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Abstract. Inspired by recent publications of K. Myrianthis and of A.W.
Akopyan and A.I. Bobenko, two different arrangements of circles on the
sphere are studied. The first one originates from Phyllotaxis, a topic
in plant morphogenesis, and gives rise to a polyhedron with hexagonal
faces and a covering of the sphere with circles in a spiral arrangement.
The second is related to a Poncelet grid on the sphere. The extended n

sides of a closed spherical billiard within a conic form a net with a finite
number of quadrilaterals with incircles. Orthogonality transforms it into
a configuration of n concurrent lines where each pair is ‘concircular’ with
n−2 other pairs, i.e., the four lines are inscribed into a cone of revolution.

Keywords: spiral grid, hyperbolic screw motion, incircular net, Ivory’s
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1 Introduction

Alfred Clebsch described Plücker’s method of research as drawn particularly from
“die Freude an der Gestalt”, to say, driven by an appreciation for aesthetics and
intuition [10]. The same can be said about this research.

The presented arrangements of circles on the sphere (see Figs. 3, right, and
6) are closely related to two recent publications. The first has been written by K.
Myrianthis [11], the second by A.W. Akopyan and A.I. Bobenko [1]. We recall
both results and show a few consequences.

2 A polyhedron with hexagonal faces and a circumsphere

In the Euclidean plane, let σ1, σ2 be two different stretch-rotations with the
common center O, i.e., the commutative products of rotations about O through
the respective signed angles α1, α2 and dilations with center O and dilation
factors δ1, δ2 6= 1. Then the orbit of any point P 6= O, i.e., the set of points
Pij = σi

1σ
j
2(P ) for i, j ∈ Z, is called a spiral grid (Fig. 1). The spiral grid does

not change when a basic transformation σi is replaced by its inverse. Hence, it
means no restriction to require that both dilatation factors δ1, δ2 are smaller
than 1.
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Fig. 1. Closed spiral grid, its Delaunay triangulation with edges along logarithmic
spirals, and its Voronoi cells.

The spiral grid is called closed ([11, p. 180]) if there are n1, n2 ∈ N such that
σn1

1 = σn2

2 ◦ ρ2π, where ρ2π denotes the rotation about O through 2π. In this
case we have Pi+n1 j = Pi j+n2

for all i, j ∈ Z. Figure 1 shows an example with
α1 = 23.5◦, δ1 = 0.942, α2 = 13.167◦, δ2 = 0.71278, and (n1, n2) = (17, 3) (note
point Pi+17 j=Pi j+3).

A closed spiral grid1 can also be defined as the set of points of intersection
between logarithmic spirals. If the inital point P = P00 has the polar coordinates
(r0, 0) then these spirals arise from one of the curves with polar equations

r = r0e
biϕ with bi =

1

αi

ln δi for i = 1, 2 (1)

by rotations about O through multiples of angles
2π

n2

and
2π

n1

, respectively.

Stretch-rotations with a common center form a commutative group. There-
fore the spiral grid of any point P remains unchanged if we replace the two basic
transformations σ1, σ2 by

σ′

1 = σc1
1 ◦ σc2

2 and σ′

2 = σd1

1 ◦ σd2

2 , where c1, c2, d1, d2 ∈ Z and c1d2 − c2d1 = 1.

σ′

1 takes the initial point P of the spiral grid to Pc1c2 . Similarily, σ′

2 sends P to
Pd1d2

. The original stretch-rotations can be expressed in terms of σ′

1, σ
′

2 as

σ1 = (σ′

1)
d2 ◦ (σ′

2)
−c2 and σ2 = (σ′

1)
−d1 ◦ (σ′

2)
c1 .

1 For applications in Phyllotaxis, a topic of plant morphogenesis, see, e.g., [9] or [14].
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Fig. 2. Voronoi cells are concircular hexagons with concurrent main diagonals.

Obviously, gcd(c1, c2) = gcd(d1, d2) = 1, i.e., these pairs of integers must be
relatively prime.

We confine ourselves to the general case, where the Delaunay triangulation
of the grid is unique, which means that no two adjacent triangles share the
circumcircle. Then the Voronoi cells2 are hexagonal. In the excluded case the
Voronoi cells are concircular quadrangles (note [11, Figs. 3–5]).

