Composition of spherical four-bar-mechanisms

G. Nawratil and H. Stachel
Vienna University of Technology, Austria,
e-mail: \{nawratil, stachel\}@dmg.tuwien.ac.at

Abstract

We study the transmission by two consecutive four-bar linkages with aligned frame links. The paper focusses on so-called "reducible" examples on the sphere where the 4-4-correspondance between the input angle of the first four-bar and the output-angle of the second one splits. Also the question is discussed whether the components can equal the transmission of a single four-bar. A new family of reducible compositions is the spherical analogue of compositions involved at Burmester's focal mechanism.

Key words: spherical four-bar linkage, overconstrained linkage, Kokotsakis mesh, Burmester's focal mechanism, 4-4-correspondance

1 Introduction

Let a spherical four-bar linkage be given by the quadrangle $I_{10} A_{1} B_{1} I_{20}$ (see Fig. 1) with the frame link $I_{10} I_{20}$, the coupler $A_{1} B_{1}$ and the driving arm $I_{10} A_{1}$. We use the output angle φ_{2} of this linkage as the input angle of a second coupler motion with vertices $I_{20} A_{2} B_{2} I_{30}$. The two frame links are assumed in aligned position as well as the driven arm $I_{20} B_{1}$ of the first four-bar and the driving arm $I_{20} A_{2}$ of the second one. This gives rise to the following

Questions:

(i) Can it happen that the relation between the input angle φ_{1} of the $\operatorname{arm} I_{10} A_{1}$ and the output angle φ_{3} of $I_{30} B_{2}$ is reducible so that the composition admits two oneparameter motions? In this case we call the composition reducible.
(ii) Can one of these components produce a transmission which equals that of a single four-bar linkage?

A complete classification of such reducible compositions is still open, but some examples are known (see Sect. 3). For almost all of them exist planar counterparts. We focus on a case where the planar analogue is involved at Burmester's focal mechanism [2, 5, 11, 4] (see Fig. 3a). It is not possible to transfer the complete focal mechanism onto the sphere as it is essentially based on the fact that the sum of interior angles in a planar quadrangle equals 2π, and this is no longer true in spherical geometry. Nevertheless, algebraic arguments show that the reducibility of the included four-bar compositions can be transferred.

Fig. 1 Composition of the two spherical four-bars $I_{10} A_{1} B_{1} I_{20}$ and $I_{20} A_{2} B_{2} I_{30}$ with spherical side lengths $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, i=1,2$

Remark: The problem under consideration is of importance for the classification of flexible Kokotsakis meshes [7, 1, 10]. This results from the fact that the spherical image of a flexible mesh consists of two compositions of spherical four-bars sharing the transmission $\varphi_{1} \mapsto \varphi_{3}$. All the examples known up to recent $[6,10]$ are based on reducible compositions.

The geometry on the unit sphere S^{2} contains some ambiguities. Therefore we introduce the following notations and conventions:

1. Each point A on S^{2} has a diametrically opposed point \bar{A}, its antipode. For any two points A, B with $B \neq A, \bar{A}$ the spherical segment or bar $A B$ stands for the shorter of the two connecting arcs on the great circle spanned by A and B. We denote this great circle by $[A B]$.
2. The spherical distance $\overline{A B}$ is defined as the arc length of the segment $A B$ on S^{2}. We require $0 \leq \overline{A B} \leq \pi$ thus including also the limiting cases $B=A$ and $B=\bar{A}$.
3. The oriented angle $\Varangle A B C$ on S^{2} is the angle of the rotation about the axis $O B$ which carries the segment $B A$ into a position aligned with the segment $B C$. This angle is oriented in the mathematical sense, if looking from outside, and can be bounded by $-\pi<\Varangle A B C \leq \pi$.

