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ABSTRACT: Understanding the geometry of gears with skew axes is a complex task, hard to grasp

and to visualize. However, due to Study’s Principle of Transference, the geometric treatment based

on dual vectors can be readily derived from that of the spherical case. This paper is based on Martin

Disteli’s work and on the authors’ previous results where Camus’ concept of an auxiliary curve is

extended to the case of skew gears. We focus on the spatial analogue of the following case of cycloid

bevel gears: When the auxiliary curve is specified as a pole tangent, we obtain ’pathologic’ spherical

involute gears with vanishing pressure angle. The profiles are always penetrating at the meshing point

because of G2-contact.

In view of the Camus Theorem, the spatial analogue of the pole tangent is a skew orthogonal helicoid

Π4 as auxiliary surface. Its axis lies on the cylindroid and is normal to the instant screw axis (ISA).

Under the roll-sliding of Π4 along the axodes Π2 and Π3 of the gears, any generator g of Π4 traces

a pair of conjugate flanks Φ2,Φ3 with permanent line contact. Again, these flanks are not realizable

because of the reasons below:

(1) When g coincides with the ISA, the singular lines of the two flanks come together. At each point

of g the two flanks share the tangent plane, but in the case of external gears the surfaces open toward

opposite sides.

(2) We face the spatial analogue of a spherical G2-contact, which surprisingly does not mean a G2-

contact at all points of g but only at a single point combined with a mutual penetration of the flanks

Φ2 and Φ3.

However, when instead of a line g a plane Φ4 is attached to the right helicoid Π4, the envelopes of Φ4

under the roll-sliding of Π4 along Π2 and Π3 are torses that serve as conjugate tooth flanks Φ2,Φ3

with a permanent line contact. So far, it seems that these flanks, Φ2 and Φ3, are geometrically feasible.

This is a possible spatial generalization of octoidal gears or even of planar involute gears.
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1. INTRODUCTION
Let the motions of two gears Σ2, Σ3, against the

gear box Σ1 be given, i.e., the rotations Σ2/Σ1,

Σ3/Σ1 about fixed skew axes p21 and p31 with

angular velocities ω21, ω31, respectively. The

dual unit vectors representing the axes p21 and

p31 are denoted by p̂21 and p̂31, respectively. We

use a Cartesian coordinate frame F (O;x1,x2,x3)
with ê1, ê2 denoting the dual unit vectors of the

x1- and x2-axis. The given axes p21 and p31

of the wheels are assumed to be symmetrically

placed with respect to the x1-axis such that the

x3-axis is the common normal of the gear axes.

Using the dual angle α̂ = α + εα0 between

the x1-axis and p21, we can set (see Fig. 1)

p̂21 = cos α̂ ê1− sin α̂ ê2,
p̂31 = cos α̂ ê1 + sin α̂ ê2 .

(1)

We limit ourselves to the skew case and assume

0 < α < π/2 and α0 �= 0 (2)
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though most of the arguments hold also in the

spherical case, α0 = 0, and in the planar case,

α = 0, with parallel axes.

α

α

α0

α0

ϕ

β

ϕ0

β0 =−ϕ0

O

S

ê1

ê2

ê3= f̂2

f̂3

f̂1= p̂32

ISA

p̂21

p̂31

p̂41

ω21

ω31

Figure 1: Skew axes p̂21, p̂31 of the gear wheels,

the ISA p̂32 and the axis p̂41 of the auxiliary sur-

face Π4 ⊂ Σ4 in the particular case β = ϕ +π/2.

The oriented lines f̂1, f̂2, f̂3 form the Frenet frame

of the axodes. This frame remains fixed in the

gear frame Σ1.

In addition, let ϕ̂ denote the dual angle be-

tween ê1 and the ISA, i.e., the relative axis p̂32.

Then we obtain

p̂32 = cos ϕ̂ ê1 + sin ϕ̂ ê2 and

ω̂32 p̂32 = ω31 p̂31−ω21 p̂21.
(3)

The comparison of coefficients and [4, Eq. (7)]

lead to

tanϕ =
ω31 +ω21

ω31−ω21
tanα and

ϕ0 = Rsin2ϕ with R =
α0

sin2α
.

(4)

The vector product of both sides of the last

equation in (3) with p̂21 and p̂31 (compare [6,

Eq. (12)]) results in

ω21

sin(ϕ̂− α̂)
=

ω31

sin(ϕ̂ + α̂)
=

ω̂32

sin2α̂
, (5)

which sometimes is called the dual Sine-
Theorem applied to the dual ‘triangle’ ω21 p̂21

and ω31 p̂31 and ω̂32 p̂32. This implies

ω̂32 =
ω21 sin2α̂
sin(ϕ̂− α̂)

(6)

and, consequently, for the pitch of the relative

motion Σ3/Σ2 like [4, Eq. (15)]

h32 =
ω320

ω32
= R(cos2α− cos2ϕ)

= 2R(cos2 α− cos2 ϕ).
(7)

The axodes of the relative motion Σ3/Σ2 are

one-sheet hyperboloids Π3 ⊂ Σ3 and Π2 ⊂ Σ2,

swept by the relative axis p32 under the inverse

rotations Σ1/Σ2 and Σ1/Σ3 about p21 and p31,

respectively.

