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Abstract The tooth flanks of bevel gears with involute teeth are still cut
using approximations such as Tredgold’s and octoid curves, while the geom-
etry of the exact spherical involute is well known. The modeling of the tooth
flanks of gears with skew axes, however, still represents a challenge to geome-
ters. Hence, there is a need to develop algorithms for the geometric modeling
of these gears. As a matter of fact, the modeling of gears with skew axes and
involute teeth is still an open question, as it is not even known whether it
makes sense to speak of such tooth geometries. This paper is a contribution
along these lines, as pertaining to gears with skew axes and cycloid teeth. To
this end, the authors follow and extend results reported by Martin Disteli at
the turn of the 20th century concerning the general synthesis of gears with
skew axes. The main goal is to shed light on the geometry of the tooth flanks
of gears with skew axes. The dualization of the tooth profiles of spherical
cycloidal gears leads to ruled surfaces as conjugate tooth flanks such that
at any instant the contact points are located on a straight line. A main re-
sult reported herein is Theorem 5, which is original. All results are proven
by means of a consistent use of dual vectors representing directed lines and
rigid-body twists.
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1 Introduction

While gear manufacturing is well developed, with precision gears cut under
tight tolerances and producing smooth motions, the geometry of gear mesh-
ing is not yet fully exploited in the industry. For example, bevel gears are
still designed using Tredgold’s approximation, under which the tooth profile
is designed so as to yield a projection onto the tangent plane of the back cone
that matches the profile of an equivalent involute spur gear. Moreover, the
teeth of straight bevel gears are cut following a second approximation, that
is “convenient” in light of the shape of the cutting rack, which produces an
octoid, namely, a curve on the surface of a sphere whose shape resembles a
number eight. The octoid and the Tredgold-approximated involute are co-
incident only locally, around the pitch point of the latter, but differ away
from this point. Not only this, involute profiles for gear pairs with skew axes
have only appeared in the open literature as recently as six years ago, with
the publication of Phillips’ book [1]. However, Phillips’ gear profiles rely on
the assumption that the contact between teeth of meshing gears is punctual,
which is too limiting. It is thus apparent that there is still substantial room
for improvement in an otherwise highly developed technology. The aim of
this paper is to lay down the fundamental concepts and the computational
relations for the production of meshing gears with cycloid teeth and skew
axes, as a means to pave the way toward the synthesis of gears with involute
teeth and skew axes, if these are possible at all, which is, as yet, an open
question.

We surmise here that gear-tooth contact can take place along lines. Within
this paradigm, the computational fundamentals for the production of the
tooth flanks of spatial gears with cycloid teeth are laid down in this paper.
The approach relies on the dualization of the tooth profiles of spherical cy-
cloidal gears, which are briefly recalled here, and which are based on the
seminal work of Martin Disteli, as reported by the authors [2]. In fact, Disteli
transferred Reuleaux’s principle of gearing ([3, p. 143]) for the particular case
of cycloidal gears from the sphere into 3D space [4, 5]. This led to the syn-
thesis of meshing skew gears whose tooth flanks are ruled surfaces in contact
along straight lines.

Proposed here is a procedure to synthesize the tooth profiles of meshing
gears with cycloid teeth, as a first attempt to the synthesis of tooth profiles
with involute shapes. The procedure is described below: 1) the hyperboloid
pitch surfaces that are derived from the relative layout between the two skew
axes and the constant transmission ratio are first obtained; 2) the cylindroid
determined by the relative motion of the two meshing gears, for a given
transmission ratio, is then synthesized as the locus of the instant screw axis
(ISA); 3) with the aid of the cylindroid, we introduce an auxiliary surface
(AS); and 4) as the AS moves while maintaining line contact with the two
hyperboloid pitch surfaces, a pair of conjugate flanks is synthesized. The AS
is a cylinder in the case of spur cycloidal gears, a cone in the case of bevel
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cycloidal gears, and a helical surface in the case of skew cycloidal gears, as
we show in this paper.

We have thus extended Franz Reulaux’s approach to the case of skew cy-
cloidal gears. This approach could be extended further, to the case of involute
skew gears, but the extension is challenging because each tooth flank should
be obtained as the envelope of a given surface attached to the AS.