2 Transmission by a spherical four-bar linkage

We start with the analysis of the first spherical four-bar linkage with the frame link $I_{10} I_{20}$ and the coupler $A_{1} B_{1}$ (Fig. 1). We set $\alpha_{1}=\overline{I_{10} A_{1}}$ for the length of the driving arm, $\beta_{1}=\overline{I_{20} B_{1}}$ for the output arm, $\gamma_{1}:=\overline{A_{1} B_{1}}$, and $\delta_{1}:=\overline{I_{10} I_{20}}$. We may suppose

$$
0<\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}<\pi
$$

The movement of the coupler remains unchanged when A_{1} is replaced by its antipode \bar{A}_{1} and at the same time α_{1} and γ_{1} are substituted by $\pi-\alpha_{1}$ and $\pi-\gamma_{1}$, respectively. The same holds for the other vertices. When I_{10} is replaced by its antipode \bar{I}_{10}, then also the sense of orientation changes, when the rotation of the driving bar $I_{10} A_{1}$ is inspected from outside of S^{2} either at I_{10} or at \bar{I}_{10}.

We use a cartesian coordinate frame with I_{10} on the positive x-axis and $I_{10} I_{20}$ in the $x y$-plane such that I_{20} has a positive y-coordinate (see Fig. 1). The input angle φ_{1} is measured between $I_{10} I_{20}$ and the driving arm $I_{10} A_{1}$ in mathematically positive sense. The output angle $\varphi_{2}=\Varangle \bar{I}_{10} I_{20} B_{1}$ is the oriented exterior angle at vertex I_{20}. This results in the following coordinates:

$$
A_{1}=\left(\begin{array}{c}
\mathrm{c} \alpha_{1} \\
\mathrm{~s} \alpha_{1} \mathrm{c} \varphi_{1} \\
\mathrm{~s} \alpha_{1} \mathrm{~s} \varphi_{1}
\end{array}\right) \text { and } B_{1}=\left(\begin{array}{c}
\mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{s} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{2} \\
\mathrm{c} \beta_{1} \mathrm{~s} \delta_{1}+\mathrm{s} \beta_{1} \mathrm{c} \delta_{1} \mathrm{c} \varphi_{2} \\
\mathrm{~s} \beta_{1} \mathrm{~s} \varphi_{2}
\end{array}\right) .
$$

Herein s and c are abbreviations for the sine and cosine function, respectively. In these equations the lengths α_{1}, β_{1} and δ_{1} are signed. The coordinates would also be valid for negative lengths. The constant length γ_{1} of the coupler implies

$$
\begin{align*}
& \mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{2}+\mathrm{s} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{1} \\
& +\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \delta_{1} \mathrm{c} \varphi_{1} \mathrm{c} \varphi_{2}+\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \varphi_{1} \mathrm{~s} \varphi_{2}=\mathrm{c} \gamma_{1} . \tag{1}
\end{align*}
$$

In comparison to [3] we emphasize algebraic aspects of this transmission. Hence we express $\mathrm{s} \varphi_{i}$ and $\mathrm{c} \varphi_{i}$ in terms of $t_{i}:=\tan \left(\varphi_{i} / 2\right)$ since t_{1} is a projective coordinate of point A_{1} on the circle a_{1}. The same is true for t_{2} and $B_{1} \in b_{1}$. From (1) we obtain

$$
\begin{gather*}
-K_{1}\left(1+t_{1}^{2}\right)\left(1-t_{2}^{2}\right)+L_{1}\left(1-t_{1}^{2}\right)\left(1+t_{2}^{2}\right)+M_{1}\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right) \\
+4 \mathrm{~s} \alpha_{1} \mathrm{~s} \beta_{1} t_{1} t_{2}+N_{1}\left(1+t_{1}^{2}\right)\left(1+t_{1}^{2}\right)=0, \\
K_{1}=\mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \delta_{1}, \quad M_{1}=\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \delta_{1}, \\
L_{1}=\mathrm{s} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{~s} \delta_{1}, \quad N_{1}=\mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \gamma_{1} . \tag{2}
\end{gather*}
$$

