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1. ABSTRACT  
 
A quad mesh is a discrete surface consisting of planar quadrangles. There 
are some examples where this polyhedral structure consisting of rigid faces, 
but variable dihedral angles, is continuously flexible, e.g., Miura-ori, Voss 
surfaces or Kokotsakis’ example which starts from a regular tiling of the 
plane by congruent convex quadrangles. The classification of all flexible 
quadrangular meshes is an open problem. However, the determination of all 
flexible meshes of 3 3  quadrangles, the socalled Kokotsakis meshes, is 

close to be solved. The goal of this paper is to bring insight into the geome-
try behind some flexible examples and to analyze their flexions. The treated 
problems are also related to paper folding. 
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2. INTRODUCTION 
 

In discrete differential geometry, but also in architecture there is an interest 
in polyhedral structures composed from quadrilaterals, i.e., in quadrilateral  
surfaces or - by short - quad meshes. When all quadrilaterals are planar, the 
edges form a discrete conjugate net (see, e.g., [1]). When each quadrilateral 
is seen as a rigid body and only the dihedral angles can vary, the question 
arises under which conditions such structures are flexible. In the flexible 
case we call the process of continuous isometric deformation folding and 
the obtained polyhedral structures flexions of the initial quad mesh.  
A complete classification of all continuously flexible quad meshes is an 
open problem. In [1, p. 75] the following theorem can be found: A discrete 
conjugate net in general position is continuously flexible if and only if all its 
3 3 -complexes, the so-called Kokotsakis meshes, are continuously flexi-

ble. In [4] an updated list of known examples of flexible Kokotsakis meshes 
is presented. 
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In the following the geometric properties of flexions of some well-known 
flexible quad meshes are analyzed. 
 
3. MIURA-ORI 
 
Miura-ori is a Japanese folding technique named after Prof. Koryo Miura, 
The University of Tokyo. It is used for solar panels because it can be un-
folded into its stretched flat shape by pulling on one corner only. On the 
other hand it is used as kernel to stiffen sandwich structures. Let us analyze 
the process of folding the sheet of paper depicted in Fig. 1 with given valley 
and mountain folds, thus proving that it is really continuously flexible.  
We start with two coplanar parallelograms with aligned upper and lower 
sides (Fig. 2). Then we rotate the right parallelogram against the left one 

about the common side through the angle 0 02 0 , 180   .  
 

 
 

Fig. 1. The map of Miura-ori unfolded; dashs are valley folds, 
full lines are mountain folds 

 

Then the lower sides span a plane   and the upper sides span a plane 2  

parallel to  . Now we extend the two parallelograms to a zig-zag strip by 

adding alternately parallelograms translatory congruent to the left or to the 
right initial parallelogram. After this the complete strip has its upper zig-zag 
boundary still placed in   and the lower one in 2  (see Fig. 2). This re-

mains valid when we fix the plane   but vary the bending angle 2 . 
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After iterated reflection in planes i  parallel to   or after translation or-

thogonal to   the complete miura-ori flexion is obtained as depicted in 

Fig. 3. The edges can be subdivided into two kinds of foldings. The hori-
zontal ones are copies of the zig-zig line in   and placed in horizontal 

planes. Due to the iterated reflections or translations, the others are located 
in mutually parallel vertical planes. 
The complete flexion can also be generated by iterated horizontal transla-
tions and reflections in horizontal planes from the hexagonal compound of 
two non-coplanar parallelograms as depicted in the top-right illustration of 

Fig. 2. Miura-ori admits two flat poses, one for 00  , one for  02 180  . 
    

 

 
 

Fig. 2. Zig-zag strips of Miura-ori  
 

Remarks: 1) In [4], the eqs. (1) and (2) together with Figure 5 show how the 
bending angle 2  is related to the angle 2  of the horizontal fold in   

(see Fig. 2) and that of the vertical folds, in dependance of the interior angle 
  at the given parallelograms. 
2) The mentioned one-parameter flexion of Miura-ori is not the only one. 
Trivial flexions arise, e.g., when in the stretched position we fold about the 
aligned horizontal folds. Or we fold adjacent horizontal strips one behind 
the other and treat them like one single strip.  
3) There are several generations of Miura-ori, among them the impressive 
freeform-like versions presented in the recent paper of Tomihiro Tachi [7]. 
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Fig. 3. Snapshots of the folding procedure  

 
 
3. KOKOTSAKIS’ FLEXIBLE TESSELLATION 
 
There is one remarkable continuously flexible quad mesh which also starts 
from a flat initial pose. This example displayed in Fig. 4 dates back zu An-
tonios Kokotsakis (1899-1964) [2, p. 647]. He proved its flexibility, but did 
not present any geometric property of the obtained flexions: 
  

 
 

Fig. 4. Kokotsakis' flexible mesh unfolded  
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Take any arbitrary plane quadrangle like the yellow 3P  in Fig. 4. By iterated 
0180 -rotations about the midpoints of the sides we obtain a wellknown 

regular tessellation of the plane. The same tessellation arises when the two 
adjacent quadrangles 3P  and 4P  are glued together thus forming a hexagon 

symmetric with respect to the center C  and when this hexagon undergoes 
iterated translations indicated in Fig. 4 by the red arrows. 
When the quadrangles are convex and seen as planar faces of a polyhedral 
structure with variable dihedral angles, then this structure is flexible 
(Kokotsakis [2], p. 647). 

