# A Spatial Version of the Theorem of the Angle of Circumference 

Georg Glaeser ${ }^{1}$, Boris Odehnal ${ }^{1}$, and Hellmuth Stachel ${ }^{2}$<br>${ }^{1}$ University of Applied Arts Vienna, Vienna, Austria<br>georg.glaeser@uni-ak.ac.at, boris.odehnal@uni-ak.ac.at,<br>${ }^{2}$ TU Wien, Vienna, Austria<br>stachel@dmg.tuwien.ac.at


#### Abstract

We try a generalization of the theorem of the angle of circumference to a version in three-dimensional Euclidean space and ask for pairs $(\varepsilon, \varphi)$ of planes passing through two (different skew) straight lines $e \ni \varepsilon$ and $f \ni \varphi$ such that the angle $\alpha$ enclosed by $\varepsilon$ and $\varphi$ is constant. It turns out that the set of all such intersection lines is a quartic ruled surface $\Phi$ with $e \cup f$ being its double curve. We shall study the surface $\Phi$ and its properties together with certain special appearances showing up for special values of some shape parameters such as the slope of $e$ and $f$ (with respect to a fixed plane) or the angle $\alpha$.


Keywords: ruled surface, angle of circumference, quartic ruled surface, Thaloid, isoptic surface

## 1 Introduction

The theorem of the angle of circumference states that a straight line segment (bounded by two points $E$ and $F$ ) in the Euclidean plane is seen at a constant angle $\alpha$ from any point of a pair of circular arcs passing through $E$ and $F$. Especially, if the visual angle $\alpha$ is a right angle, the pair of circles becomes one circle with diameter $E F$, usually referred to as the Thales circle. It would be natural to generalize the theorem of the angle of circumference in Euclidean three-space by asking for all points that see a straight line segment bounded by two points $E$ and $F$ under a constant angle $\alpha$. The locus of all such points is an algebraic surface of degree four. It is obvious that the latter surface has a rotational symmetry - the axis of the rotation coincides with the straight line $[E, F]$ - and this isoptic surface can be obtained by rotating the pair of circular arcs through $E$ and $F$, and is therefore, a torus, see Fig. 1. Isoptic curves of spherical conics are also well-known, see [1].
In this contribution, we try a line geometric generalization. We ask for the set of all intersection lines $r$ of planes from two pencils. The lines $r$ can be considered as one-dimensional eye seeing a pair of straight lines under a constant angle.
In Section 2, we shall derive the equation of the ruled surface $\Phi$ carrying all the lines that see a pair $(e, f)$ of (skew) straight lines under constant angle. From


Fig. 1. A possible generalization of the theorem of the angle of circumference in threedimensional Euclidean space.
the equation of $\Phi$ we can derive some properties of the surface which shall be the contents of Section 3. Finally, in Section 4 we look at special cases of the ruled surface $\Phi$ that appear if either the axes $e$ and $f$ reach a special relative position or if the angle $\alpha$ attains special values or if even both is the case.

## 2 Equation of the ruled surface

It is favorable to represent points in Euclidean three-space $\mathbb{R}^{3}$ by Cartesian coordinates $(x, y, z)$. It means no restriction to assume that the axes $e$ and $f$ of the two pencils of planes are given by

$$
e=\left(\begin{array}{l}
d  \tag{1}\\
0 \\
0
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
k
\end{array}\right), f=\left(\begin{array}{r}
-d \\
0 \\
0
\end{array}\right)+u\left(\begin{array}{r}
0 \\
1 \\
-k
\end{array}\right)
$$