2. THE SPATIAL CAMUS THEOREM
The following lemma was first published by

Disteli (see [6, Theorem 2] and the references

therein).

Lemma 1. For given wheels Σ2, Σ3 there exists
a frame Σ4 such that the screws of Σ4/Σ2, Σ4/Σ3

and Σ3/Σ2 are equal at every instant if and only
if the instant axis p41 of Σ4/Σ1 is located on the
Plücker conoid Ψ, but different from p32.

Let β̂ be the dual angle between between the

x1-axis and p̂41 (Fig. 1). Then we can write

p̂41 = cos β̂ ê1 + sin β̂ ê2 . (8)

If we specify p41 ⊂ Ψ different from p21, p31,

p32, then ϕ �= ±α,β . From the equation [6,

Eq. (8)], which defines the Plücker conoid, we

obtain

β0 = Rsin2β . (9)

The dual Sine-Theorem applied to the triangle

ω21 p̂21, ω̂41 p̂41 and ω̂42 p̂42 = ω̂42 p̂32 gives

(compare [6, Eq. (12)])

ω21

sin(ϕ̂− β̂ )
=

ω̂41

sin(ϕ̂ + α̂)
=

ω̂42

sin(α̂ + β̂ )
(10)

2
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and, analogously, for ω31 p̂31, ω̂41 p̂41 and

ω̂43 p̂43 = ω̂43 p̂32

ω31

sin(ϕ̂− β̂ )
=

ω̂41

sin(ϕ̂− α̂)
=

ω̂43

sin(β̂ − α̂)
. (11)

The instant pitch h41 = ω410/ω41 is defined by

[6, Eq. (9)] as

h41 =
ω410

ω41
= R(cos2α− cos2β ). (12)

Let Π4 be the ruled helical surface1 traced by

the relative axis p32 under the helical motion

Σ1/Σ4 about p41 with pitch h41. We call Π4 the

auxiliary surface (for further details see [5]). It

forms together with Π2 and Π3 the axodes of

the relative motions of Σ4 against Σ2 and Σ3, i.e.,

the motions Σ4/Σ2 and Σ4/Σ3 are defined by the

rolling and sliding of Π4 along the hyperboloids

Π2 and Π3, respectively.

The importance of the auxiliary surface Π4 ⊂
Σ4 lies in [6, Theorem 3] which we recall as be-

low:

Theorem 2. [Spatial Camus Theorem]
For any line g attached to Σ4 , the surfaces
Φ2, Φ3 traced by g under the relative motions
Σ4/Σ2 and Σ4/Σ3, respectively, are conjugate
tooth flanks of Σ3/Σ2. At any instant, the mesh-
ing points for these flanks are located on a
straight line.

With respect to the gear frame Σ1, the locus

of the meshing lines, i.e., the meshing surface
or surface of action, is traced by g under Σ4/Σ1

with the fixed twist q̂41 = ω̂41 p̂41. Consequently,

it is a helical surface with axis p̂41.

3. THE DISTELI AXES OF A RULED SUR-
FACE

Along each non-torsal generator g of a ruled sur-

face a Frenet frame can be defined, consisting of:

g itself; the central normal n, which is the sur-

face normal at the striction point; and the central

1 In this paper the term ‘ruled surface’ stands for a

twice continuously differentiable one-parameter set of ori-

ented lines.

tangent t (see, e.g., [1, 2]). This triplet of mutu-

ally orthogonal axes meets at the striction point
S of g, defined on the striction curve (Fig. 2).

The central tangent is orthogonal to the asymp-

totic plane and tangent to the surface at the stric-

tion point.

n̂

ĝ

t̂

S

Figure 2: Frenet frame (ĝ, n̂, t̂) and striction

curve of a ruled surface.

Let, in dual-vector notation2, the ruled surface

be given by the twice-differentiable dual vec-

tor function ĝ(t), t ∈ I. Then, the derivatives

of the Frenet frame (ĝ, n̂, t̂) satisfy the Frenet
equations—Eq. (10) of [1]—namely,

˙̂g = λ̂ n̂ = q̂× ĝ
˙̂n = −λ̂ ĝ +μ̂ t̂ = q̂× n̂
˙̂t = −μ̂ n̂ . = q̂× t̂

with q̂ = μ̂ ĝ+ λ̂ t̂ = ω̂ ĝ∗,

(13)

ĝ∗ with ĝ∗ · ĝ∗ = 1 being the Disteli axis and

ω̂2 = λ̂ 2 + μ̂2, provided λ̂ �= 0. By the last con-

dition we exclude stationary (= singular) genera-

tors.

The Frenet equations (13) contain two dual co-

efficients, λ̂ = λ + ελ0 and μ̂ = μ + εμ0. Var-

ious formulas expressing invariants of the ruled

2From now on we identify oriented lines with their

dual unit vector—with respect to any well-defined coor-

dinate frame. In this sense we speak of the ‘line ĝ ’.

