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A FLEXIBLE QUADRANGULAR MESH
TILING A CYLINDER OF REVOLUTION
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Vienna University of Technology, Austria

ABSTRACT: Due to A. Kokotsakis a quad mesh consisting of congruenteouadrangles of a
planar tessellation is flexible. This means, when the quegles are seen as rigid bodies and only the
dihedral angles along internal edges can vary, the mesht&démbngruent realizations in 3-space,
so-called flexions. It has recently be proved by the authair &b each nontrivial flexion all vertices
lie on a cylinder of revolution. The complete quad mesh caaliiained from a pair of neighbouring
guadrangles by applying products of two coaxial helicgbldisements. These displacements convert
at the initial flat pose into translations generating thetéasellation.

The goal of this paper is to give sufficient conditions forithigal convex quadrangle and the bending
angles such that the corresponding particular flexion faartisng on a cylinder, i.e., after bending
around a cylinder the two boundaries fit precisely together.
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1. INTRODUCTION meshes are of type 5 according to the list men-

A quadrangular meskiquad mesh’ by short) is  tioned above. The flat initial pose of this flexible

a simply connected subset of a polyhedral surduad mesh consists of the planar tessellation as
face consisting of planar quadrangles, edges anfisplayed in Figl1L.

vertic_es i_n the Euclidean 3-space. The edgeS TEssel LATION MESHES

are eithennternal when they are shared by two
faces, or they belong to the boundary of the
mesh.

Let the quadrangles be rigid bodies; only the
dihedral angles along internal edges can vary. A
qguad mesh is calledontinuously flexiblevhen
there is a one-parameter set of mutually incon-
gruent realizations of this mesh in 3-space, so-
calledflexions The continuous movement of the
mesh is called aelf-motion

A complete classification of all continuously
flexible quad meshes is still open (compare, e.g.,
[lﬂ]). Open is in particular the classification of
the 3x 3 quad meshes, the so-callédkotsakis
meshesnamed after Antonios Kokotsakis [2l.In The following continuously flexible quad
[@] a list of five flexible types is presented. mesh dates back to A. Kokotsakis [2, p. 647].

In the following we study the flexions of a Its initial pose is flat and consists of congru-
very special example (cﬂ][Z]) whosex33 sub-  ent convex quadrangles of a planar tessellation.

Figure 1: Kokotsakis’ flexible tessellation.
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quadrangles byij with 1 <i <mand 1< j <n.
This is what we call an x n tessellation mesh

fml fm2 fm3 fmn
fo1 foo foz -+ fop
fia fio fi3 - f1n

The sequences of edges between consecu-
tive ‘rows’ {fij|j = 1,...,n} and {fi;1j|j =
1,...,n}, 1 <i < m, are callechorizontal folds
Those between the ‘columngfi; [i = 1,...,m}

and {fjj;1|i=1,...,m}, 1 < j <n, form the
vertical foldsof the mesh.

When the basic quadrangle is a trapezoid,
then in the flat pose the folds of one type are
aligned. About each of these folds the mesh
can be bended, independently from each other.
We call these particular flexiortsivial. How-
ever, the same mesh admits also nontrivial flex-

ions (note Figl_1l0), except the case with a basic
Figure 2: Flexions of a & 6 tessellation mesh. parallelogram.

Dashes indicate valley folds.

Theorem 1. [@] Each mx n tessellation mesh
with convex quadranglesis flexible. Ateach non-
trivial flexion obtainable by a self-motion the
vertices are located on a cylinder of revolution
(Fig.[8). The images of two neighbouring quad-
rangles under iterated coaxial helical displace-

Any two quadrangles sharing an edge (like
and fi1j in Fig.[d) change place under a rota-
tion through 180 (=half-turn) about the mid-
point of the common edge. Such a pair of ad-

Jacent quadrangles forms a centrally SyMmeriCant v and I cover the complete mesh. The union

hexagon (see quelshaded areainBig. 1), a“‘?' tth these two fundamental quadrangles is a line-
complete tessellation can be generated by iter-