parametrized by real parameters $t, u \in \mathbb{R}$. Here and in the following, $\overline{e f}=2 d \in \mathbb{R}$ is the distance between the straight lines $e, f$ and $k \in \mathbb{R}$ is their slope with respect to the plane $z=0$, see Fig. 2. Since $\mathbf{g}=(0,1, k)$ and $\mathbf{h}=(0,1,-k)$ are the directions of the lines $e$ and $f$, the normals of the planes $\varepsilon \ni e$ and $\varphi \ni f$ are linear combinations of $\mathbf{g}_{1}=(0,-k, 1), \mathbf{g}_{2}=(1,0,0)$ or $\mathbf{h}_{1}=(0, k, 1), \mathbf{h}_{2}=\mathbf{g}_{2}$, respectively. With $\lambda, \mu \in \mathbb{R}$ we let

$$
\begin{equation*}
\mathbf{n}_{\varepsilon}=\mathbf{g}_{1}+\lambda \mathbf{g}_{2}, \quad \mathbf{n}_{\varphi}=\mathbf{h}_{1}+\mu \mathbf{h}_{2} \tag{2}
\end{equation*}
$$

Now, we can write down the condition $\Varangle(\varepsilon, \varphi)=\Varangle\left(\mathbf{n}_{\varepsilon}, \mathbf{n}_{\varphi}\right)=\alpha$ by evaluating

$$
\left\langle\mathbf{n}_{\varepsilon}, \mathbf{n}_{\varphi}\right\rangle^{2}=A^{2}\left\langle\mathbf{n}_{\varepsilon}, \mathbf{n}_{\varepsilon}\right\rangle\left\langle\mathbf{n}_{\varphi}, \mathbf{n}_{\varphi}\right\rangle
$$



Fig. 2. Choice of a Cartesian coordinate system and the meaning of $d$ and $k$.
where $\langle\mathbf{u}, \mathbf{v}\rangle$ denotes the canonical scalar product of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ and $A:=\cos \alpha$. This gives

$$
\begin{equation*}
\left(1-k^{2}+\lambda \mu\right)^{2}=A^{2}\left(1+k^{2}+\lambda^{2}\right)\left(1+k^{2}+\mu^{2}\right) \tag{3}
\end{equation*}
$$

The planes from either pencil have normal vectors given in (2), and thus, they have the equations

$$
\begin{align*}
& \varepsilon: \lambda x-k y+z=d \lambda \\
& \varphi: \mu x+k y+z=-d \mu \tag{4}
\end{align*}
$$

So far, both $\lambda$ and $\mu$ can vary freely in $\mathbb{R}$, and thus, the planes $\varepsilon$ and $\varphi$ intersect in the lines of a hyperbolic linear line congruence with axes $e$ and $f$, parametrized by

$$
\mathbf{r}(t, \lambda, \mu)=\frac{d}{k}\left(\begin{array}{c}
k  \tag{5}\\
-\mu \\
-\mu k
\end{array}\right)+t\left(\begin{array}{c}
-2 k \\
\mu-\lambda \\
k(\lambda+\mu)
\end{array}\right)
$$

where $t \in \mathbb{R}$ is the parameter on the lines in the congruence. The ruled surface $\Phi$ we are aiming at is precisely that subset of the congruence (5) where $\lambda$ and $\mu$ are subject to (3).
The equation of the ruled surface $\Phi$ in terms of Cartesian coordinates is obtained from the parametrization (5) by eliminating all parameters $t, \lambda, \mu$ : Assume $\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)$. Then, we eliminate $t$ from $x-r_{x}, y-r_{y}$, and $z-r_{z}$ by computing the resultants

$$
\begin{aligned}
& r_{1}:=\operatorname{res}\left(x-r_{x}, z-r_{z}, t\right), \\
& r_{2}:=\operatorname{res}\left(y-r_{y}, z-r_{z}, t\right) .
\end{aligned}
$$

