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On Martin Disteli’s Main Achievements

in Spatial Gearing: Disteli’s Diagram

Giorgio Figliolini∗ Hellmuth Stachel† Jorge Angeles‡

The subject of this paper is a diagram due to Martin Disteli. The diagram, illus-
trating the relation between the angular velocities of a pair of skew gears, is intended
for the analysis of the relative screw motion between the two gears. The diagram,
based on a circle, seems to have been overlooked by the community of kinematicians.

Introduction

Martin Disteli1 transferred Releaux’s principle of gearing for the particular case of cycloid gears
from the sphere into three-dimensional space — cf. Disteli (1904) and Disteli (1911). This
transfer led to the analysis of a pair of meshing skew gears whose tooth flanks are ruled surfaces,
in contact along lines. Disteli (1911) produced a simple diagram illustrating the relation between
the angular velocities of a pair of skew gears and the position and pitch of their relative screw
motion. The latter will be addressed in this note, while both items seem to have been overlooked
by the community of kinematicians.

Disteli’s papers are hard to read because of a) their lack of vector notation, which leads
to lengthy expressions from where little information can be drawn and b) the use of rather
uncommon left-hand frames. Although Disteli used screw theory, he described screws only
explicitly, by listing their six coordinates (p, q, r, u, v, w). Moreover, the up-to-six different frames
occurring in the paper are not identified by subscripts, but rather by different characters. These
shortcomings of Disteli’s publications were mentioned in his obituary, Schur (1927). We follow
the final comment in this obituary, which reads: “It would be desirable that somebody rewrites

Disteli’s arguments, thus making them much more understandable”.

We try to meet this target by a consistent use of dual vectors representing directed lines and
screws — cf., e.g., Müller (1963); Veldkamp (1976); Angeles (1998); McCarthy (2000); Stachel
(2005). In the sequel we identify oriented lines g with their dual unit vectors ĝ, thus speaking
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briefly of “the line ĝ” instead of the directed line g with its dual vector ĝ — see, e.g., Husty et al.
(1997) or Stachel (2005). In the same way “the screw q̂ij” stands for the instant screw of the
relative motion between the two frames Σi and Σj , this screw being represented by the dual
vector q̂ij = ω̂ij p̂ij . Here, p̂ij is the screw axis and ω̂ij = ωij + εω0ij is the dual amplitude of
the twist, with signed magnitudes of the angular velocity and the point velocity along the screw
axis ωij and ω0ij , respectively.
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Figure 1: Dual angle ϕ̂ = ϕ+ εϕ0
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Figure 2: k̂ = cos ϕ̂ ĝ + sin ϕ̂ ĥ

We recall below some standard formulas pertaining to dual unit vectors — cf. Angeles (1998)
— which will be used presently.

a) For two given directed lines ĝ, ĥ, let n̂ denote the common normal, given by n ≡ g× h. If
the helical motion along n̂, which transforms ĝ into ĥ — see Fig. 1 — entails the angle ϕ of
rotation and the translation ϕ0, and we combine them in the dual angle ϕ̂ ≡ ϕ+ εϕ0, then,

ĝ·ĥ = g·h + ε(g0 ·h + g·h0) = cos ϕ̂ = cosϕ− εϕ0 sinϕ and

ĝ× ĥ = g× h + ε(g0× h + g× h0) = sin ϕ̂ n̂ = sinϕn + ε [sinϕn0 + ϕ0 cosϕn] .
(1)

Further, we recall the dual extension of differentiable functions, defined as

f(x̂) = f(x+ εx0) = f(x) + ε x0f
′(x).

which involves the first two terms of the Taylor series of f( · ) at a value x+ εx0 of its argument,
where due to a property of the dual unit, ε2 = 0, all higher-order terms vanish. This guarantees
that identities like cos2 x+ sin2 x = 1 are preserved under the dual extension, as they are valid
for the power series too.

