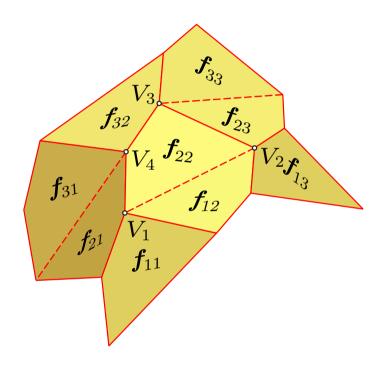


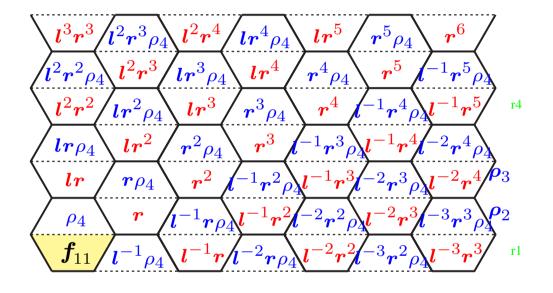
Left: Flexions of a 9×6 TM

Under which conditions the flexion is *horizontally closing*, i.e., the right border zig-zag fits exactly to the left border — apart from a vertical shift?

(the trapezoidal case with aligned borders is excluded)

A $m \times n$ tessellation mesh is a grid of $m \times n$ quadrangles denoted by f_{ij} , $1 \le i \le m$, $1 \le j \le n$



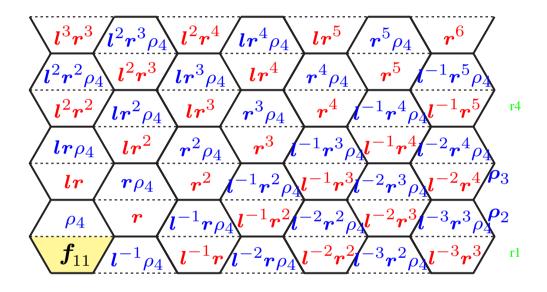


This scheme of a 7×7 TM shows which product of \boldsymbol{l} , \boldsymbol{r} and ρ_4 must be applied to \boldsymbol{f}_{11} to obtain \boldsymbol{f}_{ij} .

Each flexion of an $\infty \times \infty$ TM is periodic; the group of isomorphism acts transitively on the quadrangles.

Lemma: f_{11} can be transformed into f_{ij} according to

$$m{f}_{ij} = egin{cases} m{l}^{rac{i-j}{2}}m{r}^{rac{i+j}{2}-1}(m{f}_{11}) & ext{for } i+j\equiv 0 \pmod 2, \ m{l}^{rac{i-j-1}{2}}m{r}^{rac{i+j-3}{2}}
ho_4(m{f}_{11}) & ext{for } i+j\equiv 1 \pmod 2. \end{cases}$$
 $m{(r=
ho_2\circ
ho_1 ext{ and } m{l}=
ho_4\circ
ho_1)}$



For odd m $f_{2n+1}=r(f_{1n})$ is identical with f_{k+21} of the most-left row, $k\equiv 1\pmod 2$, iff $l^{\frac{1-n}{2}}r^{\frac{n+1}{2}}=l^{\frac{k+1}{2}}r^{\frac{k+1}{2}}d(2\pi)$

Since the involved helical motions commute pairwise, we obtain

$$\boldsymbol{l}^{-\frac{n+k}{2}} \circ \boldsymbol{r}^{\frac{n-k}{2}} = d(2\pi).$$

Theorem:

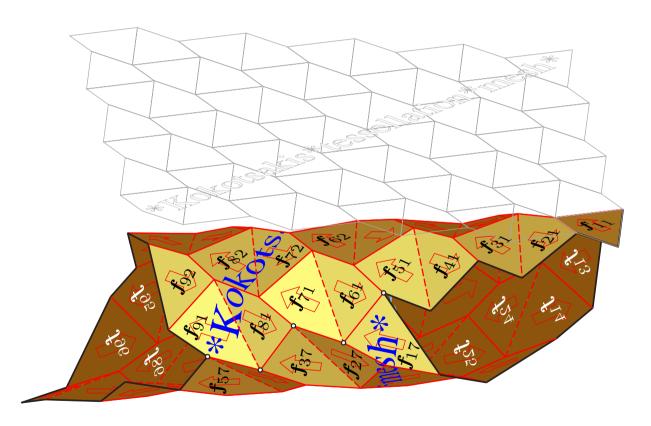
A flexion of an $m \times n$ TM closes horizontally with vertical shift k

$$\Rightarrow$$
 $\exists a b \in \mathbb{Z} \cdot \mathbf{1}^a \mathbf{n}^b$

$$\exists a, b \in \mathbb{Z}: \ \boldsymbol{l}^a \boldsymbol{r}^b = d(2\pi).$$

$$n = -a + b$$
, shift $k = -a - b$.

Example: Horizontally closing 7×9 TM satisfying $l^{-6}r = d(2\pi)$:



How to obtain a closing version?

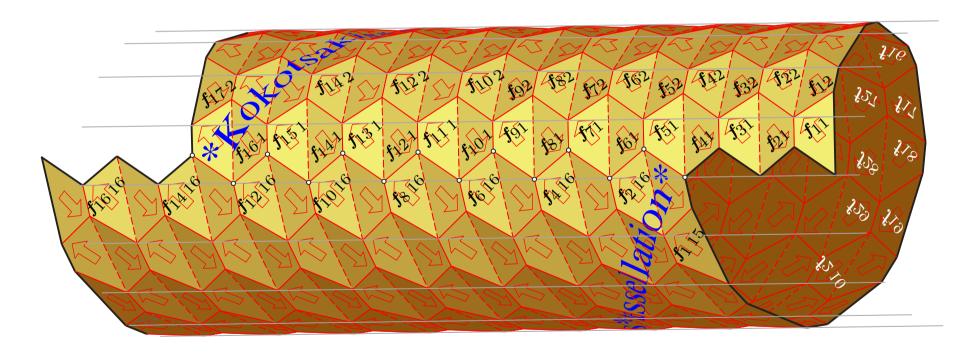
- Either numerically by minimizing a certain distance.
- Or by starting with two coaxial helical motions r, l obeying $l^a r^b = d(2\pi)$ and ρ_4 .

After specifying ρ_1, ρ_2, ρ_4 and any first vertex V_1 a quadrangle $V_1 \dots V_4$ is defined. However, this will not be planar.

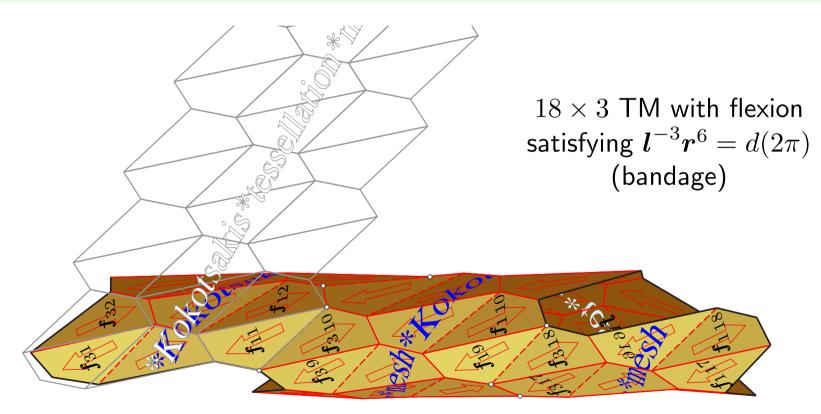
Lemma:

For planarity of the quadrangle $V_1 \dots V_4$ it is necessary and sufficient to specify V_1 on a ruled surface of degree 3.

A basic trapezoid yields as nontrivial closing flexion of a 16×17 TM a modified Schwarz lantern satisfying $l^{-10}r^6 = d_{2\pi}$ and k = 4.