In the next step, we eliminate $\lambda$ from both, $r_{1}$ and $r_{2}$ using (3) which results in two further polynomials $r_{1}^{\prime} \in \mathbb{R}[x, z, \mu]$ and $r_{2}^{\prime} \in \mathbb{R}[y, z, \mu]$. It would make no difference if we eliminate $\mu$ first. Finally, the resultant of $r_{1}^{\prime}$ and $r_{2}^{\prime}$ with respect
to $\mu$ contains a non-trivial factor which is the equation of $\Phi$. (The trivial factors of the latter resultant are detected by substituting (5) and verifying that they do not vanish.)
So, we obtain the following equation of $\Phi$ :

$$
\begin{gather*}
\sigma_{1} \sigma_{2}\left(x^{2}-d^{2}\right)^{2}-B^{2}\left(z^{2}-k^{2} y^{2}\right)^{2}+ \\
+2 \sigma_{3}\left(d^{2} z^{2}+k^{2} x^{2} y^{2}\right)+2 \sigma_{4}\left(d^{2} k^{2} y^{2}+x^{2} z^{2}\right)+  \tag{6}\\
-8 A^{2} d k\left(1+k^{2}\right) x y z=0
\end{gather*}
$$

with the abbreviations

$$
\sigma_{1,2}:=A k^{2} \pm k^{2}+A \mp 1, \quad \sigma_{3,4}:=A^{2} k^{2} \mp k^{2}+A^{2} \pm 1
$$

and $B^{2}=1-A^{2}$ (or $B=\sin \alpha$ ). Summarizing, we can state:
Theorem 1. The isoptic ruled surface $\Phi$ as the set of intersection lines $r$ of planes $\varepsilon, \varphi$ from two pencils with axes $e, f$ and $\Varangle(\varepsilon, \varphi)=\alpha=$ const. is the algebraic ruled surface with the equation (6) and is, in general, of degree four.

Fig. 3 shows an example of a ruled surface $\Phi$ together with the axes $e$ and $f$ of the pencils of planes.
In the case $A=0$ which is equivalent to $\alpha=\frac{\pi}{2}$, there exists a generation of $\Phi$ by means of a projective mapping $\kappa$ from the pencil of planes about $e$ to the pencil of planes about $f$. The projectivity $\kappa$ assigns to each plane $\varepsilon$ (through $e$ ) precisely one plane $\varphi$ (through $f$ ) such that $\varepsilon \perp \varphi$. Thus, the lines $\varepsilon \cap \kappa(\varepsilon)$ form a regulus, i.e., one family of straight lines on a (regular) ruled quadric. Inserting $A=0$ into (6) returns the equation of the regular ruled quadric which is in any case a hyperboloid (with multiplicity two):

$$
\begin{equation*}
\left(\left(1-k^{2}\right) x^{2}-k^{2} y^{2}+z^{2}+d^{2}\left(k^{2}-1\right)\right)^{2}=0 \tag{7}
\end{equation*}
$$

an example of which is shown in Fig. 4.

## 3 Properties of $\Phi$

From the construction of $\Phi$ it is clear that the lines $e$ and $f$ are part of the surface. Moreover, the union of these lines is the double curve of $\Phi$. Hence, $\Phi$ is of Sturm type 1, cf. [2]. Since $\Phi$ is of Sturm type 1, it is elliptic.
Each plane $\varepsilon$ in the pencil about $e$ intersects $\Phi$ along $e$ with multiplicity 2 . Since each such plane $\varepsilon$ contains at least one generator, the remaining part of $\varepsilon \cap \Phi$ has to be a straight line $s$ too. The line $s$ is a further generator of $\Phi$. A similar statement can be made about the planes $\varphi$ through $f$.
The tangent planes of $\Phi$ meet $\Phi$ along (planar) cubic curves which are either rational or elliptic, see Fig. 5. The quartic ruled surface $\Phi$ carries no regular conic: Any plane $\varepsilon$ through a pair of intersecting generators $g_{1}, g_{2}$ shares one