The notation ε stems from the observation that the dual unit can be regarded as such a small
number that its square is negligible. Note that only dual numbers x̂ = x+εx0 with non-vanishing
primal part, i.e., with x 6= 0, have an inverse x̂−1 = 1

x
(x− εx0); inverses of pure dual numbers,

i.e., those with x = 0, bear zero divisors. Dual numbers were first introduced by Clifford (1873)
= (Clifford, 1882, pp. 181–200).

b) Let ĝ and ĥ be two spears intersecting at right angles, their common perpendicular being n̂.
Then,

k̂ = cos ϕ̂ ĝ + sin ϕ̂ ĥ (2)
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is the image of ĝ under the helical motion along n̂ through the dual angle ϕ̂ — see Fig. 2.

1 Disteli’s Diagram: Pure Rotations
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ê1

ê2
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Figure 3: Axes p̂21, p̂31 of the
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ê1ê1̂
e1ê1̂
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e3ê3ê3ê3̂e3

ΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨΨ

ccccccccccccccccc

Figure 4: Plücker’s conoid = cylindroid

We use a Cartesian coordinate frame F(O;x1, x2, x3) with ê1, ê2 denoting the dual unit vectors
of the x1- and x2-axis. The axes p̂21 and p̂31 of the pinion Σ2 and the gear Σ3, respectively, are
assumed to be symmetrically placed with respect to the x1- and x2-axes, as depicted in Fig. 3.
Therefore,

p̂21 = ê1 cos α̂− ê2 sin α̂
p̂31 = ê1 cos α̂+ ê2 sin α̂ .

(3)

We limit ourselves to the skew case and assume

0 < α < π/2 and α0 6= 0. (4)

Let ω21, ω31 ∈ R denote the angular velocities of the gears Σ2 and Σ3 with respect to the gear
box Σ1, respectively. Then, the screw q̂32 of the relative motion Σ3/Σ2 with axis p̂32 becomes

q̂32 = ω̂32 p̂32 = ω̂32 (ê1 cos ϕ̂+ ê2 sin ϕ̂) = ω31 p̂31 − ω21 p̂21. (5)

where ϕ̂ = ϕ + εϕ0 denotes the dual angle made by ê1 and p̂32, as illustrated in Fig. 3. From
eq. (4) the primal parts p31 and p21 are linearly independent. Hence, for any ϕ there is a choice
of (ω21, ω31) ∈ R

2, as per Fig. 5, where ω21, ω31 and ϕ are shown as related by the primal part
of eq. (5).
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Comparing the coefficients of ê1 and ê2 reveals that eq. (5) is equivalent to

ω̂32 cos ϕ̂ = (ω31 − ω21) cos α̂
ω̂32 sin ϕ̂ = (ω31 + ω21) sin α̂ .

(6)

We eliminate ω̂32 by multiplying the two equations by − sin ϕ̂ and by cos ϕ̂, respectively, to
obtain

ω21 sin(α̂+ ϕ̂) + ω31 sin(α̂− ϕ̂) = 0, (7)

whose real coefficients are

ω21 = −λ sin(α− ϕ), ω31 = λ sin(α+ ϕ) for any λ ∈ R . (8)

The dual part of eq. (7) leads to

ω21(α0 + ϕ0) cos(α+ ϕ) + ω31(α0 − ϕ0) cos(α− ϕ) = 0.

We replace the angular velocities ωi1 by functions of ϕ, as per eq. (8), thus obtaining

−(α0 + ϕ0) sin(α− ϕ) cos(α+ ϕ) + (α0 − ϕ0) sin(α+ ϕ) cos(α− ϕ) = 0

which can be rewritten as −α0 sin 2ϕ+ ϕ0 sin 2α = 0. Hence, by setting

R =
α0

sin 2α
(9)

we obtain

ϕ0 =
α0

sin 2α
sin 2ϕ = R sin 2ϕ, (10)

with ϕ0 equal to the x3-coordinate of the relative axis p̂32 — see Fig. 3 — thereby revealing
that for a variable transmission ratio ω31/ω21, all relative axes are located on Plücker’s conoid,
which obeys

x3 = 2R sinϕ cosϕ = 2R
x1x2

x2
1
+ x2

2

, (11)

and is a cubic surface — see Fig. 4, cf. Figliolini and Angeles (2006). The distance 2R between
the two torsal generators ϕ = ±π/4 is called the diameter of the conoid.