: : - symmetric hexagon.
ated translations of this hexagon. The arrows in 4 g

Flgﬂl indicate the directions of these generating Here is a summary of the proof presented in
translations andl. [4]: We start with the four face$i1, fi2, f2o, fo1
We recall a theorem fronﬂ[4, Thm. 6, p. 12] with vertex V; (blue shaded area in Figl 3).
where the flexions obtainable by a continu- These pairwise congruent faces of & 2 tes-
ous one-parameter self-motion are charactersellation mesh form a four-sided pyramid. It is
ized. Additional degrees of freedom of single flexible, provided the fundamental quadrangle is
faces on the boundary of the mesh were excludedonvex. Otherwise, one interior angle of a face
by the request: Whenever the tessellation mesht V, is greater than the sum of the other three
includes three faces with a common vertex, theninterior angles so that the pyramid admits only
also the fourth face of this pyramid should be in- the flat realization.
cluded. Let a non-planar flexion of this pyramid be
Thus we obtain a rectangular grid ofx n  given (Fig.[4). For any pair f1s, f12), ...,
quadrangles. There is a natural way to denote the f,1, f11) of adjacent faces there is a respective
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Figure 3: The complete flexion can be generated
by applying iterated half-turngy,...,ps to an
initial face f11.

_ Figure 4: A flexion of a 2« 2 tessellation mesh.
half-turn p1, ..., p4 which swaps the two faces.

So, e.g.,flz = pl( fll) and fll = pl(f12)- The
axis of p; is perpendicular to the common edge &€ coplanar. Hence conversely, when our pyra-
of fi1andfyp, anditis located in the plane which mid V,V'th apngl is not flat, then the axes
bisects the dihedral angle betwefa and f.». of n.elghbourlng half-turns ca.nnot. be parallel.

After applying the four half-turns. ..., oa Their common perpendicular is unique. There-
consecutively, the quadrangfe; is mapped via fore (1) implies that the axes _of the four half-
f10, f2o, and fy1 onto itself. Hence the prod- turns have a common perpendicufar

uctps...p1 equals the identity. (We indicate the | emma 2. At each non-flat flexion of a tessel-
composition of mappings by left multiplication.) |ation mesh the displacementsp;, = psp4 and
Because op; ' =pifori=1,....,4weobtain  p,n — psp, are helical motions with a common
axis p. In the initial flat pose they convert into
P2P1 = P3pa- (1) the generating translations r and I (see Fig. 1).

Now we recall a standard result from the ge- Now we extend the flexion of the:22 tessel-
ometry in 3-space: The product of two half-turns lation mesh (shaded area in Fig. 3) step by step
about non-parallel axeas,a; is a helical dis-  to the completen x n mesh by adding congruent

placement: copies of the initial pyramid without restricting
. . _ the flexibility:
* its axis is the common perpendicular af The half-turnp, exchanges not onlys, with
andag; foo but maps the pyramid with apék onto a

congruent copy with apeX, sharing two faces
with its preimage. We gefiz = p2(f21) and
foz3 = po(f11). Analogouslyps generates a pyra-
« its length of translation is twice the distance Mid with apexV, which shares the two faces

* its angle of rotation is twice the angle made
by a; anday;

betweera; anda,. f22 and fq with the initial pyramid, andfz; =
p3(f12), f32 = p3(f11).
When the axes gb; andp, are parallel (com- Finally there are two ways to generate a pyra-

pare FigL#) they are orthogonal to two adjacentmid with apexVs. Either, we transfornp; by
edges off1» and therefore orthogonal to the face p, and applyp2p102, which exchange$,, with
f12. As a consequence all four facés, ..., f21 fo3 and swapsd/, andVz. Or we proceed with



P3P4pP3, Which exchange$» with f3> and swaps
V4 andVs.

Thus we obtain mappingg,0102)P2 = P2p1
and(psp4p3)P3 = p3p4 With V1 — V3. Both dis-
placements are equal ly (1), and we notice

P2p1 = P3Pa: f11— foo, f1o— 23,
fop = f33, 21— 3.

(2)

Hence each flexion of the initial pyramid with
apexV; is compatible with a flexion of the 83
tessellation mesh displayed in Hig. 3. It is proved
in [@ Lemma 8] that this the only way to con-
tinue the given flexion of the 2 tessellation
mesh, provided we restrict to flexions obtainable
by a continuous self-motion from the initial flat
pose.

Figure 5: Flexion of a X 3 tessellation mesh.

Next, we continue this flexion of the 33
mesh to the completen x n tessellation mesh
by proceeding ‘column’ by 'column’ (see, e.g.,
Fig.[7) to the right and ‘row’ by ‘row’ upwards.