This biquadratic equation describes a 2-2-correspondence between points A_{1} on circle $a_{1}=\left(I_{10} ; \alpha_{1}\right)$ and B_{1} on $b_{1}=\left(I_{20} ; \beta_{1}\right)$. It can be abbreviated by

$$
\begin{equation*}
c_{22} t_{1}^{2} t_{2}^{2}+c_{20} t_{1}^{2}+c_{02} t_{2}^{2}+c_{11} t_{1} t_{2}+c_{00}=0 \tag{3}
\end{equation*}
$$

setting

$$
\begin{gather*}
c_{00}=-K_{1}+L_{1}+M_{1}+N_{1}, \quad c_{11}=4 \mathrm{~s} \alpha_{1} \mathrm{~s} \beta_{1}, \quad c_{02}=K_{1}+L_{1}-M_{1}+N_{1}, \tag{4}\\
c_{20}=-K_{1}-L_{1}-M_{1}+N_{1}, \quad c_{22}=K_{1}-L_{1}+M_{1}+N_{1}
\end{gather*}
$$

under $c_{11} \neq 0$. Alternative expressions can be found in [10].
Remark: Also at planar four-bar linkages mechanisms there is a 2-2-correspondance of type (3).

4

Fig. 2 a) Opposite angles φ_{2} and ψ_{2} at the second spherical four-bar $I_{20} A_{2} B_{2} I_{30}$. b) Composition of two orthogonal four-bar linkages with $I_{30}=I_{10}$.

There are two particular cases:
Spherical isogram: Under the conditions $\beta_{1}=\alpha_{1}$ and $\delta_{1}=\gamma_{1}$ opposite sides of the quadrangle $I_{10} A_{1} B_{1} I_{20}$ have equal lengths. In this case we have $c_{00}=c_{22}=0$ in (3), and eq. (1) converts into $\left[\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}-\left(\mathrm{s} \alpha_{1}+\mathrm{s} \gamma_{1}\right) t_{1}\right]\left[\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}-\left(\mathrm{s} \alpha_{1}-\mathrm{s} \gamma_{1}\right) t_{1}\right]$ (for details see [10]). The 2-2-correspondance splits into two projectivities ${ }^{1} t_{1} \mapsto$ $t_{2}=\frac{\mathrm{s} \alpha_{1} \pm \mathrm{s} \gamma_{1}}{\mathrm{~s}\left(\alpha_{1}-\gamma_{1}\right)} t_{1}$, provided $\alpha_{1} \neq \gamma_{1}, \pi-\gamma_{1}$. Both projectivities keep $t_{1}=0$ and $t_{1}=\infty$ fixed. These parameters belong to the two aligned positions of coupler $A_{1} B_{1}$ and frame link $I_{10} I_{20}$. In these positions a bifurcation is possible between the two one-parameter motions of the coupler against the frame link.
Orthogonal case: For a given point $A_{1} \in a_{1}$ the corresponding $B_{1}, \widetilde{B}_{1} \in b_{1}$ are the points of intersection between the circles $\left(A_{1} ; \gamma_{1}\right)$ and $b_{1}=\left(I_{20} ; \beta_{1}\right)$ (compare Fig. 2a). Hence, the corresponding B_{1} and \widetilde{B}_{1} are located on a great circle perpendicular to the great circle $\left[A_{1} I_{20}\right]$. Under the condition $\cos \alpha_{1} \cos \beta_{1}=\cos \gamma_{1} \cos \delta_{1}$ which according to [10] is equivalent to $\operatorname{det}\left(\begin{array}{ll}c_{22} & c_{02} \\ c_{20} & c_{00}\end{array}\right)=0$, the diagonals of the spherical quadrangle $I_{10} A_{1} B_{1} I_{20}$ are orthogonal (Fig. 2b) as each of the products equals the products of cosines of the four segments on the two diagonals. Hence, B_{1} and \widetilde{B}_{1} are always aligned with I_{10}, but also conversely, the two points A_{1} and \widetilde{A}_{1} corresponding to B_{1} are aligned with I_{20}.

Note that the 2-2-correspondence (3) depends only on the ratio of the coefficients $c_{22}: \cdots: c_{00}$. With the aid of a CA-system we can prove:

Lemma 1 For any spherical four-bar linkage the coefficients $c_{i k}$ defined by (4) obey

$$
c_{11}^{6}+16\left(K^{2}+L^{2}-2 M^{2}-1\right) c_{11}^{4}+256\left[\left(M^{2}-K^{2}\right)\left(M^{2}-L^{2}\right)+2 M^{2}\right] c_{11}^{2}-4096 M^{4}=0 .
$$

[^0]Conversely, in the complex extension any biquadratic equation of type (3) defines the spherical four-bar linkage uniquely - up to replacement of vertices by their antipodes. However, the vertices need not be real.