On the other hand, we obtain from eqs. (6), after multiplying the two equations by cos ϕ̂ and
by sin ϕ̂, respectively

ω̂32 = ω31 cos(α̂− ϕ̂) − ω21 cos(α̂+ ϕ̂). (12)

Using eq. (8), the primal part of eq. (12) yields, in turn,

ω32 = λ [sin(α+ ϕ) cos(α− ϕ) + sin(α− ϕ) cos(α+ ϕ)] = λ sin 2α, (13)

the dual part of eq. (12) becoming

ω032 = −ω31(α0 − ϕ0) sin(α− ϕ) + ω21(α0 + ϕ0) sin(α+ ϕ)

= λ [−(α0 − ϕ0) sin(α+ ϕ) sin(α− ϕ) − (α0 + ϕ0) sin(α− ϕ) sin(α+ ϕ)]

= −2λα0 sin(α+ ϕ) sin(α− ϕ) = λα0 (cos 2α− cos 2ϕ).
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Finally, we obtain the pitch h32 as

h32 =
ω032

ω32

= R(cos 2α− cos 2ϕ). (14)

Equations (10) and (14) are the basis of Disteli’s diagram, which he disclosed in (Disteli, 1911,
Fig. 2, p. 250), as displayed in Fig. 5.

Disteli’s diagram illustrates the relation among the pitch h32, the angle ϕ and the distance
ϕ0, with the velocities ω21 and ω31.
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Figure 5: Disteli’s diagram
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Figure 6: The Central Angle Theorem

The diagram is based on a projection in the direction of the common normal ê3 between
p̂21 and p̂31 — cf. Fig. 3. The projections p̂′

21
, p̂′

31
of the shafts intersect at point 3 = ê′

3
at

an angle 2α. The projection p̂′

32
of the relative axis has the direction of the difference vector

p32 = ω31p31−ω21p21. We use a circle k which passes through ê′
3

such that the remaining points
1, 2 of intersection between k and the views p̂′

21
, p̂′

31
lie at a distance 2α0.

2 Then, the remaining
point 4 of intersection between k and p̂′

32
shows the distance ϕ0 and the corresponding pitch

h32. The diagram is a consequence of eqs. (10) and (14) and the Central Angle Theorem — see
Fig. 6.

Remark. For any given ϕ the distance ϕ0 can be derived with the aid of circle k. There is also
a pure geometric explanation for this: Tangent planes τ intersect the Plücker conoid Ψ in a line
and a conic c — see Fig. 4. The ‘top view’ in the direction of the double line ê3 of Ψ maps
the conic c onto a circle k, for a tangent plane τ with a 45◦ inclination — see Figs. 7 and 8.
The line through an arbitrary point of k and parallel to the h32-axis can be seen as the top
view of a ‘horizontal’ line within τ . Because of the 45◦ inclination, the distance between any
two such parallel lines equals the difference between the heigths of the corresponding points and
generators of Ψ. More about the geometry of Plücker’s conoid can be found in the section below.

2 Because of the free choice of point 1 ∈ bp
′
21, there is still a continuum of possible circles k through be

′
3, of radius

R.
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2 Examples: Plücker’s conoid and Disteli’s Diagram
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Figure 7: Three-Dimensional view of Disteli’s diagram (α = 30◦, α0 = 43.3 mm and R = 50 mm)

With reference to the case of Fig. 7, the skew axes p̂21 and p̂31 of the pinion Σ2 and gear Σ3,
respectively, are assigned through the distance α0 = 43.30 mm and angle α = 30◦. Consequently,
the half diameter R of the corresponding Plücker conoid Ψ is equal to 50 mm. Disteli’s Diagram
to analyze the relative screw motion between pinion and gear is obtained by referring to frame
F(O;x1, x2, x3), which shows: the origin O symmetrically located on the diameter of the conoid;
the x1-axis making an angle α = 30◦ with both axes p̂21 and p̂31, respectively; the x3-axis
directed along the diameter of the conoid; and, finally, the x2-axis orthogonal to the x1- and
x3-axes.