According to Lemmal2 the helical displace-
mentspop1 andpsp1 = P3p2 are the spatial ana-
logues of the generating translations in the plane
pP2p1 MapsVi ontoVs, andpsp1 maps the pyra-
mid with apex\»> onto that with ape¥,; thus we
have

pap1 = p3p2: fi2— a1, f13— foo,
foz+—= fap, foo— fa1.

(3)

When f1» and fy, are glued together, we obtain
a skew hexagon, one half of our initial pyra-
mid with apexV; (see Fig[(B). The half-turp,
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Figure 6: For each flexion of the first and sec-
ond kind the vertices are placed on a cylinder of
revolution; the marked points are located on a
helical line. Again, dashes indicate valley folds.

maps this hexagon onto itself; hence it is line-
symmetric. By[(2) the helical displacemenip,
maps this hexagon onto the compound-gfand

f33. It is the spatial analogue of the translation
r indicated in Fig[IL by the red arrow pointing
upwards to the right. The displacemenip;
maps the compound df» and f»» onto fy; and

f31. When these two helical displacements act
repeatedly on the line-symmetric hexagon, the
complete flexion is obtained. We denote

ri=pP2p1=pP3ps: Vi— Vs, @)
| := pap1 = p3p2: Vo= Va.

Coaxial helical displacements abopttogether
with rotations and pure translations alopgon-
stitute a commutative group; hende=Ir.

All vertices of the flexion arise frond; by dis-
placements which keep the common perpendic-
ular p of the half-turns’ axes fixed. For example,



according to Fig.13

Vo =p2(V1), Va=r1(V1), Va=p3(V1). (5)

with i+ j =2(1+4x) =0(mod 2. For giveni, j

with an even sum we can solve these equations
for x andy which yields a unique result. For
oddi + | at firstp4 has to be applied té;;. We

This is the reason why all vertices have the same;,marize:

distance tg. Hence they are located on a cylin-
der of revolution with axigp (note the cylinder
in Fig.[8). This completes the main arguments
for Theorentl.

According to Dl Remark 2] the flat pose ad-
mits a bifurcation between two analytic self-

motions of the tessellation mesh. In Higj. 6 poses fij =

of both kinds of self-motions are displayed.

Figure 7: This scheme of a7 tessellation
mesh shows the images &f; under the indi-
cated transformations.

Figure[T shows which transformations must
be applied to the facé;; to generate all faces
of the displayed & 7 tessellation mesh. Ifi1
and its neighbour face abowie; = p4(f11) are
glued together, then we get a line-symmetric
skew hexagon. Its images under productd of
andr — as printed in red color — cover the
whole mesh.

We note that according to the introduced no-
tation of the faces we have

rofije=fizgjen, 10 fip = fipgjoa
Hence, after applying* and!Y on the facef;,
we obtainfj; with

()= () o(a) ()

1+x+y
14+x—y

Lemma 3. At each nontrivial flexion of an m
n tessellation mesh the facg; fcan be trans-
formed into the face;jjfaccording to the follow-
ing rule:

17t Y(fy)  fori+j=0(mod 2,
F%ﬂ#ﬁmﬁﬂ)mﬂ+jzlmmda

Now we focus on the particular case where the
guadrangles of the mesh are trapezoids (compare
Fig.[10).

Corollary 4. When the quadrangles of the tes-
sellation mesh are trapezoids, then at each non-
trivial flexion either Ir or I=1r is a translation
along p.

Proof. According to the proof of Lemmia 2 the
axis p of the cylinder is the common perpen-
dicular of all axes of half-rotations which ex-
change pairs of neighbouring facé;, fi 1;)
or (fij, fi j+1). For each internal edge. of a
flexion there exists a half-rotatigoxy mappingex
onto itself. The axis ofy is orthogonal te (see
Fig.[4). There are two cases to distinguish:

* When the axes corresponding to parallel
sidese;, e of any trapezoid of the mesh
are not parallel, then their common perpen-
dicular p is unique and necessarily parallel
to ; ande,. This means, the folds of one
type are aligned; the flexion is trivial in the
above-mentioned sense.

When the axes corresponding to opposite
sides of any facefj; are parallel then the
product of half-rotations is a translation,
which maps one neighbour df; onto the
neighbour along the opposite side.

The rest can be concluded from Hig. 7. O



lution passing through this ellipse. Now we de-
fine the half-rotations which generate the flex-
ion: Their axes pass through the midpoints of
the sides/1Vso, ..., V4V1 and intersect the cylin-
der’s axisp perpendicularily.