At the end of our analysis we focus on opposite angles in the spherical quadrangle $I_{20} A_{2} B_{2} I_{30}$: The diagonal $A_{2} I_{30}$ divides the quadrangle into two triangles, and we inspect the interior angles φ_{2} at I_{20} and ψ_{2} at B_{2} (Fig. 2a). Also for non-convex quadrangles, the spherical Cosine Theorem implies

$$
\cos \overline{A_{2} I_{30}}=\mathrm{c} \beta_{2} \mathrm{c} \gamma_{2}+\mathrm{s} \beta_{2} \mathrm{~s} \gamma_{2} \mathrm{c} \psi_{2}=\mathrm{c} \alpha_{2} \mathrm{c} \delta_{2}+\mathrm{s} \alpha_{2} \mathrm{~s} \delta_{2} \mathrm{c} \varphi_{2} .
$$

Hence there is a linear function

$$
\begin{equation*}
\mathrm{c} \psi_{2}=k_{2}+l_{2} \mathrm{c} \varphi_{2} \text { with } \quad k_{2}=\frac{\mathrm{c} \alpha_{2} \mathrm{c} \delta_{2}-\mathrm{c} \beta_{2} \mathrm{c} \gamma_{2}}{\mathrm{~s} \beta_{2} \mathrm{~s} \gamma_{2}}, \quad l_{2}=\frac{\mathrm{s} \alpha_{2} \mathrm{~s} \delta_{2}}{\mathrm{~s} \beta_{2} \mathrm{~s} \gamma_{2}} . \tag{5}
\end{equation*}
$$

For later use it is necessary to define also ψ_{2} as an oriented angle, hence

$$
\psi_{2}=\Varangle I_{30} B_{2} A_{2}, \quad \varphi_{2}=\Varangle I_{30} I_{20} A_{2} \text { under }-\pi<\psi_{2}, \varphi_{2} \leq \pi .
$$

We note that in general for given φ_{2} there are two positions B_{2} and \widetilde{B}_{2} on the circle b_{1} obeying (5) (Fig. 2a). They are placed symmetrically with respect to the diagonal $A_{2} I_{30}$; the signs of the corresponding oriented angles ψ_{2} are different.

Remark: Also Eq. (5) describes a 2-2-correspondance of type (3) between φ_{1} and φ_{2}, but with $c_{11}=0$. A parameter count reveals that this 2-2-correspondance does not characterize the underlying four-bar uniquely.

3 Composition of two spherical four-bar linkages

Now we use the output angle φ_{2} of the first four-bar linkage as input angle of a second coupler motion with vertices $I_{20} A_{2} B_{2} I_{30}$ and consecutive side lengths α_{2}, γ_{2}, β_{2}, and δ_{2} (Fig. 1). The two frame links are assumed in aligned position. In the case $\Varangle I_{10} I_{20} I_{30}=\pi$ the length δ_{2} is positive, otherwise negative. Analogously, a negative α_{2} expresses the fact that the aligned bars $I_{20} B_{1}$ and $I_{20} A_{2}$ are pointing to opposite sides. Changing the sign of β_{2} means replacing the output angle φ_{3} by $\varphi_{3}-\pi$. The sign of γ_{2} has no influence on the transmission.

Due to (3) the transmission between the angles φ_{1}, φ_{2} and the output angle φ_{3} of the second four-bar with $t_{3}:=\tan \left(\varphi_{3} / 2\right)$ can be expressed by the two biquadratic equations

$$
\begin{align*}
& c_{22} t_{1}^{2} t_{2}^{2}+c_{20} t_{1}^{2}+c_{02} t_{2}^{2}+c_{11} t_{1} t_{2}+c_{00}=0 \\
& d_{22} t_{2}^{2} t_{3}^{2}+d_{20} t_{2}^{2}+d_{02} t_{3}^{2}+d_{11} t_{2} t_{3}+d_{00}=0 \tag{6}
\end{align*}
$$