2 The Fundamentals of Cycloidal Gearing

We start by recalling Reuleaux’s principle in the planar case, which sometimes
is attributed to Ch. E.L. Camus (1733). However, we focus on a point of view
which opens the way for a transfer to the spatial version:

Let Σ2, Σ3 be frames attached to the two wheels of spur gears with centers
O2, O3, respectively, mounted on the machine frame Σ1. The pitch circles of
the gears are denoted by p2 and p3. Then, Reuleaux’s principle states:

Theorem 1 If an auxiliary curve p4 rolls on the pitch circles p2 and p3, then
any point C attached to p4 traces conjugate profiles c2 and c3, fixed to p2 and
p3, respectively.
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Fig. 1 Reuleaux’s principle in the plane
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In the special case of cycloidal gearing, p4 is a circle and the point C
attached to p4 happens to be located on p4, as depicted in Fig. 1.

Now we rephrase Theorem 1 by introducing an additional frame Σ4, which
contains the auxiliary curve p4:

Suppose that simultaneously with the two wheels Σ2, Σ3 rotating about their centers
O2, O3, the auxiliary frame Σ4 moves with respect to the machine frame Σ1 such
that the auxiliary curve p4 rolls on p2, p3, and contact takes place at the same point
I42 = I43 = I32 fixed in Σ1. Then, if C is any point attached to Σ4 and different
from the instant center I42 = I43, the relative paths c2, c3 of C under Σ4/Σ2 and
Σ4/Σ3, respectively, are in contact at C, since the respective normals pass through
I42 = I43. Hence, c2 ⊂ Σ2 and c3 ⊂ Σ3 are conjugate tooth profiles of Σ3/Σ2.

Remarks:

1. Reuleaux’s principle is also valid in the spherical case, i.e., for bevel gears.
2. This principle can be generalized in the following way: Instead of a point

C ∈ Σ4 a smooth curve c4 ⊂ Σ4 can be given. Then the envelopes c2, c3 of
c4 under Σ4/Σ2 and Σ4/Σ3, respectively, are conjugate tooth flanks, and
the envelope c1 of c4 under Σ4/Σ1 is the contact line.

3 Reulaux’s Principle for Skew Gears

Let the motions of two gears be given, i.e., the rotations Σ2/Σ1, Σ3/Σ1 about
fixed skew axes p10 and p20 with angular velocities ω10, ω20, respectively. In
analogy to the planar case we ask:

Question: Is there an “auxiliary frame” Σ4 which can move in such a way
that the motions Σ4/Σ2 and Σ4/Σ3 have twists with the same axis p32 and the
same pitch h32 = ω320/ω32 as the relative motion Σ3/Σ2 of the two gears ?

We translate this into dual vector notation (see, e.g., [6, 7]) using the
standard nomenclature: ωij denotes the angular velocity and ωij0 the trans-
latory velocity of the relative motion Σi/Σj; both velocities are combined in
the dual velocity ω̂ij = ωij + εωij0, with ε denoting the dual unit, defined
as ε 6= 0, ε2 = 0. The instant axis pij is described by the dual unit vector
p̂ij = pij + εpij0. The instant twist of Σi/Σj reads

q̂ij = ω̂ij p̂ij = (ωij + εωij0)(pij + εpij0).

From the given wheels we have

q̂21 = ω21p̂21 and q̂31 = ω31p̂31 with ω21, ω31 ∈ R.

According to the foregoing question we seek a frame Σ4 such that

p̂42 = p̂43 = p̂32
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and the corresponding dual velocities are proportional, i.e., there are real
coefficients λ2, λ3 ∈ R such that

ω̂42 = λ2 ω̂32 and ω̂43 = λ3 ω̂32.

This implies

q̂42 = λ2 q̂32 and q̂43 = λ3 q̂32 for λ2, λ3 ∈ R.

Due to the Aronhold-Kennedy theorem [8] we obtain

q̂41 − q̂21 = λ2(q̂31 − q̂21) and q̂41 − q̂31 = λ3(q̂31 − q̂21).