3
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surface in terms of λ , λ0, μ , and μ0 can be found

in [1, Theorems 1–3].3 Here we adopt a different

approach.

The dual representation ĝ(t) = g(t)+ ε g0(t),
t ∈ I, of the ruled surface gives rise to a real

parametrization, namely

x(t,u) = [g(t)×g0(t)]+ug(t),
(t,u) ∈ I×R. (14)

Here we recall that g× g0 is the position vector
of the pedal point of the generator ĝ with respect
to the origin of the underlying coordinate frame.
The derivatives

d

dt
ĝ = ˙̂g = ġ+ ε ġ0 = λ̂ n̂
= λn+ ε (λ0n+λn0) ,

d2

dt2
ĝ = ¨̂g = g̈+ ε g̈0 =−λ̂ 2 ĝ+ ˙̂λ n̂+ λ̂ μ̂ t̂
= −λ 2g+ λ̇n+λ μt+ ε

(−2λλ0g−λ 2g0

+λ̇0n+ λ̇n0 +λ0μt+λ μ0t+λ μt0

)
(15)

determine the partial derivatives of the para-

metrization x(t,u):

xt = (ġ×g0)+(g× ġ0)+uġ, xu = g

and

xtt = (g̈×g0)+2(ġ× ġ0)+(g× g̈0)+ug̈,
xtu = ġ = λn, xuu = 0.

We study the derivatives at the points of a single
generator, say, at t = 0. For this purpose we use

the triplet
(

ĝ(0), n̂(0), t̂(0)
)

as the new coordi-
nate frame; now the striction point s(0) of ĝ(0)
is the origin of the frame in question. Thus we
may set

g(0) =

⎛⎝ 1

0

0

⎞⎠, n(0) =

⎛⎝ 0

1

0

⎞⎠, t(0) =

⎛⎝ 0

0

1

⎞⎠,

g0(0) = n0(0) = t0(0) = 0.

This yields

˙̂g(0) =

⎛⎝ 0

λ
0

⎞⎠+ ε

⎛⎝ 0

λ0

0

⎞⎠,

3For example: The dual part q0 of the twist q̂ equals

the instant velocity vector of the origin s. Consequently,

for the striction σ (see Fig. 3) we get tanσ = λ/μ .

¨̂g(0) =

⎛⎝ −λ 2

λ̇
λ μ

⎞⎠+ ε

⎛⎝ −2λλ0

λ̇0

λ0μ +λ μ0

⎞⎠
and therefore

xt(0,u) =

⎛⎝ 0

λu

λ0

⎞⎠ , xu(0,u) =

⎛⎝ 1

0

0

⎞⎠ , (16)

xtt(0,u) =

⎛⎝ −λ 2u

−λ0μ−λ μ0 + λ̇u

λ̇0 +λ μu

⎞⎠ ,

xtu(0,u) =

⎛⎝ 0

λ
0

⎞⎠ , xuu(0,u) =

⎛⎝ 0

0

0

⎞⎠ .

(17)

n̂

ĝ

t̂

S

x(t,u)
ψ

σu
Ts

Tx

Figure 3: The distribution parameter δ defines

the tangent planes Tx along the generator ĝ by

tanψ = −u/δ . The angle σ between ĝ and the

striction curve is called the striction angle or the

striction.

The vector product b = xt × xu is a normal
vector of the ruled surface, provided the surface
point is regular, which means b �= 0. The coordi-
nates

b(0,u) =

⎛⎝ 0

λ0

−λu

⎞⎠ (18)

reveal that at generators with λλ0 �= 0 the angle

ψ between the central normal vector b(0,0) =
λn and the normal vector b(0,u) (see Fig. 3) sat-

isfies the equation

tanψ =
−λu

λ0
=− u

δ
with δ =

λ0

λ
. (19)

4
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The quotient δ is called the distribution parame-
ter. This is a geometric invariant, i.e., invariant

against parameter transformations. Generators

with λ0 = 0 and hence δ = 0 are called torsal :

Here all points with u �= 0 have the same tangent

plane; the striction point (u = 0) is singular be-

cause of b(0,0) = 0.

Cylindrical generators are defined by ġ = 0
or λ = 0. Here, all points are possible striction

points, for which we set δ := ∞ .

4. TWO RULED SURFACES WITH LINE
CONTACT

For our study on cycloid gearing we need some

results concerning the Disteli axes ĝ∗ of a ruled

surface. According to (13), q̂ = ω̂ ĝ∗ is the twist

and therefore ĝ∗ the instant screw axis of the

moving Frenet frame. From Eqs. (15) and (13)

follows the relation below:

˙̂g× ¨̂g = λ̂ n̂× (−λ̂ 2 ĝ+ ˙̂λ n̂+ λ̂ μ̂ t̂)
= λ̂ 2 ω̂ ĝ∗.

(20)

Due to [1, Theorem 3, 3], the dual angle γ̂ =
γ + εγ0 between the generator ĝ and the corre-

sponding Disteli axis ĝ∗ satisfies

cot γ̂ =
μ̂
λ̂
, hence

cotγ =
μ
λ

and γ0 =
λ μ0−λ0μ

λ 2 +μ2
.