The $d_{i k}$ are defined by equations analogue to eqs. (4) and (2). We eliminate t_{2} by computing the resultant of the two polynomials with respect to t_{2} and obtain

$$
\operatorname{det}\left(\begin{array}{cccc}
c_{22} t_{1}^{2}+c_{02} & c_{11} t_{1} & c_{20} t_{1}^{2}+c_{00} & 0 \tag{7}\\
0 & c_{22} t_{1}^{2}+c_{02} & c_{11} t_{1} & c_{20} t_{1}^{2}+c_{00} \\
d_{22} t_{3}^{2}+d_{20} & d_{11} t_{3} & d_{02} t_{3}^{2}+d_{00} & 0 \\
0 & d_{22} t_{3}^{2}+d_{20} & d_{11} t_{3} & d_{02} t_{3}^{2}+d_{00}
\end{array}\right)=0
$$

This biquartic equation expresses a 4-4-correspondance between points A_{1} and B_{2} on the circles a_{1} and b_{2}, respectively (Fig. 1).

Up to recent, to the authors' best knowledge the following examples of reducible compositions are known. Under appropriate notation and orientation these are:

1. Isogonal type [7, 1]: At each four-bar opposite sides are congruent; the transmission $\varphi_{1} \rightarrow \varphi_{3}$ is the product of two projectivities and therefore again a projectivity. Each of the 4 possibilities can be obtained by one single four-bar linkage. This is the spherical image of a flexible octahedron of Type 3 (see, e.g., [8]):
2. Orthogonal type [10]: We combine two orthogonal four-bars such that they have one diagonal in common (see Fig. 2b), i.e., under $\alpha_{2}=\beta_{1}$ and $\delta_{2}=-\delta_{1}$, hence $I_{30}=I_{10}$. Then the 4-4-correspondance between A_{1} and B_{2} is the square of a 2-2-correspondance.
3. Symmetric type [10]: We specify the second four-bar linkage as mirror of the first one after reflection in an angle bisector at I_{20} (see [10, Fig. 5b]). Thus φ_{3} is congruent to the angle opposite to φ_{1} in the first quadrangle. Hence the 4-4correspondance is reducible; the components are expressed by the linear relation $\mathrm{c} \varphi_{3}= \pm\left(k_{1}+l_{1} \mathrm{c} \varphi_{1}\right)$ in analogy to (5).

Fig. 3 a) Burmester's focal mechanism and the second component of a four-bar composition. b) Reducible spherical composition obeying Dixon's angle condition for ψ_{1} - equally oriented

At the end we present a new family of reducible compositions: In Fig. 3a Burmester's focal mechanism is displayed, an overconstrained planar linkage (see $[2,5,11,4]$). The full lines in this figure show a planar composition of two fourbar linkages with the additional property that the transmission $\varphi_{1} \rightarrow \varphi_{3}$ equals
that of one single four-bar linkage with the coupler $K L$. Due to Dixon and Wunderlich this composition is characterized by congruent angles $\psi_{1}=\Varangle I_{10} A_{1} B_{1}$ and $\Varangle L B_{2} A_{2}$ which is adjacent to $\psi_{2}=\Varangle I_{30} B_{2} A_{2} .^{2}$ However, this defines only one component of the full motion of this composition. The second component is defined by $\psi_{1}=\Varangle I_{10} A_{1} B_{1}=-\Varangle L B_{2} A_{2}$ (see Fig. 3a). For the sake of brevity, we call the overall condition $\Varangle I_{10} A_{1} B_{1}= \pm \Varangle L B_{2} A_{2}$ Dixon's angle condition and prove in the sequel that also at the spherical analogue this defines reducible compositions.