Thus, the circle k of Disteli’s diagram is obtained by considering a cylinder Γ passing through
the x3-axis, which also means that the axis of the cylinder is parallel to the x3-axis. Rotating
this cylinder Γ of radius R about the x3-axis while fixing the Plücker conoid Ψ yields a one-
parameter set of intersection curves c between Γ and Ψ. Each curve c of this set is an ellipse.
Moreover, the plane τ of the ellipse c is also a tangent plane to the Plücker conoid Ψ and shows
always an inclination of 45◦ with respect to a horizontal plane, which is parallel to the x1- and
x2-axes. The intersection between this plane and the Plücker conoid Ψ is given by the ellipse c
and a line normal to x3, because Ψ is a cubic surface. Of course, the tangent point P ′ between
τ and Ψ changes according to the position of the cylinder Γ with respect to Ψ. Disteli’s diagram
is obtained by projecting the three-dimensional drawing on the horizontal plane, the position
of points 1 and 2 on circle k depending on the particular position of the cylinder Γ with radius
R = 50 mm, which can be chosen arbitrarily.

Likewise, Disteli’s diagram can be obtained by referring to the particular case of Fig. 8, where
the skew axes p̂21 and p̂31 of the pinion Σ2 and gear Σ3, respectively, are assigned through the
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Figure 8: Three-Dimensional view of Disteli’s Diagram (α = 45◦, α0 = R = 50 mm)

distance α0 = R = 50 mm and the angle α0 = 45◦, which means that p̂21 and p̂31 coincide with
the torsal generators of the corresponding Plücker conoid Ψ.

In this particular case, the cylinder Γ can be chosen conveniently, with its axis intersecting
the x1-axis of frame F . Consequently, plane τ of the ellipse c intersects the Plücker conoid Ψ
along a line passing through the minor semi-axis of the ellipse c.

Moreover, referring to Fig. 8, the tangent point P ′ of the plane τ with Ψ is located on the
x1-axis a distance 2R from the x3-axis, the inclination of 45◦ of plane τ with respect to the
horizontal plane being also indicated.

3 Disteli’s Diagram: General Case

Now we adress the more general case where the instantaneous motions of Σ2 and Σ3 with respect
to Σ1 are supposed to be helical, with dual angular velocities ω̂21 and ω̂31, respectively. We keep
the pitches

h21 = ω021/ω21 and h31 = ω031/ω31 (15)

constant, while the ratio ω21/ω31 varies. It will be proven that the axes p̂32 of the relative
motion Σ3/Σ2 again cover a Plücker conoid. There is again a diagram of the Disteli type. In
(Disteli, 1914, Fig. 6, p. 295) a similar diagram is shown.

The dual analogue of eq. (7) reads

ω̂21 sin(α̂+ ϕ̂) + ω̂31 sin(α̂− ϕ̂) = 0. (16)
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whose primal part remains unchanged, eq. (8) still holding. The dual part of eq. (16) gives

ω021 sin(α+ ϕ) + ω21(α0 + ϕ0) cos(α+ ϕ) + ω031 sin(α− ϕ) + ω31(α0 − ϕ0) cos(α− ϕ) = 0

which can be expressed as

ω21 [h21 sin(α+ ϕ) + (α0 + ϕ0) cos(α+ ϕ)] + ω31 [h31 sin(α− ϕ) + (α0 − ϕ0) cos(α− ϕ)] = 0.