Fig. 3. The quartic isoptic ruled surface of a pair of skew straight lines $e$ and $f$.
of the axes, say $e$, with $\Phi$. Therefore, the remaining part of $\Phi \cap \varepsilon \backslash\left\{e, g_{1}, g_{2}\right\}$ has to be a straight line $l$ and $l \cup e$ is a singular conic, cf. [2]. If we perform the projective closure of the Euclidean three-space, then we can look $\Phi$ 's intersection $\Phi_{\infty}$ with the ideal plane, see Fig. 6. The ideal points $E_{\infty}$ and $F_{\infty}$ of the straight lines $e$ and $f$ are the only double points of the elliptic quartic $\Phi_{\infty}$. An equation of $\Phi_{\infty}$ can obtained from (6) by removing all terms of degree three and less:

$$
\begin{equation*}
\Phi_{\infty}:\left(\sigma_{1} \sigma_{2} x^{2}+2 k^{2} \sigma_{3} y^{2}+2 \sigma_{4} z^{2}\right) x^{2}-B^{2}\left(k^{2} y^{2}-z^{2}\right)^{2}=0 \tag{8}
\end{equation*}
$$

Then, we interpret $x: y: z$ as homogeneous coordinates of points in the plane at infinity and note that in $\Phi_{\infty}$ 's equation $d$ does not show up.

## 4 Special cases

We can expect exceptional appearances of the quartic ruled surface $\Phi$ if we choose special values for $A, d$, or $k$. Although all these values are originally assumed to be real and especially $|A| \leq 1$, we need not restricted ourselves to real values. In the following, we shall discuss some of these special choices that lead to sometimes unexpected surfaces $\Phi$ which, eventually, are then no longer ruled surfaces with real rulings.


Fig. 4. A one-sheeted hyperboloid appears if $A=0, d, k \in \mathbb{R}^{\star}$, cf. (7).

### 4.1 One-sheeted hyperboloids.

Intersecting lines $e$ and $f$. In the very beginning, we made the natural assumption $2 d=\overline{e f} \neq 0$, i.e., the lines $e$ and $f$ are skew. If we allow $d=0$, then (6) simplifies to (8) which comes as no surprise, since (8) is independent of $d$. Therefore, (8) can also be viewed as the equation of a quartic cone $\Gamma$ emanating from $(0,0,0)$. Obviously, $e$ and $f$ are generators with multiplicity two. The cone $\Gamma$ is the asymptotic cone of $\Phi$ an example of which is displayed in Fig. 7.
Further, if $k=0$ (together with $d=0$ this actually means $e=f$ ), then $\Gamma$ degenerates and becomes the pair of isotropic planes $x^{2}+z^{2}=0$ with multiplicity two.
If we allow $A=0$, the cone $\Gamma$ becomes the quadratic cone

$$
\begin{equation*}
\left(k^{2}-1\right) x^{2}+k^{2} y^{2}-z^{2}=0 \tag{9}
\end{equation*}
$$

with multiplicity two. The quadratic cone (9) is a normal cone (cf. [1, p. 463467]) and it is the asymptotic cone of the double hyperboloid (7) being the special form of $\Phi$ if $A=0$.
An interesting case occurs if $k= \pm \mathrm{i}$ (besides $d=0$ ), i.e., the axes $e$ and $f$ of the pencils of planes are isotropic lines. In this case, $\Phi$ splits into two singular quadrics:

$$
\begin{align*}
& 2 x^{2}+(1-A) y^{2}+(1-A) z^{2}=0 \\
& 2 x^{2}+(1+A) y^{2}+(1+A) z^{2}=0 \tag{10}
\end{align*}
$$



Fig. 5. The quartic ruled surface $\Phi$ carries a two-parameter family of cubic curves which come as the intersection of $\Phi$ with its tangent planes. Here: $\tau \cap \Phi=r \cup c$ where $r \subset \tau$ is a ruling, $\tau$ is a tangent plane through $r$, and $c$ is the cubic curve.


Fig. 6. The intersection of $\Phi$ with the plane at infinity is an elliptic quartic curve $\Phi_{\infty}$ with the two double points $E_{\infty}$ and $F_{\infty}$ which are the ideal points of $\Phi$ 's double curve $e \cup f$.