Lemma 2 For the composition of two spherical four-bars Dixon's angle condition $\Varangle I_{10} A_{1} B_{1}= \pm \Varangle \bar{I}_{30} B_{2} A_{2}$ is equivalent to

$$
\mathrm{s} \alpha_{1} \mathrm{~s} \gamma_{1}: \mathrm{s} \beta_{1} \mathrm{~s} \delta_{1}:\left(\mathrm{c} \alpha_{1} \mathrm{c} \gamma_{1}-\mathrm{c} \beta_{1} \mathrm{c} \delta_{1}\right)= \pm \mathrm{s} \beta_{2} \mathrm{~s} \gamma_{2}: \mathrm{s} \alpha_{2} \mathrm{~s} \delta_{2}:\left(\mathrm{c} \alpha_{2} \mathrm{c} \delta_{2}-\mathrm{c} \beta_{2} \mathrm{c} \gamma_{2}\right)
$$

In terms of $c_{i k}$ and $d_{i k}$ it is equivalent to proportional polynomials

$$
D_{1}=\left(c_{11} t_{2}\right)^{2}-4\left(c_{22} t_{2}^{2}+c_{20}\right)\left(c_{02} t_{2}^{2}+c_{00}\right), \quad D_{2}=\left(d_{11} t_{2}\right)^{2}-4\left(d_{22} t_{2}^{2}+d_{02}\right)\left(d_{20} t_{2}^{2}+d_{00}\right)
$$

Proof. In the notation of Fig. 3b Dixon's angle condition is equivalent to $\mathrm{c} \psi_{1}=$ $\mathrm{c}\left(\pi-\psi_{2}\right)=-\mathrm{c} \psi_{2}=-k_{2}-l_{2} \mathrm{c} \varphi_{2}$ by (5). At the first four-bar we have analogously

$$
\begin{equation*}
\mathrm{c} \psi_{1}=-k_{1}-l_{1} \mathrm{c} \varphi_{2}, \quad k_{1}=\frac{\mathrm{c} \alpha_{1} \mathrm{c} \gamma_{1}-\mathrm{c} \beta_{1} \mathrm{c} \delta_{1}}{\mathrm{~s} \alpha_{1} \mathrm{~s} \gamma_{1}}, \quad l_{1}=\frac{\mathrm{s} \beta_{1} \mathrm{~s} \delta_{1}}{\mathrm{~s} \alpha_{1} \mathrm{~s} \gamma_{1}} \tag{8}
\end{equation*}
$$

Hence, $\mathrm{c} \psi_{1}=-\mathrm{c} \psi_{2}$ for all $\mathrm{c} \varphi_{2}$ is equivalent to $k_{1}=k_{2}$ and $l_{1}=l_{2}$. This gives the first statement in Lemma 2. The \pm results from the fact that changing the sign of γ_{2} has no influence on the 2-2-correspondance $\varphi_{2} \mapsto \varphi_{3}$, but replaces ψ_{2} by $\psi_{2}-\pi$.

If the angle condition holds and $\psi_{1}=0$ or π, the distances $\overline{I_{10} B_{1}}$ and $\overline{I_{30} A_{2}}$ are extremal. For the corresponding angles φ_{2} there is just one corresponding φ_{1} and one φ_{3}. Hence, when for any t_{2} the corresponding t_{1}-values by (3) coincide, then also the corresponding t_{3}-values by (6) are coincident. Hence, the discriminants D_{1} and D_{2} of the two equations in (6) - when solved for t_{2} - have the same real or pairwise complex conjugate roots.

Conversely, proportional polynomials D_{1} and D_{2} have equal zeros. Hence the linear functions in (5) and (8) give the same $\mathrm{c} \varphi_{2}$ for $\mathrm{c} \psi_{1}=-\mathrm{c} \psi_{2}= \pm 1$. Therefore $\mathrm{c} \psi_{1}=-\mathrm{c} \psi_{2}$ is true in all positions, and the composition of the two four-bars fulfills Dixon's angle condition.

The second characterization in Lemma 1 is also valid in the planar case. So, the algebraic essence is the same on the sphere and in the plane. Since in the plane the reducibility is guaranteed, the same must hold on the sphere. This can also be confirmed with the aid of a CA-system: The resultant splits into two biquadratic polynomials like the left hand side in (3). By Lemma 1 each component equals the transmission by a spherical four-bar, but the length of the frame link differs from the distance $\overline{I_{10} I_{30}}$ because otherwise this would contradict the classification of flexible octahedra. General results on conditions guaranteeing real four-bars have not yet been found. We summarize:

[^1]Theorem 3 Any composition of two spherical four-bar linkages obeying Dixon's angle condition $\psi_{1}=\Varangle I_{10} A_{1} B_{1}= \pm \Varangle \bar{I}_{30} B_{2} A_{2}$ (see Fig. 3b) is reducible. Each component equals the transmission $\varphi_{1} \rightarrow \varphi_{3}$ of a single, but not necessarily real spherical four-bar linkage.