Hence, q̂41 can be expressed in two ways as a real linear combination of q̂21

and q̂
31

:
q̂41 = λ2 q̂31 + (1 − λ2)q̂21 = (1 + λ3)q̂31 − λ3 q̂21 (1)

q̂
41

= λ2 ω31p̂31
+ (1 − λ2)ω21p̂21

= (1 + λ3)ω31p̂31
− λ3 ω21p̂21

. (2)

As long as the gear axes p21 and p31 are different, the dual unit vectors p̂21

and p̂31 are linearly independent as well as their real multiples q̂21 = ω21p̂21

and q̂31 = ω31p̂31. We thus may compare coefficients in eq.(1): Both equations
can be simultaneously satisfied by setting

λ3 = λ2 − 1. (3)

Equation (1) then reveals that the twist q̂41 is a real linear combination
of the twists q̂21 and q̂31. Hence, q̂41 is the twist of the relative motion
between two ‘virtual’ gears with axes p21 and p31 when, by virtue of eq.(2),
the corresponding angular velocities ν31 : ν21 obey

ν31 : ν21 = λ2 ω31 : (λ2 − 1)ω21 = (1 + λ3)ω31 : λ3 ω21. (4)

Due to results of Plücker and Ball the instant axis p41 of the motion Σ4/Σ1,
i.e., of the auxiliary frame with respect to the machine frame, is located on
the Plücker conoid Ψ ([2, Fig. 6]) defined by the given gear axes p21 and p31.

This is not only necessary, but also sufficient, because, conversely, any
transmission ratio ν31 : ν21 gives, by virtue of eq.(4),

λ2 = ω21ν31/(ν21ω31 − ν31ω21),

provided that ν31 : ν21 6= ω31 : ω21. Otherwise, the twist q̂41 would be a real
multiple of q̂32 = ω31p̂31−ω21p̂21, and hence, p41 = p32.

For a detailed analysis we use a Cartesian coordinate frame F(O; x1, x2, x3)
with ê1, ê2 denoting the dual unit vectors of the x1- and x2-axes. The given
axes p21 and p31 of the wheels are assumed to be symmetrically placed with
respect to the x1- and x2-axes, as depicted in Fig. 2. Therefore, using the
dual angle α̂ = α + εα0, we can set up
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p̂21 = ê1 cos α̂ − ê2 sin α̂
p̂31 = ê1 cos α̂ + ê2 sin α̂ .

(5)

We limit ourselves to the skew case and assume

0 < α < π/2 and α0 6= 0 (6)

though all arguments hold also in the spherical case, α0 = 0, and in the
planar case, α = 0, with parallel axes.

In addition, we denote the dual angle between the relative axes p̂32 and

ê1 by ϕ̂ and that between the generator p̂
41

and ê1 by β̂ (Fig. 2). We can
thus set up

p̂
32

= ê1 cos ϕ̂ + ê2 sin ϕ̂

p̂41 = ê1 cos β̂ + ê2 sin β̂ .
(7)

As the instant screw axis (ISA) p32 and the line p41 are located on the Plücker
conoid Ψ , we derive from eqs. [2, (10), (11)]

ϕ0 = R sin 2ϕ and β0 = R sin 2β with R =
α0

sin 2α
(8)

and from eq.[2, (15)],

h32 =
ω320

ω32

= R(cos 2α − cos 2ϕ), h41 =
ω410

ω41

= R(cos 2α − cos 2β). (9)

All this can be visualized in the Ball-Disteli diagram—cf. [2, Fig. 5].
We summarize:
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Fig. 2 Axes bp21, bp31 of the gear wheels, the ISA bp32 and the axis bp41 of the auxiliary
system Σ4
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Theorem 2 (Disteli, [5])
For given wheels Σ2, Σ3 with fixed skew axes p21, p31 and angular velocities
ω21, ω31, there is an auxiliary frame Σ4 such that the screws of Σ4/Σ2, Σ4/Σ3

and Σ3/Σ2 are equal at every instant if and only if the instant axis p41 of
Σ4/Σ1 is located on the Plücker conoid Ψ , but different from p32, and the
instant pitch h41 = ω410/ω41 is defined by eq.(9).

