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1. Unfolding and folding polyhedra

unfold

fold

In Descriptive Geometry standard procedures are
provided for the construction of the unfolding
(development, net) of polyhedra or developable
surfaces.

The result is unique, apart from the placement
of the different components, and it shows the
intrinsic metric of the spatial structure.
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1. Unfolding and folding polyhedra

unfold

fold

The inverse problem, i.e., the determination of
a folded structure from a given unfolding is
more complex. In the smooth case we obtain
a continuum of bent poses.

In the polyhedral case the computation leads to
a system of algebraic equations. Also here the
corresponding spatial object needs not be unique.

August 6, 2016: ICGG 2016, Beijing Institute of Technology 3/26



1. Unfolding and folding polyhedra

Only if the polyhedron bounds a convex solid then the result is unique, due to Aleksandr
Danilovich Alexandrov (1941).

In this case, for each vertex the sum of intrinsic angles for all adjacent surfaces is
< 360◦ (= convex intrinsic metric).

Theorem: [Uniqueness Theorem]
For any convex intrinsic metric there is a unique convex polyhedron.

A.I. Bobenko and I. Izmestiev (2006) developed an algorithm for constructing the
convex polyhedron with given intrinsic metric.
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1. Unfolding and folding polyhedra

If convexity is not required the unfolding
of a polyhedron needs not define its
spatial shape uniquely !

Definition 1: A polyhedron is called
globally rigid if its intrinsic metric
defines its spatial form uniquely — up to
movements in space.

e.g., a tetrahedron
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A flipping (or snapping) polyhedron
admits two sufficiently close realizations
– by applying a slight force.
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1. Unfolding and folding polyhedra

Definition 2: A polyhedron is called (continuously) flexible if there is a continuous

family of mutually incongruent polyhedra sharing the intrinsic metric. Each member of
this family is called a flexion.
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Even a regular octahedron is flexible — after being re-assembled. The regular pose on
the left hand side is called locally rigid.
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2. Curved folding, Example 1

A common way of producing small boxes is to push up appropriate planar cardbord
forms Φ0 with prepared creases. Below the case of creases along circular arcs c0.

c0

Φ0

planar version with circular creases

Φ

c

corresponding box with planar creases
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2. Curved folding, Example 1

As proved by W. Wunderlich (1958), the spatial creases c are again planar and
known as meridians of surfaces of revolution with constant Gaussian curvature.

c0

Φ0

planar version with circular creases

Φ

c

corresponding box with planar creases

August 6, 2016: ICGG 2016, Beijing Institute of Technology 8/26



2. Curved folding, Example 1
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On surfaces of revolution the meridians and
parallel circles are the principal curvature lines.
Therefore, the signed principal curvatures are

κ1 = − y ′′

cosα
, κ2 =

cosα

y
.

The Gaussian curvature is defined
as K = κ1κ2 . Hence,

K = const. ⇐⇒
y ′′ +Ky = 0, x ′ =

√

1− y ′ 2.

provided that cosα 6= 0.
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2. Curved folding, Example 1

The general solution of y ′′ + Ky = 0
with constant K 6= 0 is

for K > 0 :

y = a cos s
√
K + b sin s

√
K ,

for K < 0 :

y = a cosh s
√
−K + b sinh s

√
−K

with constants a, b ∈ R, and

x =
∫

√

1− y ′ 2 ds.

we can restrict to six cases, up to
similarities (Gauß, Minding).

Pseudosphere (tractroid)
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2. Curved folding, Example 1

a = 0.78 a = 1.00 a = 1.18

1. 2. 3.

xxx

yyy

b = 0.3

tractrix

a = 0.8

4.

5.

6.
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There are six types of meridians to distinguish at the surfaces of revolution with
constant Gaussian curvature K 6= 0.
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2. Curved folding, Example 1

c0

Φ

a0

x

y0

We use such a meridian as the boundary c0 of a flat cylindrical patch Φ0 with generators
orthogonal to the x-axis. Then we bend it such that the border c remains planar.
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2. Curved folding, Example 1
c0

x

yy0

z

a

P

T

c

β

Φ

ε

Let c0 satisfy y ′′
0
+Ky0 = 0 and bound

a cylindrical patch Φ0 with generators
orthogonal to the x-axis a0.

Theorem: If in a cylindrically bent
pose Φ of Φ0 the boundary c lies in
a plane ε, then it satisfies the same
differential equation as c0.

Proof: y0(s) = y(s) cosβ with
β < π/2 being the (constant) angle
of inclination of the cylinder.

The axis of c is the meet of ε and the plane of the orthogonal section a, which is the
bent counterpart of the original axis a0 of c0 =⇒ y ′′ +Ky = 0.
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2. Curved folding, Example 1

Theorem:

Let Φ0 be a planar ‘ruled surface’ with a transversal
curve (crease) c0, which separates Φ0 into two patches
Φ10 and Φ20.

Suppose the generators of the ruling remain straight at
the bent pose Φ1, Φ2 with a curved edge c between.
Then c must be a planar curve.

If all generators of Φ1 and Φ2 are extended to infinity,
we obtain two torses, which are symmetric with respect
to the plane of c .