Fig. 7. Intersecting lines $e$ and $f$ produce a quartic cone which is also the asymptotic cone of the generic (non-degenerate) quartic ruled surface $\Phi$.

One of these becomes a plane with multiplicity two if either $A=+1$ or $A=-1$ while the other one becomes an isotropic cone $x^{2}+y^{2}+z^{2}=0$.
The case $|A|<1$ turns both of the quadrics into cones without any real points besides the common vertex $(0,0,0)$.
$|A|>1$ corresponds to purely imaginary angles

$$
\alpha \equiv \mathrm{i} \cdot \ln \left(A+\sqrt{A^{2}-1}\right) \quad(\bmod 2 \pi)
$$

Nevertheless, inserting $|A|>1$ into (10) makes either the first or the second quadric a cone with real points while the other still has only one real point, namely the vertex $(0,0,0)$.

Parallel lines $\boldsymbol{e}$ and $\boldsymbol{f}$. The case of parallel axes $e$ and $f$ is clearly an extrusion of the planar figure of the theorem of the angle of circumference. Thus, the ruled surface $\Phi(6)$ will split into two cylinders $\Delta_{1}$ and $\Delta_{2}$ of revolution erected on those circular arcs in the $[x, y]$-plane which are the locus of all points seeing the line segment $E F$ (with $E, F=( \pm d, 0,0)$ ) under constant angle $\alpha$ (cf. Fig. 8).
From (6) we find the equation of the degenerate quartic by replacing $k$ with $1 / K$ and subsequently setting $K=0$. (Otherwise, we would have to set $k=\infty$.) This results in the expected pair of cylinders of revolution

$$
\Delta_{1,2}: x^{2}+y^{2} \pm \frac{2 d A}{\sqrt{1-A^{2}}} y-d^{2}=0
$$



Fig. 8. A pair of cylinders of revolution as the isoptic ruled surface of parallel lines $e$ and $f$.

In order to find real surfaces $\Delta_{i}$, the values for $A$ are restricted to $|A| \leq 0$. The Thaloid $x^{2}+y^{2}=d^{2}$ (cylinder of revolution) through $e$ and $f$ cannot be obtained directly from the cylinders' equations, since then $A=1$.

Other quadrics. The axes $e$ and $f$ of the pencils of planes can be chosen as isotropic lines. Therefore, we let $k=\mathrm{i}$. (The choice $k=-\mathrm{i}$ produces the same result.) Again, we find that (6) degenerates and splits into quadratic polynomials:

$$
\begin{align*}
& Q_{1}: 2 x^{2}+(1-A) y^{2}+(1-A) z^{2}=2 d^{2} \\
& Q_{2}: 2 x^{2}+(1+A) y^{2}+(1+A) z^{2}=2 d^{2} \tag{11}
\end{align*}
$$

The case $d=0$ was discussed earlier, so we have $d \neq 0$ in the following. Independent of the choice of $A$ and regardless of the regularity, both quadrics $Q_{1}$ and $Q_{2}$ have the $x$-axes for their common axis of revolution.
In the very special case $A= \pm 1$, the pair of quadrics (11) contains precisely the singular quadric $x^{2}-d^{2}=(x-d)(x+d)=0$ (a pair of (real) parallel planes) and the Euclidean sphere $x^{2}+y^{2}+z^{2}=d^{2}$ with radius $d$ centered at $(0,0,0)$ touching the planes at $( \pm d, 0,0)$.
If $|A|>1$, the pair $\left(Q_{1}, Q_{2}\right)$ of quadrics consists of a two-sheeted hyperboloid of revolution and an ellipsoid of revolution.
Finally, we obtain two ellipsoids of revolution if $|A|<1$.
The following table summarizes the special and degenerate cases of $\Phi$ depending on special choices of $A, k, d$.