(21)

This is a consequence of the two standard prod-

ucts

ĝ · ĝ∗ = cos γ̂ =
μ̂
ω̂
, ĝ× ĝ∗ = sin γ̂ n̂ =− λ̂

ω̂
n̂,

and of the rule that the dual extension of an an-

alytic real function f (t) is defined as f (̂t ) =
f (t + εt0) = f (t)+ εt0 ḟ (t), which yields

cot γ̂ = cotγ + εγ0(1+ cot2 γ).

The dual angle between the moving ĝ(t) and the

fixed ĝ∗(0) is stationary of order 2 at t = 0 (see

[1, Theorem 3, 4]). Due to the spherical analogy,

cot γ̂ can be called the dual (geodesic) curvature
of the ruled surface.

Lemma 3. If two ruled surfaces are in contact
at all points of a common generator and if they
share the corresponding Frenet frame and the
Disteli axis, then their dual coefficients in the
Frenet equations differ at the corresponding pa-
rameter values only by a real factor c �= 0.

The proof is straightforward and left for the

reader.

Theorem 4. Let ĝ(t) and ˜̂g(̃t) be two twice-
differentiable ruled surfaces which at t = t̃ = 0

share the Frenet frame, the distribution parame-
ter δ (0) = δ̃ (0) and the Disteli axis. Then, the
surfaces have a G2-contact at the striction point
of the common generator.

If by Lemma 3
˜̂λ (0) = c λ̂ (0) and ˜̂μ(0) = c μ̂(0),

then there is a G2-contact at all points of ĝ(0) =˜̂g(0) if and only if
˙̃δ (0) = c δ̇ (0).

Proof: The dual vector function ĝ(t) determines

the real parametrization x(t,u) of the ruled sur-

face as presented in (14). The partial derivatives

at t = 0, as given in (16), define the coefficients

of the first fundamental form as

E(0,u) = xt ·xt = λ 2u2 +λ 2
0 ,

F(0,u) = xt ·xu = 0,
G(0,u) = xu ·xu = 1.

(22)

For the coefficients of the second fundamental
form we obtain

L =
1

‖b‖ b ·xtt =
1√

λ 2
0 +λ 2u2

[
−λ0(λ0μ +λ μ0)+(λ̇λ0−λλ̇0)u−λ 2μ u2

]
,

M =
1

‖b‖ b ·xtu =
1√

λ 2
0 +λ 2u2

λλ0,

N =
1

‖b‖ b ·xuu = 0 .

(23)

For the sake of brevity we skip the detailed anal-

ysis, which reveals that at any point x(0,u) on

the common generator t = 0 the equations Ẽ =
c2E, L̃ = c2L, and M̃ = cM characterize the G2-

contact between the two surfaces.

5
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5. THE CURVATURE OF THE RULED
TOOTH FLANKS

In the realm of gearing, we need two different

Frenet frames, the frame (̂f1, f̂2, f̂3) for the ax-

odes with the ISA f̂1 (see Fig. 1) and the frame

(ĝ1, ĝ2, ĝ3) for conjuate tooth flanks with ĝ1 as

the meshing line (see Fig. 4).

5.1 The Frenet Frame of the Axodes
Upon gear meshing, the Frenet frame (̂f1, f̂2, f̂3)

of the axodes with f̂1 = p̂32 remains fixed in the

gear frame Σ1. The second axis f̂2 equals the

spear ê3 along the common perpendicular of the

gear axes p̂21 and p̂31. In terms of the basis

(ê1, ê2, ê3) we obtain from (3) (see Fig. 1)⎛⎜⎝ f̂1

f̂2

f̂3

⎞⎟⎠=

⎛⎝ cos ϕ̂ sin ϕ̂ 0

0 0 1

sin ϕ̂ −cos ϕ̂ 0

⎞⎠⎛⎝ ê1

ê2

ê3

⎞⎠ . (24)

The origin of this Frenet frame is the striction

point S = (0,0,ϕ0) of the axodes, the point of

intersection between the ISA p̂32 and the com-

mon normal of p̂21 and p̂31. The movement of

this frame along the axode Π2 ⊂ Σ2 is the rota-

tion Σ1/Σ2 about the axis p̂21 with the angular

velocity −ω21. Therefore

p̂21 = cos(ϕ̂ + α̂ )̂f1 + sin(ϕ̂ + α̂ )̂f3

is the permanent Disteli axis of Π2. Due to (1),
the corresponding Frenet equations (note ê3 =

f̂2) begin with

˙̂f1 = −ω21p̂21× f̂1 =−ω21 sin(ϕ̂ + α̂) f̂2

= −ω21 [sin(ϕ +α)+ ε(ϕ0 +α0)cos(ϕ +α)] f̂2,

which implies for the axode Π2 the distribution

parameter4

δ2 = (ϕ0 +α0)cot(ϕ +α)

and the coefficients

λ̂2 =−ω21 sin(ϕ̂ + α̂), μ̂2 =−ω21 cos(ϕ̂ + α̂).