3. CLOSURE CONDITIONS

Can it happen that for a given x n tessellation
mesh there is a flexion which winds around a
cylinder such that the right border line fits ex-
actly to the left border, apart from a vertical
shift?

Figure 8: The angles in the flat quadrangle serve
as side lengths in the spherical four-BgABB,
which controls the dihedral angles of the flexion.

How to compute a flexion? According to
Fig. [@ the interior angles of the faces define
the side lengths of thepherical four-bamwhich . . :
controls all dihedral angles of the flexion. The Flg.ure 9: Aflexion of a 9, tessellation mesh
related formulas can be found inl [3, (1)—(6)]. WhICh. closes around the cylinder. The flat initial
Fig.[8 reveals that for one given bending anglepos’e is shown in gray color.
¢1 there exist two corresponding poirBsandB
at the spherical four-bar and therefore two flex- Suppose, in a particular flexion which sur-
ions of the tessellation mesh. rounds the cylinder the right border of the face

There is a second way to compute the flex- fim fits exactly t'o .the !eft border of the mesh.
ions: The plane spanned by the convex quadran hen we must distinguish two cases:
gle Vi...Vy intersects the cylinder through the Forodd mthe facefam 1 = r(fim) is identical
vertices (Theorerfll1) along an ellipse. There isWith a face of thefy, of the most-left rowk = 1

a pencil of conics passing throudh, ..., Vs  (mod 2. Lemmd3 implies
Hence we can choose any ellipse from this pen- e md et e
cil and specify one of the two cylinders of revo- "2 r 2 =1"2r 2 d(2n)
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whered(m) stands for a rotation about the axis
through 2t. Since the involved helical motions
commute pairwise, we obtain

2+l = " g (2m). (6)

We have to note that for each fagg of the flex-

ion there is a unique helical displacement with
fi1 — fij. (However, this does not imply that the
decompositions according to Lemih 3 are the
same.)

For even mwe obtain in the case of an exact fit Figure 10: A basic trapezoid yields a modified

that fim; 1 equals anyfy;, k=1 (mod 2 which  Schwarz lantern (or Schwarz boot).
means

rgzl%r%d(zm.

Iz r =18d(2m), hencea= 1 andb = 6. The respec-

This is equivalent to tive angles of rotation and lengths of translation
- - of the related helical displacements are
m—k+ mH-k—
roz =12d(2n). (") r=(34614, 218738, | = (~54.231°, 3.6456.
We combine Egs[{6) anfll(7) as follows: The basic quadranglé; ...V, has the interior

angles 7@° atVy, 50.0° atV,, 1600° atV3, and
Theorem 5. There is a flexion of the mn 80.0° at V4. The side lengths aré;V, = 25.0,
tessellation mesh where after surrounding theV,V; = 13.7416, V3V, = 117705, andVaV; =
cylinder the right border zig-zag fits exactly to 17.4653. The dihedral angles of the depicted
the left border zig-zag if and only if there are flexion are atV;V, 205052 (valley fold), at

two integers ab € Z and V4V1 145731°, atVLV3 112759, and atVsV,
2 b 143029.
r*=17d(2m) (8)  The flexion bounds a solid. It can be produced

by Boolean operations from the solid cylinder of
revolution@ through the vertices as follows: We
b—a+2, otherwise k= b—a- 1. A band with > d"‘gth dt‘"’% fac.eShSh?“”g a V?Ley fold .('”Or']" ;
|la—b| rows, i.e., arw x |a— b| tessellation mesh cated by dashes in the figures). The exterior ha
with the same quadrangle has a flexion in form spaces of the spans of these two faces mtelr sect
of a cvlinder tessellation in gwedgeW. Now we su_btract_ from the solid
y ' cylinder ¢ all wedges which arise fror#” by