Example: The data $\alpha_{1}=38.00^{\circ}, \beta_{1}=26.00^{\circ}, \gamma_{1}=41.50^{\circ}, \delta_{1}=58.00^{\circ}, \alpha_{2}=-40.0400^{\circ}$, $\beta_{2}=123.1481^{\circ}, \gamma_{2}=-123.3729^{\circ}, \delta_{2}=82.0736^{\circ}$ yield a reducible 4-4-correspondence according to Theorem 3. The components define spherical four-bars with lengths $\alpha_{3}=60.2053^{\circ}$, $\beta_{3}=53.5319^{\circ}, \gamma_{3}=8.6648^{\circ}, \delta_{3}=14.5330^{\circ}$ or $\alpha_{4}=24.7792^{\circ}, \beta_{4}=157.1453^{\circ}, \gamma_{4}=160.4852^{\circ}$, $\delta_{4}=33.8081^{\circ}$.

4 Conclusions

We studied compositions of two spherical four-bar linkages where the 4-4-correspondance between the input angle φ_{1} and output angle φ_{3} is reducible. We presented a new family of reducible compositions. However, a complete classification is still open. It should also be interesting to apply the principle of transference (e.g., [9]) in order to study dual extensions of these spherical mechanisms.

Acknowledgements This research is partly supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project "Flexible polyhedra and frameworks in different spaces", a international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.

References

1. Bobenko, A.I., Hoffmann, T. and Schief, W.K.: On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces. In: Bobenko et al. (eds.), Discrete Differential Geometry, Series: Oberwolfach Seminars 38, 67-93 (2008)
2. Burmester, L.: Die Brennpunktmechanismen. Z. Math. Phys. 38, 193-223 (1893) and Tafeln III-V.
3. Chiang, C. H.: Kinematics of spherical mechanisms. Cambridge Univ. Press (1988)
4. Dijksman, E.: On the History of Focal Mechanisms and Their Derivatives. In: Ceccarelli, M. (ed.): International Symposium on History of Machines and Mechanisms Proceedings HMM2004, Springer, pp. 303-314 (2004)
5. Dixon, A. C.: On certain deformable frame-works. Mess. Math. 29, 1-21 (1899/1900)
6. Karpenkov, O.N.: On the flexibility of Kokotsakis meshes. arXiv:0812. 3050v1 [mathDG], 16Dec2008
7. Kokotsakis, A.:Über bewegliche Polyeder. Math. Ann. 107, 627-647 (1932)
8. Stachel, H.: Zur Einzigkeit der Bricardschen Oktaeder. J. Geom. 28, 41-56 (1987)
9. Stachel, H.: Euclidean line geometry and kinematics in the 3 -space. In: Artémiadis, N.K. and Stephanidis, N.K. (eds.): Proc. 4th Internat. Congress of Geometry, Thessaloniki (ISBN 960-7425-11-1), pp. 380-391 (1996)
10. Stachel, H.: A kinematic approach to Kokotsakis meshes. TU Wien, Geometry Preprint No. 201 (2009)
11. Wunderlich, W.: On Burmester's focal mechanism and Hart's straight-line motion. J. Mechanism 3, 79-86 (1968)

[^0]: ${ }^{1}$ Since the vertices of the moving quadrangle can be replaced by their antipodes whithout changing the motion, this case is equivalent to $\beta_{1}=\pi-\alpha_{1}$ and $\delta_{1}=\pi-\gamma_{1}$. We will not mention this in the future but only refer to an 'appropriate choice of orientations' of the hinges.

[^1]: ${ }^{2}$ This condition is invariant against exchanging the input and the output link. The compositions along the other sides of the four-bar $I_{10} K_{L I} I_{30}$ in Fig. 3a obey analogous angle conditions.