4 For the generators of a one-sheet hyperboloid of revo-

lution with semiaxes a,b the absolute value of the distribu-

tion parameter equals the secondary semiaxis, i.e., |δ |= b.

The last equation follows from the third Frenet

equation
˙̂f3 = −ω21 p̂21× f̂3 in (13), and it con-

firms for the dual angle γ̂2 between the gener-

ator p̂32 = f̂1 and the Disteli axis p̂21 by (21)

γ̂2 = ϕ̂ + α̂ with cot γ̂2 = μ̂2/λ̂2 as dual curva-
ture of Π2 according to [1, Theorem 3].

In a similar way we obtain for Π3 the distribu-

tion parameter

δ3 = (ϕ0−α0)cot(ϕ−α)

and the coefficients

λ̂3 =−ω31 sin(ϕ̂− α̂), μ̂3 =−ω31 cos(ϕ̂− α̂).

The equation δ2 = δ3, which can also be con-

cluded from (5), guarantees the contact between

Π2 and Π3 at all points of the ISA p̂32.

In the Frenet equations of the auxiliary surface

Π4 ⊂ Σ4 with axis

p̂41 = cos(ϕ̂− β̂ )̂f1 + sin(ϕ̂− β̂ )̂f3

and dual velocity −ω̂41 we obtain the coeffi-

cients
λ̂4 = −ω̂41 sin(ϕ̂− β̂ ),
μ̂4 = −ω̂41 cos(ϕ̂− β̂ ).

(25)

As a consequence, Π4 has, by virtue of (19), the

distribution parameter

δ4 = h41 +(ϕ0−β0)cot(ϕ−β ).

The equation δ4 = δ3 = δ2 can be verified using

Eqs. (4), (9), and (12). The axis of Π4 makes,

with all generators Π4, the dual angle γ̂4 = ϕ̂ −
β̂ .

5.2 The Frenet Frame of the Tooth Flanks
According to Theorem 2, any line ĝ attached to

the auxiliary surface Π4 traces conjugate tooth

flanks Φ2 and Φ3 under the respective relative

motions Σ4/Σ2 and Σ4/Σ3 with the auxiliary sur-

face Π4 roll-sliding on the axodes Π2 and Π3,

respectively. The motion Σ4/Σ2 is the compo-

sition of Σ4/Σ1 with the Frenet motion Σ1/Σ2

along Π2.

6
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We can set up the moving line ĝ by

ĝ = cos η̂ f̂1 + sin η̂ cos ξ̂ f̂2 + sin η̂ sin ξ̂ f̂3. (26)

This follows because the common perpendicular

k̂ between ĝ and the ISA f̂1 (see Fig. 4) can be

written as k = −sin ξ̂ f̂2 + cos ξ̂ f̂3. The dual an-

gles ξ̂ and π/2− η̂ can be seen as ‘dual geo-

graphical longitude’ and ‘latitude’, respectively.

S

Sg

f̂2

f̂3

f̂1= p̂32

ĥ

k̂= ĝ2

ĝĝ1

ĝ3

ĝ∗

ξ

ξ

ξ0

η

η0

η∗

η∗0

Figure 4: The triplet (ĝ1, ĝ2, ĝ3) is the Frenet

frame for the conjugate tooth flanks Φ2 and Φ3.

The corresponding Disteli axes ĝ∗ are defined by

the spatial Euler-Savary equation.

The common perpendicular k̂ is already the

central normal n̂ of the tooth flanks. This follows

because, for the trajectory of ĝ under Σ4/Σ2, we

obtain

˙̂g = ω̂42 f̂1× ĝ = ω̂42 sin η̂ (cos ξ̂ f̂3− sin ξ̂ f̂2)

= ω̂42 sin η̂ k̂.

Therefore, the Frenet frame (ĝ1 = ĝ, ĝ2 = n̂ =

k̂, ĝ3 = t̂) for the conjugate tooth flanks Φ2 and

Φ3 has the inital pose⎛⎝ ĝ1

ĝ2

ĝ3

⎞⎠= M̂

⎛⎜⎝ f̂1

f̂2

f̂3

⎞⎟⎠ with

M̂ =

⎛⎜⎝cos η̂ sin η̂ cos ξ̂ sin η̂ sin ξ̂
0 −sin ξ̂ cos ξ̂

sin η̂ −cos η̂ cos ξ̂ −cos η̂ sin ξ̂

⎞⎟⎠ .

(27)

From ˙̂g = ω̂42 f̂1 × ĝ follows by differentiation

because of ω̂42 = const. the relation below:

¨̂g = ω̂42

[
(
˙̂f1× ĝ)+ (̂f1× ˙̂g)

]
.