Further, we substitute the angular velocities ωi1 by functions of ϕ, as per eq. (8), to obtain

λ [−h21 sin(α− ϕ) sin(α+ ϕ) + h31 sin(α+ ϕ) sin(α− ϕ)−
− (α0 + ϕ0) sin(α− ϕ) cos(α+ ϕ) + (α0 − ϕ0) sin(α+ ϕ) cos(α− ϕ)] = 0

which can be rewritten as

1

2
(h21 − h31)(cos 2α− cos 2ϕ) + α0 sin 2ϕ− ϕ0 sin 2α = 0,

hence, from eq. (9), as a generalization of eq. (10),

ϕ0 = R sin 2ϕ+
h21 − h31

2 sin 2α
(cos 2α− cos 2ϕ). (17)

On the other hand, the dual analogue of eq. (12) reads

ω̂32 = ω̂31 cos(α̂− ϕ̂) − ω̂21 cos(α̂+ ϕ̂). (18)

The primal part of eq. (8), displayed in eq. (13), remains again unchanged. After substituting
eqs. (15) and (8) into the dual part of eq. (18), we obtain

ω032 = λ [sin(α+ ϕ) [h31 cos(α− ϕ) − (α0 − ϕ0) sin(α− ϕ)] +

+ sin(α− ϕ) [h21 cos(α+ ϕ) − (α0 + ϕ0) sin(α+ ϕ)] ] =

= λ
[

1

2
h31(sin 2α+ sin 2ϕ) + 1

2
h21(sin 2α− sin 2ϕ) + α0(cos 2α− cos 2ϕ)

]
.

Hence the dual analogue of eq. (14) reads

h32 =
ω032

ω32

= 1

2
(h21 + h31) +

h31 − h21

2 sin 2α
sin 2ϕ+R(cos 2α− cos 2ϕ). (19)

Upon setting

S =
h31 − h21

2 sin 2α

we can summarize eqs. (17) and (19), namely,

ϕ0 = S cos 2ϕ+R sin 2ϕ− S cos 2α,

h32 = S sin 2ϕ−R cos 2ϕ+R cos 2α+ 1

2
(h31 + h21).

(20)

Next, we replace R and S by introducing two new constants, T and ψ, upon setting

S = −T sinψ, R = T cosψ. (21)
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Figure 9: General version of Disteli’s diagram

Hence, eq. (20) takes the new form

ϕ0 = T sin(2ϕ− ψ) + T cos 2α sinψ,

h32 = −T cos(2ϕ− ψ) + T cos 2α cosψ + 1

2
(h31 + h21),

(22)

which proves that the relative axes p̂32 cover again a Plücker conoid, this time with diameter
2T = 2

√
R2 + S2 — note the alternative short proof in (Pottmann and Wallner, 2001, pp. 179–

180).
In order to draw the diagram of Fig. 9, we start with a free choice of the coordinate frame

F(U ; ξ1, ξ2). The two axes will later serve as the ϕ0- and h32-axis, respectively. Then, we draw
the points 1 and 2 having coordinates (ξ, η) = (−α0, h21) and (−α0, h31), respectively. We
determine the circle k through points 1 and 2 such that the central angle for the arc 12 is 4α.
We may choose the point 3 ∈ k as the top view of the common perpendicular ê3. Then, for any
given angle ϕ, the remaining point 4 of intersection between p̂32 and k defines the corresponding
ϕ0 and the pitch h32.

4 Distribution Parameters in Disteli’s Diagram

The distribution parameter δ(t) of the ruled surface ĝ(t) = g(t) + εg0(t) is given by

δ =
ġ·ġ0

ġ·ġ (23)

according to (Stachel, 2000, Theorem 1). Parameter δ rules the distribution of tangent planes
along any generator. The tangent planes at the points X in distance ±δ to the striction point
S make an angle of ±45◦ with the tangent plane at S.
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Figure 11: Distribution parameter
δ of the axodes of Σ3/Σ2

In order to compute the distribution parameter δΨ of any generator ĝ = p̂32 of Plücker’s
conoid Ψ, we use the representation in eqs. (5) and (10):

ĝ = (cosϕ− εϕ0 sinϕ) ê1 + (sinϕ+ εϕ0 cosϕ) ê2 with ϕ0 = R sin 2ϕ.

Differentiation with respect to the (real) parameter ϕ gives

˙̂g = (− sinϕ− εϕ0 cosϕ− 2εR sinϕ cos 2ϕ) ê1 + (cosϕ− εϕ0 sinϕ+ 2εR cosϕ cos 2ϕ) ê2.