Due to Theorem 2, we can proceed on Martin Disteli’s approach to gener-
alizing the planar or spherical cycloidal gearing to the spatial analogue stated
in Theorem 3:

We keep the axis p41 of Σ4/Σ1 fixed in the machine frame and move si-
multaneously Σ2 with the twist q̂21 and Σ3 with the twist q̂31. Furthermore,
we move Σ4 about the axis p41 with pitch h41 such that according to The-
orem 2 the relative axes p42 and p43 coincide permanently with p32—the
corresponding angular velocity ω41 will be determined in Section 4.

Under these motions the axodes of the relative motions Σ3/Σ2, Σ4/Σ2

and Σ4/Σ3 are obtained by applying the inverse motions Σ1/Σ2, Σ1/Σ3 and
Σ1/Σ4 to the relative axis p32, which is fixed to Σ1. This means in detail:
The rotations Σ2/Σ1 and Σ3/Σ1 about the gear axes p21 and p31 generate
one-sheet hyperboloids Π2 ⊂ Σ2 and Π3 ⊂ Σ3, respectively. These are the
axodes of the relative motion Σ3/Σ2 between the gears. Under the helical
motion with pitch h41 about p41 the relative axis p32 sweeps a helical surface
Π4, which, together with Π2, forms the axodes of Σ4/Σ2. In the same way Π3

and Π4 are the axodes of Σ4/Σ3. Obviously, Π2, Π3 and Π4 are the spatial
analogues of the circles p2, p3 and p4 in Fig. 1. The spatial analogue to the
pole normal n, the locus of the auxiliary center I41, is the Plücker conoid Ψ
as the locus of possible auxiliary axes p41 [9].

It is necessary to choose p41 different from p21 and p31, because, e.g., p41 =
p21 implies Σ4 = Σ2; the relative motion Σ4/Σ2 has a permanent standstill
with indeterminate pitch 0/0. Therefore, this is only a trivial solution of the
question asked above and answered in Theorem 2. The case p41 = p32 is
impossible by (4).

Theorem 3 Let p41 be any specified generator of the Plücker conoid Ψ , but
different from p21, p31, p32. Let Π4 be the ruled helical surface traced by the
relative axis p32 under the helical motion about p41 with pitch h41. Then the
motions Σ4/Σ2 and Σ4/Σ3 are defined by the rolling and sliding of Π4 with
the hyperboloids Π2, Π3, respectively.
For any line g attached to Σ4 the surfaces Φ2, Φ3 traced by g under the
relative motions Σ4/Σ2 and Σ4/Σ3, respectively, are conjugate tooth flanks
of Σ3/Σ2.
For these flanks at any instant the meshing points are located on a straight
line. In the machine frame Σ1 the locus of these lines, i.e., the meshing sur-
face, is traced by g under Σ4/Σ1 with the fixed twist q̂41 = ω41(1 + εh41)p̂41.
Hence, the meshing surface is a ruled helical surface, too.
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Proof. For any given tooth flank Φ3 attached to Σ3 a point C ∈ Φ3 is instantly
a meshing point if its velocity vector v32 under Σ3/Σ2 is tangent to Φ3.

Now let us focus on any posture where the three axodes are in mutual
contact along p32. Wherever line g is chosen in space, for any point C ∈ g the
velocity vectors v32 under Σ3/Σ2, v42 under Σ4/Σ2 and v43 under Σ4/Σ3

are proportional, as the screws are identical. Hereby vector v43 is tangent
to the surface Φ3 swept by g under Σ4/Σ3. Hence, C is a point of contact
between Φ3 and its conjugate tooth flank in Σ2, which is the envelope of Φ3

under the relative motion Σ3/Σ2.
Under Σ4/Σ2 line g sweeps the surface Φ2. In the given posture the tangent

planes of Φ2 and Φ3 have the line g in common and at each point C ∈ g also
the line spanned by the velocity vector v32. So, the two surfaces share their
tangent plane at C. There is just one exception: When v32 has the direction
of g, then there is no unique plane spanned. However, in this exceptional
case g is torsal on Φ2 and Φ3, while C is the common cuspidal point of this
generator. Moreover, by definition, such a singularity of Φ3 is always part
of its envelope under Σ3/Σ2. Hence, in any case Φ2 is conjugate to Φ3. The
postures considered of these surfaces are in contact at all points of the straight
line g (see Fig. 3).