Theorem: For given axes of the 180° -rotations ρ_1, ρ_2, ρ_4 there is a two-parameter set of planar convex quadrangles for tiling a cylinder.



Theorem:

When at a horizontally closing flexion of an $m \times n$ TM the right and the left border line are glued together — at least at one vertex — then in the case of a non-cyclic base quadrangle the resulting quad mesh is infinitesimally rigid.

Remark: For a cyclic quadrangle $V_1 \dots V_4$ the closing pose is flat. But this is trivially infinitesimally flexible.

Proof: We keep f_{11} fixed and assume that $f_{1-k\,m+1}$ coincides with f_{11} . We will confirm that there is no non-trivial infinitesimal motion of the mesh such that any vertex of $f_{1-k\,1+m}$ obtains a zero-velocity.

We parametrize the self-motion of the TM by any parameter u.

For all $u \in I$ there is a helical motion about an axis p(u) through angle $\varphi(u)$ and with translational length l(u) with $f_{11} \mapsto f_{1-k m+1}$.

In a coordinate frame attached to f_{11} let p(u) be the unit vector of the axis p(u) and m(u) the position vector of the intersection between p(u) and $[f_{11}]$.

The director cone of the surface of axes is quadratic; we may assume $\dot{p} \neq 0$ due to a regular parametrization of this cone.

The points m(u) are located on the nine-point-conic of the quadrangle f_{11} ; hence m(u) can never coincide with any vertex.

We set up the helical motion mapping $x \in f_{11}$ onto $x' \in f_{1-k \, m+1}$ by

$$x' - m = \cos \varphi(x - m) + [(1 - \cos \varphi)(p \cdot (x - m)) + l]p + \sin \varphi[p \times (x - m)].$$

Differentiation by u yields for the infinitesimal motion of f_{1-k} $_{1+m}$

$$\begin{split} \dot{\boldsymbol{x}'} - \dot{\boldsymbol{m}} &= -\dot{\varphi}\sin\varphi(\boldsymbol{x} - \boldsymbol{m}) - \cos\varphi\,\dot{\boldsymbol{m}} + \left[\dot{\varphi}\sin\varphi\big(\boldsymbol{p}\cdot(\boldsymbol{x} - \boldsymbol{m})\big) \right. \\ &+ \left. \left(1 - \cos\varphi\big)\big(\dot{\boldsymbol{p}}\cdot(\boldsymbol{x} - \boldsymbol{m})\big) - \left(1 - \cos\varphi\big)(\boldsymbol{p}\cdot\dot{\boldsymbol{m}}) + \dot{l}\right]\boldsymbol{p} \\ &+ \left. \left[\left(1 - \cos\varphi\big)\big(\boldsymbol{p}\cdot(\boldsymbol{x} - \boldsymbol{m})\big) + l\right]\,\dot{\boldsymbol{p}} + \dot{\varphi}\,\cos\varphi\left[\boldsymbol{p}\times(\boldsymbol{x} - \boldsymbol{m})\right] \\ &+ \sin\varphi\left[\big(\dot{\boldsymbol{p}}\times(\boldsymbol{x} - \boldsymbol{m})\big) - \big(\boldsymbol{p}\times\dot{\boldsymbol{m}}\big)\right]. \end{split}$$

In the horizontally closing pose $u=u_0$ with $\varphi(u_0)=2\pi$ and $l(u_0)=0$ remains:

$$\dot{\boldsymbol{x}}' = \boldsymbol{v}_{\boldsymbol{x}'} = \dot{l} \, \boldsymbol{p} + \dot{\varphi} \, \left[\boldsymbol{p} \times (\boldsymbol{x} - \boldsymbol{m}) \right].$$

 \implies also the instantaneous motion of $f_{1-k}|_{1+m}$ is a helical motion about $p(u_0)$ with angular velocity $\dot{\varphi}(u_0)$ and translational velocity $\dot{l}(u_0)$.

In the rotational case $\dot{l}=0$, $\dot{\varphi}\neq 0$ point m would be fixed, but m never coincides with one vertex of f_{1-k} $_{1+m}$.