During the motion Σ4/Σ2 the ISA f̂1 traces Π2

with angular velocity −ω21. Therefore

˙̂f1 =−ω21 p̂21× f̂1 =−ω21 sin(ϕ̂ + α̂ )̂f2

and hence,

¨̂g = ω̂42

[−ω21 sin(ϕ̂ + α̂)(̂f2× ĝ)
+ f̂1× ω̂42(̂f1× ĝ)

]
= ω̂42

[−ω21 sin(ϕ̂ + α̂)(̂f2× ĝ)
+ ω̂42

(
(̂f1 · ĝ)̂f1− (̂f1 · f̂1) ĝ

)]
.

By (27), we can express the first and second
derivatives of ĝ in the Frenet frame (ĝ1, ĝ2, ĝ3)
as

˙̂g = ˙̂g1 = ω̂42 f̂1× ĝ = ω̂42 sin η̂ ĝ2,

¨̂g = ω̂42

[
ω̂42 sin2 η̂ ĝ1

+ω21 sin(ϕ̂ + α̂)cos ξ̂ cos η̂ ĝ2

+
(−ω21 sin(ϕ̂ + α̂)sin ξ̂ + ω̂42 sin η̂ cos η̂

)
ĝ3

]
,

which, upon comparison with (15), yields the in-
stantanous invariants of the tooth flank Φ2 under

η �= 0, i.e., ĝ not parallel to the ISA f̂1, as

λ̂Φ2
= ω̂42 sin η̂ ,

μ̂Φ2
= −ω21

sin(ϕ̂ + α̂)sin ξ̂
sin η̂

+ ω̂42 cos η̂ .
(28)

For the conjugate tooth flank Φ3 we obtain like-
wise

λ̂Φ3
= ω̂43 sin η̂ ,

μ̂Φ3
= −ω31

sin(ϕ̂− α̂)sin ξ̂
sin η̂

+ ω̂43 cos η̂ .
(29)
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When the dual angle η̂∗Φi
characterizes the in-

stant Disteli axis of Φi we can verify the spatial

Euler-Savary equation (see [1])

(cot η̂∗Φ2
− cot η̂ )sin ξ̂ = cot γ̂2− cot γ̂4

= cot(ϕ̂ + α̂)− cot(ϕ̂− β̂ )
(30)

for the motion Σ4/Σ2, which generates Φ2.

In the same way we can confirm that the Dis-

teli axis ĝ∗Φ3
of Φ3 satisfies

(cot η̂∗Φ3
− cot η̂ )sin ξ̂ = cot γ̂3− cot γ̂4

= cot(ϕ̂− α̂)− cot(ϕ̂− β̂ ).

Upon subtraction of the two Euler-Savary equa-

tions we obtain

(cot η̂∗Φ2
− cot η̂∗Φ3

)sin ξ̂ = cot γ̂2− cot γ̂3 ,

thereby proving the spatial version of a result

which is well known in planar and spherical kine-

matics, namely

Theorem 5. Let Φ2 and Φ3 be conjugate ruled
tooth flanks with permanent line contact. Then
the Disteli axes ĝ∗Φ2

and ĝ∗Φ3
of the instant mesh-

ing line satisfy the Euler-Savary equation for the
relative motion Σ3/Σ2 between the two gears.

6. A SPATIAL ANALOGUE OF INVOLUTE
GEARING

In planar cycloid gearing there are two auxiliary

curves, namely two circles, which usually are

laid out in a symmetric relative position with re-

spect to the pole tangent. The same is true on

the sphere. However, when the auxiliary circles

are specified as great circles they become iden-

tical, coinciding with the spherical pole tangent

t. The axis p̂41 of the great circle t is orthogonal

to the ISA p̂32. The corresponding profiles are

involutes of the polodes; they are characterized

by the constant pressure angle α = 0◦.
This is the particular case of involute gearing

where the pitch circles coincide with the base

circles. These profiles are not geometrically

feasable because of one reason: At the meshing

point P on the instant pole tangent t the profiles

have either

• a G2-contact with mutual penetration, or

• a cusp, and at external gears the curves open

towards opposite sides.

We obtain the corresponding spatial version

when we specify the axis p̂41 orthogonal to the

ISA p̂32 on the Plücker conoid (see Fig. 1). This

is the case we analyze below.

Due to Eqs. (4)–(9), the representation p̂41 =

−sin β̂ ê1 + cos β̂ ê2 implies

β = ϕ +
π
2
,5 β0 =−ϕ0 ,

ϕ̂− β̂ =−π
2
+2εϕ0 .

(31)

Therefore,

sin(ϕ̂− β̂ ) =−1, cos(ϕ̂− β̂ ) = 2εϕ0 . (32)

From Eqs. (10), (5), and (12) follows for our par-

ticular choice

ω̂41 = −ω21 sin(ϕ̂ + α̂)
h41 = R(cos2α + cos2ϕ). (33)

The auxiliary surface Π4 is a skew orthogonal

helicoid with axis p̂41 and pitch h41, the ISA p̂32

being its initial generator. The invariants of Π4

are, by virtue of (25),

λ̂4 = ω̂41 , μ̂4 =−2εϕ0 ω̂41 . (34)

The dual angle between the generators of Π4 and

its axis is

γ̂4 = ϕ̂− β̂ =−π
2
+2εϕ0 with

cot γ̂4 = μ̂4/λ̂4 =−2εϕ0 .