Of course, the net of Voronoi cells and its dual graph, the Delaunay triangu-
lation, are invariant against the stretch-rotations σ1, σ2. Without restriction of
generality we may assume that the basic transformations are chosen such that
PijPi+1 jPi j+1 and Pi+1 jPi j+1Pi+1 j+1 are two adjacent triangles of the Delau-
nay triangulation so that the logarithmic spirals corresponding to σ1, σ2 and
σ−1

1 ◦ σ2 contain edges of the Delaunay graph (Fig. 1).

Myrianthis proved in [11, Theorem 2] that in the general case the mutually
similar Voronoi cells are convex hexagons with concurrent main diagonals and a
circumcircle (see Fig. 2). The proof is based on two properties: (i) opposite sides
of the hexagons include the respective angles α1, α2 and α2 −α1; (ii) vertices of
the hexagons form isosceles triangles with two adjacent grid points.

Now we apply a stereographic projection from the plane onto a sphere S, e.g.,
with the South Pole as center and the North Pole as the image of O. Then (note
Fig. 3) the images of the infinitely many circumcircles cover S such that each cir-
cle is intersected by six neighboring circles, while each point of intersection is the
meet of three circles. At every second point of intersection the respective angles
between the circles are congruent because of the conformity of the stereographic
projection.

2 The Voronoi cell of point Pij is the set of points X for which no other grid point is
closer than Pij .
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Fig. 3. Voronoi cells and circumcircles stereographically projected.

The existence of a circumcircle guarantees that for each Voronoi cell the
images of the six vertices are coplanar. These hexagons form a polyhedron with
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Fig. 4. Polyhedron and its development, scaled down to 40%.
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infinitely many faces in a spiral pattern. The images of the logarithmic spirals
are loxodromes on S (Fig. 3, right).

Figure 4 shows the development of a part of the polyhedron, in size scaled
to 40%. The spiral-like sequences of hexagons on S, like the one colored in
gold, yield in the development bands of S-shape. This is in accordance with
Wunderlich’s result [13] on peeling an apple and caused by the fact, that the
sign of the geodesic curvature of spherical loxodromes changes when they cross
the equator.

After applying affine or collinear transformations on the spherical polyhedron,
we obtain polyhedra with hexagonal faces inscribed in ellipsoids, one-sheet hyper-
boloids or elliptic paraboloids, thus giving rise to piecewise linear approximations
of these quadrics.

The faces of the spherical polyhedron (Fig. 3, left) are mutually incongruent,
from the Euclidean point of view. However, it makes sense to interprete this poly-
hedron in the projective model of hyperbolic geometry, taking into account that
the stereographic projection onto S transforms the group of Möbius transforma-
tions in the plane onto hyperbolic motions, when S serves as absolute quadric.
A detailed analysis reveals that the stretch-rotation σi is transformed onto a
hyperbolic screw motion with αi as angle of rotation and ln δi as hyperbolic
length of translation along the axis a, which in our particular case connects the
two poles. This motion preserves each surface Z of constant distance to the axis
a. In our model these hyperbolic ‘cylinders’ Z, also called Clifford surfaces, are
Euclidean ellipsoids of revolution. An affine transformation mapping S onto one
of these ellipsoids, while a remains pointwise fixed, can also be used to transform
our polyhedron onto a polyhedron inscribed in Z.

Theorem 1 If the sphere S is the absolute surface of the Cayley-Klein model

of three-dimensional hyperbolic geometry then any two hexagons of the spiral

polyhedron inscribed in S arise from each other by hyperbolic screw motions

about a common axis a. The loxodromes are hyperbolic screws. The same holds

for affine images inscribed in a Clifford surface Z.

Remark. Due to Theorem 1, the polyhedron inscribed into the Clifford surface,
can be generated by helical motions about the axis a. However, the Euclidean
circumcircles of the hexagons are no more circles in the hyperbolic sense but
mutually congruent planar sections of the Clifford surface.

3 An incircular net on the sphere

Recently I. Izmestiev and S.S. Tabachnikov in [8] and A.W. Akopyan and A.I.
Bobenko in [1] revisited the following theorem (see Fig. 5).