4. EXAMPLES iterated helical displacementandl.

The foIIow_ir_lg two examples fulfilling the _cIo- Example2. In Fig.[I0 the basic quadrangle is
sure conditions have been found numerically: 5, unsymmetric trapezoid. The displayed flex-
The dimensions of the quadrangle and the bend;,, can be seen as generalizéchwarz lantern
Ing an.gles have. been varied such that'after SUlor Schwarz boot): The original Schwarz lantern
roundmg the cylinder one vertex of the ,”ght bor-is 4 triangular mesh approximating a cylindrical
der line converges against an appropriate vertex,  tace  The German mathematician Hermann
of the left border line. Amandus Schwarz (1843-1921) could prove that
Examplel. At the example depicted in Fig] 9 depending on the refinement of this mesh the

we havem = 7 andk = 7 and therefore by {6) discrete area either converges towards the area
7

where d2m) denotes the full rotation about the
cylinder axis p. For odd m- a+ b we have k=



of the cylinder or it tends to infinity. By (B) we obtain for any choice of vertd) the
We notice at the 16 17 tessellation mesh in other vertices of the facé&, (see Fig[ B ofB).
Fig.[I0 that according to Corollafy 4 sequencesAfter applyingp 1, the vertices off1; are

of vertices are placed on generators of the cylin-

der. Vi = (n,9,2),

Data: The basic trapezoid has the side I (Vo) = pi(Vi) =(r,—¢, —2),
lengthsViVy = 20.0, VoV = 12,9332, V5V, — (Vi) = (,—o+¢,—s+2),
7.0668, andV,V; = 10.9316. The interior an- r~1(Va) = paVa) = (r, T— ¢, t—2).

gles atVy,...,V are 650°, 50.0°, 1300° and S N

1150°. The bending angle at edgéVs is However, this implies a condition ovy: The
1946615 (valley fold), atVsVs 1510106, at planarity of this quadrangle is equivalent to
V3V, 1653385, and atv,V, 1555732. The re- 1 X y z
spective angles of rotation and lengths of transla- ;[ 1 X -y “Z | _o
tion of the generating helical displacements are 1 XCOSO +ysING yCOSO —XsIiNg Z—S

XCOST +YSiNT  XSINT —yCOST t—z
r = (225°, 1249804, | = (—22.5°, 7.49883.

We have(mk) = (16,5), (a,b) = (6, 10) and
we can confirm 612.49804= 10-7.49883 and
6-225=10-(—225)+3600. P := [t(coso — 1) + s(cost — 1)|xy

: . _ : AP
There is an alternative approach to tessellation + (tsino +ssinT)y

meshes with a flexion obeying the closing con- +2[cog(0 + T) — coso — CoST : 1] Xyz
dition: We start with half-turnsos, ..., ps such +[sin(d + 1) —sing —sinT] (y* —x)z

that by [3) the correspondingandl obey Theo-  The zerg set of is a ruled surface of degree

rem.B. . . . 3 with the cylinder axisp (=z-axis) as double
First we specify an appropriate cartesian coor-jine and with generators orthogonal fo For

dinate frame: The-axis is the axis of the half-  4aometrical reasons this cubic surface passes
turn p1, thez-axis coincides with the helical axis through the axes of the half-turps, ..., pa.

p- Let(r, ¢,2) denote the corresponding cylinder  £qr 5 cylinder tessellation with planar quad-

coordinates withx = rcosp, y = rsing. _ rangles it is necessary that besidgs (9) pwint
We set up the respective cylinder coordinatesg 4 point of the cubic surface = 0. In addi-
of the axes opx, p2, P4 by tion, we have to check whether the quadrangle is
(R, 0,0), (R o S) , (R T t) ' convex. However, fo¥; specified on the axis of

1272 1272 p1 we obtain a triangle which of course is con-
Then we obtain in cylinder coordinates accord-vex. Hence a small variation &f gives a pla-

After some computation we obtain from the de-
terminant the polynomial

(10)

ing to (1) nar quadrangl®; p1(V1) r~1(V1) pa(V1) which
p1: (r,9.2) — (r,—, —2), is either convex or has a self-intersection. In the
P21 (1,9,2)— (r,0—¢,s—2), latter case we replacé, by pi(V1) in order to
p3: (19,2 — (,O+T—¢,s+t—2), obtain convexity. The same holds fgf suffi-
P41 (1,0,2)— (r, T—¢,t—2), ciently close to the axis qd.
Ir g:g:g : E:: ?:f,’tsjz?.’ Theorem 6. For given axes opq,...,ps, €ach

orthogonal to p and obeyingl(1) ard (8), there is

The closure conditions given in Ed.](8) are 3 two-parameter set of planar convex quadran-

equivalent to gles which are fundamental domains of tessella-
aoc =br+2m, as=bt for a,beZ. (9) tion meshes with aflexion tiling the cylinder.
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