The equations ê1 ·ê1 = 1 and ê1 ·ê2 = 0 imply

˙̂g· ˙̂g = (− sin ϕ̂− 2εR sinϕ cos 2ϕ)2 + (cos ϕ̂+ 2εR cosϕ cos 2ϕ)2 =

= 1 + 4εR cos 2ϕ = ġ·ġ + 2ε ġ·ġ0.

Following eq. (23), we use the dual and the primal part of ˙̂g· ˙̂g to obtain

δΨ = 2R cos 2ϕ. (24)

Figure 10 shows where δΨ is included in Disteli’s diagram for the special case — as per Section 1.
All striction points of Plücker’s conoid Ψ are located on the x3-axis of our coordinate frame,
while the corresponding tangent planes are vertical, as noted in Figs. 7 and 8. Therefore, if the
tangent plane τ of Ψ at any point P ′ has a 45◦ inclination with the horizontal x1-x2-plane, then
the perpendicular distance between P ′ and the x3-axis equals the distribution parameter δΨ of
the generator ĝ passing through P ′.

10
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Now we recall the general case treated in Section 3: Let p̂32 be the instant screw axis of the
relative motion between the two frames Σ2 and Σ3. Moreover, we assume that the axes p̂21 and
p̂31 are fixed in the gear box Σ1. Then, for constant ω̂21 and ω̂31, the relative axis p̂32 remains
also fixed in the gear box Σ1. However, with respect to Σ2 and Σ3 the relative axis p̂32 traces
the axodes of the relative motion Σ3/Σ2. In the case of bevel gears, moving under pure rotation,
ω̂21, ω̂31 ∈ R — as per Section 1 — the axodes are hyperboloids; otherwise — Section 3 — ruled
helical surfaces. We want to prove that the distribution parameter δ, which is constant for each
axode and shared by both, can also be viewed in Disteli’s diagram:

The axode in Σ2 is traced by ĝ = p̂32 under the helical motion Σ1/Σ2 with the instantaneous
screw −ω̂21 p̂21. The dual analogue of eq. (5), namely,

ω̂32 ĝ = ω̂31 p̂31 − ω̂21 p̂21

leads, with (Stachel, 2000, eq. (9)), to the derivative ˙̂g = −ω̂21 p̂21 × ĝ , i.e.,

ω̂32
˙̂g = −ω̂21 p̂21 × (ω̂31 p̂31 − ω̂21 p̂21) =

= −ω̂21 ω̂31(p̂21× p̂31) = −ω̂21 ω̂31 sin 2α̂ ê3

according to eq. (1) and Fig. 3. In order to compute the distribution parameter we again need
the primal and the dual part of

ω̂2

32
˙̂g· ˙̂g = ω̂2

21 ω̂
2

31 sin2 2α̂ .

Under the condition ω32 6= 0, the inverse of ω̂2
32

exists, and we obtain, as per eq. (15),

˙̂g· ˙̂g =
ω2

21
ω2

31
sin 2α

ω2
32

(1 + 2εh21)(1 + 2εh31)(1 − 2εh32)(sin 2α+ 4ε α0 cos 2α).

Following eq. (23) the distribution parameter of the axodes reads

δ = h21 + h31 − h32 + 2R cos 2α = R cos 2ϕ+ 1

2
(h31 + h21) − S sin 2ϕ+R cos 2α

due to the second equation in (20). Finally, we replace R and S by T and ψ, according to eq.
(21), thereby ending up with the formula

δ = T cos(2ϕ− ψ) + T cos 2α cosψ + 1

2
(h31 + h21). (25)

for the distribution parameter of the axodes of the relative motion Σ3/Σ2. Shown in Fig. 11 is
how δ can be figured out from the same diagram used in Fig. 9 to obtain the position and the
pitch of the relative motion.

Conclusions

The Disteli’s diagram has been analyzed and proposed in a new form. This diagram can find
several applications to analyze the relative screw motion between two rigid bodies, which are
moving according to a general helical motion. However, particular attention has been devoted
to the case of skew gears. Some examples are also reported.
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