Φ10

Φ20

c0

E.g., take a cone of revolution with a parabolic section c and reflect the part opposite
to the apex in the plane of c . In Origami this is called reflection operation.
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2. Curved folding, Example 1

Sketch of the Proof:

Let κ(s) and τ(s) denote the curvature and torsion of c . In terms of the angle γ1(s)
between the osculating plane of c and the tangent plane of the torse Φ1, the geodesic
curvature of c w.r.t. Φ1 is

κg = κ cos γ1.

The geodesic curvature κg must be the same w.r.t. Φ2 =⇒ γ2 = −γ1.

The angle α between the tangent of c and the generator of Φ1 satisfies

cosα : sinα = (τ − γ ′
1
) : −κ sin γ1.

The angle α must be the same w.r.t. Φ2 =⇒ (τ − γ ′
1
) = −(τ + γ ′

1
), hence τ = 0.
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3. Curved folding, Example 2

c0 P0

Q0

Unfolding and corresponding spatial form (photos: G. Glaeser)

The spatial form Φ is obtained by gluing together the semicircles with the straight
segments. How to model the resulting convex body ?
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3. Curved folding, Example 2

c

Φ

Unfolding and corresponding spatial form (photos: G. Glaeser)

The crucial point is here that the ruling is unknown.

M. Kilian, S. Flöry, Z. Chen, N.J. Mitra, A. Sheffer, H. Pottmann: Curved Folding.

ACM Trans. Graphics 27/3 (2008), Proc. SIGGRAPH 2008.
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3. Curved folding, Example 2
x

A0

B0C0

D0

M0
Φ0

c10

c ′
10

c20

c ′
20

r

A physical model shows:

• The spatial body with its developable boundary Φ
is convex and uniquely defined.

• The helix-like curve c = c1 ∪
c2 is a proper edge of Φ; the
resulting solid is the convex hull
of c .

• The semicircular disks are
bent to cones with apices A
and C. Hence, Φ is a C1-
compound of two cones and a
torse between.

• The body has an axis a of
symmetry which connects the
midpoint M with the remaining
transition point B = D on c .
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3. Curved folding, Example 2

A0

B0C0

B′
0
=D0

M0

E10

E ′
10

E ′
20

E20

Φ0

c10

c ′
10

c20

c ′
20

g0

r

Consequences:

• Because of the straight segments of c10, the
developable surface on the left hand side of c1
belongs to the rectifying torse of c1.

• At A and C the surface Φ
can be approximated by a right
cone with apex angle 60◦.

• The tangent tA to c1 at A
is a generator, the osculating
plane of c1 a tangent plane of
this cone; the rectifying plane
passes through the cone’s axis.

•When g0 meets both straight
sides of c0, then g meets c1
and c2 at points with parallel
tangents =⇒ coinciding
tangent indicatrices.
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3. Curved folding, Example 2

A0

B0C0

B′
0
=D0

M0

E10

E ′
10

E ′
20

E20

Φ0

c10

c ′
10

c20

c ′
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• The tangent at the point E2 ∈ c2 of transition
between the cone with apex A and the torse must
be parallel to tA.

• The tangent at the analogue
point E1 ∈ c1 is parallel to the
final tangent tC of c2.

• The subcurves AE1 ⊂ c1
and E2C ⊂ c2 have conciding
tangent indicatrices.

At a first approximation the
cone with apex A is specified as
right cone with apex angle 60◦;
c1 is a geodesic circle on this
cone.
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3. Curved folding, Example 2

A′

t ′A

B′

E ′
1
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B′′
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1
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1

A′′′

t ′′′A

B′′′

C ′′′

E ′′′
1

E ′′′
2

c ′′′
1

c ′′′
2

a′′′

A0

c0

Approximation 1:

c1 is an algebraic curve.

tA is parallel to the tangent at
E2 ∈ c2. Analogously, tC is parallel
to the tangent at E1 ∈ c1. This
defines the axis a of symmetry.

We notice a contradiction since
the osculating plane of c1 at B is
not orthogonal to BC.

August 6, 2016: ICGG 2016, Beijing Institute of Technology 21/26



3. Curved folding, Example 2
c0

tE2=tA

tB

tC=tE1

‖ a

tE2=tA

tB

tC=tE1

‖ a

Left: Tangent indicatrices of c1 and c2 for the first
approximation; no coinciding subcurves!

Approximation 2 is defi-
ned by alined side views
of the tangent indicatrices
(right) =⇒

• the subcurve AE1 ⊂ c1 is
a curve of constant slope.

• the central torse is a
cylinder,

• a translation maps AE1
onto the subcurve E2C ⊂
c2.
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Approximation 2:

The product of the translation A 7→ E2
and the half-rotation about a maps the
subcurve AE1 onto itself, but in reverse
order.

Therefore this portion AE1 has an axis
a1 of symmetry passing through the
midpoint F1.
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Approximation 2 shows an excellent
accordance with the physical model.

. . . but there remains a contradiction.

A

B

C

E1

E2

F1

F2

c1

c20

a

a1

a2
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3. Curved folding, Example 2

A0

B0

M0 E10
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N
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F1

c1

a1

Due to the symmetry w.r.t. a1, the midpoint N of AE1 lies on a1. The distances
A0F10 and A0E10 are preserved, the triangle ANF1 is congruent to its counterpart
A0N0F10 in the unfolding. But NF1 is not (exactly) orthogonal to the tangent of c1
at F1.
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Thank you for your attention!
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