Proof: First we extract four pairwise congruent faces 4P ,...,P  adjacent to 

the vertex 1V  from our tessellation (note the shaded area in Fig. 5).  These 

faces form a four-sided pyramid with apex 1V ; it is flexible, provided the 

fundamental quadrangle is convex. We start with any nonplanar flexion. 
According to the labelling in Fig. 5, for any pair 2(P ,P ) ,…, 4 1(P ,P )  of 

neighbouring faces there is a respective 0180 -rotation  , …, 4  which 

swaps the two faces. So, e.g., 2 1 1P (P )  and 1 1 2P (P ) . The axis of   

(see Fig. 5) is perpendicular to the common edge 1 2V V , and it is located in a 

plane which bisects the dihedral angle between P   and 2P . 
 

 
 

Fig. 5. The flexion is generated by iterated coaxial  
helical motions 1 2   and 1 4   
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After applying all four 0180 -rotations (= reflections in lines)  , …, 4  

consecutively to the quadrangle P , this is mapped via 2P , 3P , 4P  onto 

itself, hence 4 3 2 1 id     . (We indicate the composition of mappings 

by left multiplication.) Because of 1
i i    we obtain 

4 3 1 2    . (1)  

After that we extend this flexion of the pyramid stepwise by adding congru-
ent copies of the initial pyramid without restricting the flexibility: 
The rotation   exchanges not only P  with 2P  but transforms the pyramid 

with apex 1V  onto a congruent copy with apex 2V  sharing two faces with its 

preimage. This is the area hatched in green in Fig. 5. Analogously, 4  gen-

erates a pyramid (hatched in yellow) with apex 4V  sharing the faces 1P  and 

4P  with the initial pyramid. 

Finally there are two ways to generate a pyramid with apex 3V . Either, we 

transform 2  by   and use 

 2 1   , which exchanges 1 2 1(P ) P   with 1 3(P )  and swaps 2V  

and 3V .  

Or we proceed with  
 4 3 4   , which exchanges 4 4 1(P ) P   with 4 3(P )  and swaps 4V  

and 3V .  

Thus we obtain mappings 2 1 1 2( )        and 4 3 4 4 4 3( )        

with 1 3V V  and 1 5P P . Both displacements are equal by (1), and we 

notice 

1 2 4 3    :  1 5P P , 2 1 3P (P ) , 3 1P P , 4 4 3P (P ) . (2)  

Hence each flexion of the initial pyramid with apex 1V  is compatible with a 
flexion of the compound of 3 3  quadrangles like that schematically dis-
played in Fig. 5, and this can be extended to the complete tessellation. 
Hence this is continuously flexible.                                                             □ 

On the other hand, 1 4 2 3     maps the pyramide with apex 4V  onto 

that with apex 2V  and 

1 4  : 1 1 4P (P ) , 4 2P P , 4 2 1(P ) P  , 4 3 1 3(P ) (P )  . (3)  
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The product of two reflections in lines is a helical motion. Its axis is the 
common perpendicular of the two axes of reflections. The angle of rotation 
and the length of translation is twice the angle and distance, respectively, 
between the two axes. When the pyramid with apex 1V  is not flat, then the 

axes of the line-reflections  , …, 4  are pairwise skew; the common per-

pendicular for any two of these axes is unique. Hence (1) implies that the 
axes of the four line-reflections have a common perpendicular n . The mo-
tions 1 2 4 3     and  1 4 2 3     are helical motions with the com-

mon axis n . 

When 3P  and 4P  are glued together, we obtain a line-symmetric skew 

hexagon, one half of our initial pyramid with apex 1V . The line-reflection 

4  maps this hexagon onto itself. By (2), the helical motion 1 2   maps 

this hexagon onto the compound of 1P  and 4 3(P ) , and furthermore 1P  

onto 5P . The inverse 2 1   is the spatial analogon of the translation indi-

cated in Fig. 4 by the red arrow pointing upwards to the right. On the other 
hand, 4 1   maps the compound of 1P  and 4 3(P )  onto 1 4(P )  and 

1 3(P ) . This is the spatial analogon of the second generating translation of 

the flat tessellation.           