| $A=0$ |  |  |
| :---: | :---: | :---: |
| $k=0$ | $k=\mathrm{i}$ | k= |
| $\left(d^{2}-x^{2}-z^{2}\right)^{2}=0$ <br> right cylinder, $\mu=2$ | $\begin{gathered} \left(2 d^{2}-2 x^{2}-y^{2}-z^{2}\right)^{2}=0 \\ \text { ellipsoid, } \mu=2 \end{gathered}$ | $\left(d^{2}-x^{2}-y^{2}\right)^{2}=0$ <br> right cylinder, $\mu=2$ |
| $d=0$ | $d=0$ | $d=0$ |
| $\left(x^{2}+z^{2}\right)^{2}=0$ <br> compl. conj. planes, $\mu=2$ | $\left(2 x^{2}+y^{2}+z^{2}\right)^{2}=0$ <br> cone, no real <br> point $\neq(0,0,0), \mu=2$ | $\left(x^{2}+y^{2}\right)^{2}=0$ <br> compl. conj. planes, $\mu=2$ |
| $d=\mathrm{i}$ | $d=\mathrm{i}$ | $d=\mathrm{i}$ |
| $\left(1+x^{2}+z^{2}\right)^{2}=0$ <br> right cylinder, no real points, $\mu=2$ | $\begin{gathered} \left(2 x^{2}+y^{2}+z^{2}+2\right)^{2}=0 \\ \text { ellipsoid, } \\ \text { no real point, } \mu=2 \end{gathered}$ | $\begin{aligned} & \left(1+x^{2}+y^{2}\right)^{2}=0 \\ & \text { right cylinder, } \\ & \text { no real point, } \mu=2 \end{aligned}$ |


| $A=1$ |  |  |
| :---: | :---: | :---: |
| k=0 | $k=\mathrm{i}$ | $k=\infty$ |
| $\begin{gathered} z^{2}=0 \\ \text { plane, } \mu=2 \end{gathered}$ | $\left\|\left\lvert\, \begin{array}{l}\left(x^{2}-d^{2}\right)\left(d^{2}-x^{2}-y^{2}-z^{2}\right)=0 \\ \text { sphere } \cup \text { tangent planes }\end{array}\right.\right.$ | $\begin{gathered} y^{2}=0 \\ \text { plane, } \mu=2 \end{gathered}$ |
| $d=0$ | $d=0$ | $d=0$ |
| empty set | $\overline{x^{2}}\left(x^{2}+y^{2}+z^{2}\right)=0$ <br> real double plane $\cup$ <br> $\cup$ isotropic cone | empty set |
| $d=\mathrm{i}$ | $d=\mathrm{i}$ | $d=\mathrm{i}$ |
| $\begin{gathered} z^{2}=0 \\ \text { plane, } \mu=2 \end{gathered}$ | $\left(x^{2}+1\right)\left(1+x^{2}+y^{2}+z^{2}\right)^{2}=0$ <br> sphere, no real point $\cup$ $\cup$ compl. tang. planes | $\begin{gathered} y^{2}=0 \\ \text { plane, } \mu=2 \end{gathered}$ |

Table 1. Special shapes of $\Phi$ caused by $A=0,1, \alpha=0, \frac{\pi}{2}, d=0, k=0, \infty, \mathrm{i}$; the integer $\mu$ denotes the multiplicities of the components.

## References

1. G. Glaeser, H. Stachel, B. Odehnal: The Universe of Conics. From the ancient Greeks to $21^{\text {st }}$ century developments. Springer-Spektrum, Springer-Verlag, Heidelberg, 2016.
2. E. MüLler: Vorlesungen über Darstellende Geometrie. III. Band: Konstruktive Behandlung der Regelflächen. Deuticke, Leipzig und Wien, 1931.
3. H. Wieleitner: Spezielle Ebene Kurve. Sammlung Schubert LVI, G.J. Göschen'sche Verlagshandlung, Leipzig, 1908.