From (4), the distance γ40 between axis and gen-

erators vanishes if and only if ϕ = 0, i.e., ω21 =
−ω31.

The generating motions Σ4/Σ2 and Σ4/Σ3 of
the tooth flanks Φ2 and Φ3 have the twists q̂42 =

5One could also set β = ϕ − π/2. However, this has

no effect on the auxiliary surface. It only reverses the ori-

entation of p̂41 and changes therefore the sign of ω41 and

ω410.
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ω̂42 f̂1 and q̂43 = ω̂43 f̂1 , respectively; in our par-
ticular case we have

ω̂42 = −ω21 [cos(ϕ +α)+ ε(ϕ0−α0)sin(ϕ +α)] ,

ω̂43 = −ω31 [cos(ϕ−α)+ ε(ϕ0 +α0)sin(ϕ−α)] .
(35)

Hence,

ω̂43 : ω̂42 = tan(ϕ +α) : tan(ϕ−α)
= (ϕ0 +α0) : (ϕ0−α0).

(36)

6.1 The ISA as a Line of Regression

p̂21

p̂31

p̂32ISA

ω21

ω31

Φ2 Φ3

Figure 5: When the ISA coincides with the mesh-

ing line ĝ, the singular lines of the two flanks

Φ2, Φ3 come together sharing the tangent plane

at each point of ĝ; but the flanks open toward op-

posite sides. The fat red and blue lines indicate

sections orthogonal to the ISA.

Analogue to the planar and spherical cases, in

spatial cycloid gearing the ISA p̂32 is a singu-

lar generator of the two tooth flanks Φ2 and Φ3.

As pointed out in [6, Theorem 5], all its points

are uniplanar, the tangent planes along p̂32 being

distributed just as along a regular generator with

distribution parameter δ = Rcos2α . Figure 8

in [6] reveals that the ISA doesn’t look singular

at all; it is the common border line of the two

components, orginating from two symmetrically

placed auxiliary surfaces. However, in our par-

ticular case the two auxiliary surfaces coincide

with the skew helicoid Π4. The ISA is, in fact,

a line of regression for both tooth flanks. In ex-

ternal gears, as depicted in Fig. 5, the two flanks

open toward opposite sides. Hence, when the

ISA becomes the meshing line, no transmission

of forces can take place. Figure 5 shows the con-

jugate tooth flanks as wire-frames; the depicted

fat red and blue lines being the intersections of

the flanks with planes perpendicular to the ISA.

6.2 There is a G2-contact at the Striction Point
What corresponds in skew gears to the oscu-

lation of tooth profiles when the pole tangent

serves as auxiliary curve ?

Figure 6 shows an example6 where the initial

meshing line ĝ differs from the ISA. But ĝ is par-

allel to the ISA and intersects the central tangent

of the axodes at right angles. This central tan-

gent passes through the striction point S of the

axodes and is parallel to the axis p̂41 of the aux-

iliary surface Π4 (note f̂3 in Fig. 1).

The spatial Euler-Savary equation (30) (see [1,

Theorem 6]) for the motion Σ4/Σ2

(cot η̂∗ − cot η̂)sin ξ̂ =
ω̂
λ̂

= cot γ̂2− cot γ̂4,

holds only under sinξ �= 0, but we can replace it

by the equation [1, page 13]

λ̂ sin ξ̂ (cos η̂ sin η̂∗ − sin η̂ cos η̂∗)
+ω̂ sin η̂ sin η̂∗ = 0 .

Under the relation sin ξ̂ = 0 (i.e., k̂= f̂3 in Fig. 4)

it is apparent that sin η̂ �= 0 implies sin η̂∗ = 0.

In other words, when ĝ �= p̂32 intersects the stric-

tion tangent f̂3 of the axodes at right angles, the

6 Data: 2α = 60.0◦, 2α0 = 70.0mm, ω31 : ω21 = −2 :

3, and distance between the ISA and the initial meshing

line ĝ: SSg = 35.0mm.
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p̂21

p̂31

ISA= p̂32

p̂41

Sg

ĝ

S

ω21

ω31

Φ2

Φ3

Figure 6: Two conjugate flanks Φ2 and Φ3 with G2 -contact at the common striction point Sg.

The meshing line ĝ is parallel to the ISA and a cylindric generator of Φ2 and Φ3.

Disteli axis ĝ∗ coincides with the ISA. The same

holds for the motion Σ4/Σ3, which means that

under this condition the two tooth flanks share

the instant Disteli axis. According to Theorem 4,

Φ2 and Φ3 have a G2-contact at the common

striction point Sg.

In Fig. 6, the fat blue and read curves, which

are in contact at marked points on the meshing

line ĝ, are level lines of the two flanks, i.e., inter-

sections with planes orthogonal to the ISA. The

mean section shows the G2-contact at the stric-

tion point Sg, which causes the penetration.