Theorem 2 If the tangents drawn from any two points A1, B1 of a conic c1 to

a confocal conic c0 form a quadrilateral then each other pair of opposite ver-

tices (Ai, Bi), i = 2, 3 , belongs to the same conic ci of the confocal family. The

quadrilateral is ‘incircular’, i.e., it has an incircle.
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Fig. 5. An incircular quadrangle of tangents A1A2B1B2 (Theorem 2).

This theorem, which holds in non-Euclidean geometries as well, has already
been published by Chasles [6, p. 841] and later by Böhm in [4, p. 221]. A projec-
tive version of this statement is given in [12] and proved using Chasles’s ideas.
The proof reveals that the theorem is valid also in the limiting case where two
tangents coincide, i.e., the connecting line A1B1 contacts c0 at the point B2.
Then also the incircle contacts c0 at B2 (note Fig. 6).

The second part of Theorem 2, which is also discussed in [5], can be concluded
from Ivory’s Theorem, as shown in Fig. 5: The respectively second confocal
conics through A1, B1, A2, and B2 define a curvilinear quadrangle PP ′QQ′

with diagonals of equal lengths PQ = P ′Q′, by virtue of Ivory’s Theorem. The
conics c1 and c2 divide this quadrangle into four subtriangles. Due to a general
statement, the diagonal lines in each Ivory quadrangle are tangents of the same
confocal conic c0 (see, e.g., [2, p. 118] or [3, p. 153]). Hence, pairs of diagonals
passing through S must be aligned; S is the crossing point of PQ and P ′Q′. Now,
due to Ivory’s Theorem, we can immediately figure out that in the quadrangle
A1A2B1B2 the sums of lengths of opposite sides equals PQ′.

As already mentioned in [5], this incircular quadrangle can be extended to
an incircular net, based on Poncelet grids (see, e.g., [7, p. 412]). While in [1] the
Euclidean and hyperbolic cases are emphasized, we focus here on the spherical
model of elliptic geometry. This has the advantage that only a finite number of
circles is involved.

For designing a spherical Poncelet grid, we start with a closed billiard in the
conic c1 with n > 4 edges tangent to c0; Figure 6 shows the cases n = 13 and
n = 9. The extended sides of the billiard form a grid of n great circles which, in
general, admits no symmetry. Any two pairs of adjacent great circles form two
antipodal spherical quadrangles with incircles. This gives rise to the depicted
incircular net [1, 5]. If the great circles are numbered in their natural order by
1, . . . , n then the points of intersection between the circles i and i + k (mod n)
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Fig. 6. Spherical incircular nets of n = 13 (left) and n = 9 (right) great circles. The
right figure shows also the corresponding Poncelet grid.

for i = 1, . . . , n and constant k ∈ N belong to another conic ck confocal with
c0 and c1. Similarily, the great circles with labels i and k − i (mod n) intersect
on conics ck. The conics c0, . . . , cn−1, c0, . . . , cn−1 form a Poncelet grid (Fig. 6,
right).

Due to Theorem 2, also the great circles i, i+k, i+j, i+j+k (indices modulo
n) define a pair of antipodal incircles, provided that either the four indices are
mutually different, or at most two of them are equal. Figure 7 shows on the left
hand side all possible circles for n = 7.
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Fig. 7. Left: all 42 pairs of antipodal incircles for n = 7. Right: dual version: all
quadruples of admissible points out of {1∗, . . . , 7
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} have a circumcircle.
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After applying the elliptic absolute polarity, which in the line bundle model
is equivalent to Euclidean orthogonality, we get other arrangements. The n great
circles are converted into lines d1, . . . , dn on a quadratic cone. Note that, in gen-
eral, these lines admit no symmetry. Four lines di, dj , di+k, dj+k with indices
modulo n are always elliptic-concircular, i.e., the are located on a cone of revo-
lution.

In the sphere model we obtain pairs (i∗, i
∗

) of antipodal points, which for
i = 1, . . . , n are placed on a pair of antipodal spherical conics. When polarizing
incircles c, we have to take into accout that, depending on the side of the great
circle i, where the touching small circle c is located, the absolute polar circle c∗

passes through one of the spherical centers i∗ of i or its antipode i
∗

. Each c∗

passes through four points taken from the set {1∗, 1
∗

, 2∗, . . . , n∗} of 2n points.
Hence, these quadruples of points must be coplanar. In Fig. 7, right, all visible
circles through coplanar point quadruples are displayed.
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