4 Spatial Cycloidal Gearing

As an analogue to the planar case displayed in Fig. 1 we keep p41 ∈ Ψ fixed
and start with the generator g = p32. Then, the tooth flanks Φ2 and Φ3 are
dualized spherical trochoids, as g is attached to Σ4 while the ruled helical
surface Π4 ⊂ Σ4 rolls and slides on Π2 and Π3, respectively. Figure 3 shows
the conjugate flanks Φ2 and Φ3 in a general pose.

Rolling and sliding (German: schroten) of Π4 along Π2 means that at each
instant Π4 contacts Π2 along a common generator. Therefore, the respective
Frenet frames coincide. Moreover, the director cones of the two axodes roll
on each other. The director cone of any ruled surface is obtained by drawing
the parallel line to each generator through the origin. The director cones of
Π2, Π3 and Π4 are all cones of revolution.

By applying the dual sine theorem to the triplet of frames (Σ1, Σ2, Σ4)
with respective twists ω̂41p̂41 − ω21p̂21 = ω̂42 p̂32 we obtain

ω̂21

sin(ϕ̂ − β̂)
=

ω̂41

sin(ϕ̂ + α̂)
=

ω̂42

sin(α̂ + β̂)
. (10)

In particular, the primal part of

ω̂21 sin(ϕ̂ + α̂) = ω̂41 sin(ϕ̂ − β̂)
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Fig. 3 Conjugate tooth flanks Φ2, Φ3 in contact along line g in the case α = 35◦,
α0 = 40.0 , ω31 : ω21 = −1 : 2, ϕ − β = 6.5◦.

expresses the rolling of the director cones of Π2 and Π4. Furthermore, we
specialize Theorem 3 below:

Corollary 4 For spatial cycloidal gearing the tooth flank Φ2 is the trace of
line g = p32 under the motion Σ4/Σ2, i.e., under the composition of the
helical motion Σ4/Σ1 about p41 with angular velocity

ω41 =
ω21 sin(ϕ + α)

sin(ϕ − β)

and pitch h41, given by eq.(9), and the rotation Σ1/Σ2 about p21 with angular
velocity −ω21. The conjugate flank Φ3 is the trace of line g = p32 under the
composition Σ4/Σ3 of the helical motion Σ4/Σ1 and the rotation Σ1/Σ3

about p31 with angular velocity −ω31.

We conclude with an original result, namely, the spatial analogue of the
generalized Reuleaux principle noted in Remark 2 above.

Theorem 5 Let the motions Σ4/Σ2 and Σ4/Σ3 be defined like in Theorem 3.
Then, for any smooth surface Γ attached to Σ4 the envelopes Φ2, Φ3 of Γ
under the relative motions Σ4/Σ2 and Σ4/Σ3, respectively, are conjugate
tooth flanks of Σ3/Σ2.
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Sketch of a proof : Point C is a point of contact between Γ and its envelope
Φ2 under Σ4/Σ2 if and only if the surface normal n̂ of Γ at C is included in
the linear line complex with equation q420 ·n + q42 ·n0 = 0 . By Theorem 2
the twists q̂43 und q̂32 are real multiples of q̂42. Hence, the corresponding
linear line complexes are equal, and C is at the same time an enveloping
point for Σ4/Σ3.

5 Conclusions

The main goal of this paper is to shed light on the geometry of the tooth
flanks of gears with skew axes. To this end, the authors follow and extend re-
sults reported by Martin Disteli, thereby deriving ruled surfaces as conjugate
tooth flanks in contact along a line. The algebra of dual vectors representing
directed lines and rigid-body twists proves to be an invaluable tool in this
endeavor.

A detailed analysis of the tooth flanks thus obtained is left for future
research. Theorem 5, a main result reported in this paper, should lead to
optimum tooth flanks in the sense of minimizing the power losses caused by
Coulomb friction upon sliding, which is unavoidable in gears with skew axes.

References

1. Phillips, J. (2003). General Spatial Involute Gearing. Springer Verlag, New York.
2. Figliolini, G., Stachel, H., Angeles, J. (2007). A New Look at the Ball-Disteli Diagram

and Its Relevance to Spatial Gearing. Mech. Mach. Theory 42(10), 1362–1375.
3. Reuleaux, F. (1875). Theoretische Kinematik I. Verlag Friedrich Vieweg und Sohn,

Braunschweig.
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