Theorem: Any flexion of the Kokotsakis’ mesh is obtained from the line-
symmetric hexagon consisting of the two planar quadrangles 3P  and 4P  by 

applying the discrete group of coaxial helical motions generated by 1 2   

and 1 4  . In the flat pose these generating motions are the translations 

applied to a centrally symmetric hexagon thus generating the regular tessel-
lation of the plane. 

Remark: The flat initial pose of the pyramid with apex 1V  admits a bifurca-
tion between two differentiable constraint motions of the pyramid. Hence 
the complete mesh admits two differentiable floldings when starting from 
the planar tessellation. In the case of a trapezoid 1P  one type of folding re-

sults in prismatic flexions and is therefore trivial.  
  
 

4. AN EXAMPLE DUE TO SAUER AND GRAF 
 
In order to obtain the flexible T-flat (German: T-Flach) detected 1931 by 
Sauer and Graf  [3], we start with a non-closed prism   with horizontal 
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generators 0e , …, ne  as depicted in Fig. 6 in top view and side view (on 

the left hand side). This prism is terminated by two vertical planes 1  and 

2 , hence its faces are trapezoids. Let 1 , …, n  denote the angles of 

inclination of the faces 1i ie e  for 0,...,i n  under 00 90i  . 
 

 
Fig. 6. T-flat together with a flexion (in red)  

 

Now we apply a folding i ie e , 0,...,i n , to   such that the generators 

remain horizontal and the top view undergoes an axial dilatation perpen-
dicular to the generators with a factor   close to 1. In order to transform all 
faces isometrically, the angles i  of inclinations of the faces must be re-

placed by i  obeying 

cos cosi i    , (4)  

provided 0 cos 1i    for all i . The vertical planes j  remain vertical 

as the top view undergoes an affine transformation. The angle 1  between 

0e  and 1 , e.g., is replaced by 1  obeying  

1 1tan tan    . (5)  

For the polygonal sections 1  each side length is preserved. The 

aligned top view of these polygons undergoes a scaling with factor 

1 1cos / cos  ; therefore all ratios are preserved. 

Suppose, 2  is a section of another prism   with horizontal genera-

tors 0f , …, nf  (see Fig. 6). Then the folding of   implies a folding of   
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under which in the top view the generators again are transformed by an ax-
ial dilation with a certain factor. Iteration gives a flexible quad mesh called 
T-flat with trapezoidal faces only. 

Remark: In [5] the flexibility of T-flats is proved by checking the spherical 
image of the included 3 3 -meshes (see [5], Fig. 7). 
 

5. CONCLUSIONS 
 

This paper focuses on three well-known examples of continuously flexible 
quad meshes and analyzes their geometric background. These examples are 

 Miura-ori (Fig. 1),  
 Kokotsakis’ flexible quad meshes [2] starting from plane tessella-

tions by congruent convex quadrangles (Fig. 4), and 
 T-flats due to Sauer and Graf [3]  displayed in Fig. 6 with horizontal 

and vertical folds and trapezoidal faces only. 
 
ACKNOWLEDGEMENTS 

This research is partly supported by Grant No. I 408-N13 of the Austrian Science Fund FWF 
within the project “Flexible polyhedra and frameworks in different spaces”, an international 
cooperation between FWF and RFBR, the Russian Foundation for Basic Research. 
 
 

REFERENCES 
1. Bobenko, A.I.,  Hoffmann, T.,  Schief, W.K.: On the Integrability 

of Infinitesimal and Finite Deformations of Polyhedral Surfaces. 
In: Discrete Differential Geometry, A.I. Bobenko et al. (eds.), Se-
ries: Oberwolfach Seminars 38, 2008, pp. 67-93. 

2. Kokotsakis, A.: Über bewegliche Polyeder. Math. Ann. 107, 627-
647  (1932). 

3. Sauer, R., Graf, H.: Über Flächenverbiegung in Analogie zur Ver-
knickung offener Facettenflache. Math. Ann. 105, 499-535 (1931). 

4. Stachel, H.: A Remarks on Miura-ori, a Japanese Folding Method. 
3rd Internat. Conf. on Engineering Graphics and Design 2009, 
Cluj-Napoca/Romania, Acta Technica Napocensis, Ser. Applied 
Mathematics and Mechanics 52, vol. I a, pp. 245-248 (2009). 

5. Stachel, H.: A kinematic approach to Kokotsakis meshes. Comput. 
Aided Geom. Des.  27, 428-437  (2010). 

6. Nawratil, G., Stachel, H.: Composition of spherical four-bar-
mechanisms. In D. Pisla et al. (eds.): New Trends in Mechanism 
Science, Springer 2010, pp. 99-106. 

7. Tachi, T.: Freeform Variations of Origami. J. Geometry Graphics 
14, no. 2, 203-215 (2010). 

92