The case of osculating cylindrical or spherical

tooth flanks is misleading. In the true spatial ver-

sion there is no G2-contact at all other points of

ĝ for one reason: According to Theorem 4, in

this case the condition
˙̃δ (0) = c δ̇ (0) must be

satisfied. However, because of the permanent

line contact the flanks have the same distribu-

tion parameter δ̃ (t) = δ (t) for each t ∈ I. This

implies
˙̃δ (0) = δ̇ (0), but by Eqs. (28), (29) and

(36), the constant c with λ̂Φ3
= c λ̂Φ2

is

c = tan(ϕ +α)/ tan(ϕ−α)

= (ϕ0 +α0) : (ϕ0−α0) �= 1.

The different poses depicted in Fig. 7 reveal that

there is also a mutual penetration of the conju-

gate tooth flanks Φ2 and Φ3 at the other poses.

Since the surfaces share this curve of intersec-

tion as well as the tangent planes at all points of

the meshing line, there must be a G2-contact at

the point where the curve of intersection meets

the meshing line. This point is close to the mar-
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ϕ21 =−48.34◦ ϕ21 =−36.25◦ ϕ21 =−24.17◦

ϕ21 =−12.08◦ ϕ21 = 0.00◦ ϕ21 = 12.08◦

ϕ21 = 24.17◦ ϕ21 = 36.25◦ ϕ21 = 48.34◦

Figure 7: Snapshots of the penetrating tooth flanks with their striction curves upon meshing.
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ked striction point; however it can be proved that

the point of G2-contact must be different from

the striction point Sg up to the symmetric case

ω31 =−ω21; hence ϕ0 = 0.

6.3 A Spatial Analogue of Octoidal Gears
In the plane as well as on the sphere, the gener-
alized Camus Theorem states that for any curve

c4 attached to the auxiliary curve p4 ⊂ Σ4 the

envelopes c2 and c3 under motions Σ4/Σ2 and

Σ4/Σ3, respectively, are conjugate tooth profiles.

I32

c2

c3

p2

p3

b3

p4

c4

C

ω21

ω31

α Σ4

I21

︸ ︷︷ ︸
I31

Figure 8: Planar version of the generalized Ca-

mus Theorem in the particular case leading to

involute gears.

In the particular planar case, depicted in Fig. 8,

the auxiliary curve p4 is the pole tangent t and

the attached curve c4 is a line. In all its poses, the

line c4 shows the same inclination with respect

to the gear frame Σ1. At each pose, the envelop-

ing point C of c4 is the pedal point with respect to

the instant pole I32. The right-angled triangle en-

closed by c4, p4 and the line I32C shows that the

pressure angle α remains constant, which leads

to the case of involute gearing.

The foregoing statement does not hold in

spherical geometry since for spherical triangles

the sum of the interior angles is not constant.

This sum is always greater than 180◦, the amount

p̂21

p̂31

ISA= p̂32

p̂41

ω21

ω31

Φ2

Φ3

Figure 9: Skew gears with torses as conjugate

tooth flanks Φ2,Φ3 and permanent line contact.

The fat red and blue lines indicate sections or-

thogonal to the meshing line.

by which the sum exceeds 180◦ being propor-

tional to the area of the triangle. Therefore, we

cannot conclude for the analog specification in

bevel gears that the pressure angle α is constant;

it increases with the distance between I32 and c4.

We obtain what is known as octoidal gears, as

reported in [3].

The validity of the spatial analogue of the gen-

eralized Camus Theorem was proved in [6, The-

orem 6]: For any surface Φ4 attached to the aux-

iliary surface Π4 the envelopes Φ2 and Φ3 under

the respective relative motions Σ4/Σ2 and Σ4/Σ3

are conjugate tooth flanks. We choose again Π4

as the skew orthogonal helicoid and specify Φ4

as a plane. Then we obtain a pair of conjugate

torses Φ2,Φ3 with permanent line contact. In

Fig. 9 one example is depicted which indicates

12

1203



ϕ21 =−44.20◦ ϕ21 =−29.47◦ ϕ21 =−14.73◦

ϕ21 = 14.73◦ ϕ21 = 29.47◦

Figure 10: Snapshots of the conjugate torses Φ2 and Φ3 upon meshing (ω31 : ω21 =−2 : 1).

p̂21

p̂31

ISA= p̂32

p̂41

ω21

ω31

Φ2

Φ3

ϕ21 = 44.20◦

that these flanks should work correctly. Contrary

to the general case of J. Phillips’ involute gearing

[7], contact is not punctual, but along a line.

The fat red an blue curves in Fig. 9 are the in-

tersections of the flanks with planes perpendicu-

lar to the instant meshing line, which is depicted

as magenta double line. Figure 10 shows snap-

shots of the conjugate torses upon meshing.

7. CONCLUSIONS
Based on the Camus Theorem and on Martin

Disteli’s work, we showed in this paper that the

flanks of spatial cycloid gears can be synthesized

by means of an auxiliary surface. Upon choos-

ing the skew orthogonal helicoid as auxiliary sur-

face, the tooth flanks of the spatial equivalent

of octoidal gears are obtained. The final exam-

ple with torses as conjugate tooth flanks looks

promising but still needs a detailed analysis.
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