Only under $\dot{\varphi} = \dot{l} = 0$ there exists a fixed vertex; the complete face f_{1-k} has a stillstand. However, $\dot{l} = 0$ for $u = u_0$ will lead to a contradiction.

Let (τ,t) and (σ,s) denote the angles of rotation and lengths of translation of the helical motions $\boldsymbol{l}(u)$ and $\boldsymbol{r}(u)$, respectively. The horizontally closing implies

$$a, b \in \mathbb{Z} \setminus \{(0, 0)\}$$
 with $\varphi(u) = a\tau + b\sigma$, $l(u) = at + bs$.

From $m{l}\colon \mbox{$v_1\mapsto v_3$ and $m{r}\colon \mbox{$v_2\mapsto v_4$ with $m{v}_1,\dots,v_4$ as vertices of $m{f}_{11}$ we obtain } s(u)=(m{v}_3-m{v}_1)\cdot m{p}(u), \ t(u)=(m{v}_4-m{v}_2)\cdot m{p}(u).$ $\Longrightarrow \ \dot{l}=a\dot{t}+b\dot{s}.$ Hence, $l=\dot{l}=0$ for $u=u_0$ results in $m{n}\cdot m{p}(u_0)=m{n}\cdot \dot{m{p}}(u_0)=0$ for $m{n}:=a(m{v}_4-m{v}_2)+b(m{v}_3-m{v}_1)\neq m{0}$.

The linearly independent vectors $p(u_0)$ and $\dot{p}(u_0)$ span a tangent plane of the quadratic director cone, and this plane is orthogonal to the vector n which — as a linear combination of the two diagonal vectors of f_{11} — lies in a symmetry plane of the cone. Hence for a non-degenerate cone, i.e., for a non-cyclic base quadrangle, $p(u_0)$ must be a direction vector of one of the generators in the symmetry plane parallel $[f_{11}]$. But these generators are no more axes of cylinders of rotation through the base quadrangle.

References

- A.I. Bobenko, T. Hoffmann, W.K. Schief: On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces. In A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler (eds.): Discrete Differential Geometry, Series: Oberwolfach Seminars 38, pp. 67–93 (2008).
- A.A. GAIFULLIN, S.A. GAIFULLIN: Deformations of period lattices of flexible polyhedral surfaces. arXiv:1306.0240v1[math.MG]2Jun2013.
- I. IZMESTIEV: Classification of flexible Kokotsakis polyhedra with quadrangular base. preprint, 74 p., May 2013.
- O.N. KARPENKOV: On the flexibility of Kokotsakis meshes. arXiv:0812. 3050v1[mathDG],16Dec2008.

- A. Kokotsakis: Über bewegliche Polyeder. Math. Ann. 107, 627–647, 1932.
- G. NAWRATIL: Flexible octahedra in the projective extension of the Euclidean 3-space. J. Geom. **14**/2, 147–169 (2010).
- G. NAWRATIL, H. STACHEL: *Composition of spherical four-bar-mechanisms*. In D. PISLA et al. (eds.): New Trends in Mechanism Science, Springer 2010, pp. 99–106.
- G. Nawratil: Reducible compositions of spherical four-bar linkages with a spherical coupler component. Mech. Mach. Theory **46**/5, 725–742 (2011).
- G. NAWRATIL: Reducible compositions of spherical four-bar linkages without a spherical coupler component. Geometry Preprints 216 (2011).
- R. Sauer, H. Graf: Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache. Math. Ann. **105**, 499–535 (1931).

- R. Sauer: *Differenzengeometrie*. Springer-Verlag, Berlin/Heidelberg 1970.
- H. SCHAAL: Konstruktion der Drehzylinder durch vier Punkte einer Ebene. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. **195**, 405–418 (1986).
- H. STACHEL: A kinematic approach to Kokotsakis meshes. Comput. Aided Geom. Des. **27**, 428–437 (2010).
- H. STACHEL: A Flexible Planar Tessellation with a Flexion Tiling a Cylinder of Revolution. J. Geometry Graphics **16** (2), 153–170 (2012).