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REMARKS ON MIURA-ORI, A JAPANESE FOLDING METHOD  
  

Hellmuth STACHEL 
 

 
Abstract: Miura-ori is a Japanese folding technique named after Prof. Koryo Miura, The University of 
Tokyo. It is used for solar panels because it can be unfolded into its rectangular shape by pulling on one 
corner only. On the other hand it is used as kernel to stiffen sandwich structures. In this paper some 
insight will be given into the geometric structure of this folding method combined with an outlook to 
analogues and generalizations.  
Key words: Miura-ori, Kokotsakis meshes, flexible polyedra. 
 

1. THE FLEXIBILITY OF MIURA-ORI  
 

 
 

Fig. 1. Unfolded miura-ori; dashs are valley folds, full 

lines are mountain folds 
 

Let us analyze the process of folding the sheet 

of paper depicted in Fig. 1 with given valley 

and mountain folds. 

We start with two coplanar parallelograms with 

aligned upper and lower sides (Fig. 2). Then we 

rotate the right parallelogram against the left 

one about the common side through the angle 
0 0
,2 0 180δ ±≠ . 

 

 
Fig. 2. We rotate the right parallelogram with respect to  

the left one 

Then the lower sides span a plane ε1  and the 

upper sides span a plane 2ε  parallel to ε1 . Now 

we extend the two parallelograms to a zig-zag 

strip by adding alternately parallelograms 

translatory congruent to the left or to the right 

initial parallelogram. After this the complete 

strip has its upper zig-zag boundary still placed 

in ε1  and the lower one in 2ε  (see Fig. 3).  
 

 
 

Fig. 3. The folded posture is obtained by translation and 

reflection from the initial two parallelograms 
 

initial one the zig-zag boundary located in 2ε , 

and it does not restrict the movement when the 

bending angle 2δ  varies continously. When δ  

tends to 00 , the two strips become coplanar and  

remain connected as at the meeting point of 

four parallelograms the sum of  interior angles  



 

 

 
Fig. 4. Snapshots of the folding procedure of miura-ori 

 

equals 0360 . This means that at these polyhe-

dral vertices we have a vanishing Gaussian 
curvature, which is defined the “angle deficit” 

0360  minus the sum of adjacent interior angles 

(see, e.g., [1], p. 303). 

After iterated reflection in planes iε  parallel to 

ε1  or after translation orthogonal to ε1  the 

complete miura folding is obtained as depicted 

in Fig. 4. 

Remarks: 1. The folding is still flexible when 

the angle between the upper sides of the two 

inital parallelograms differs from the choice 
0180  of Fig. 1. However, then the Gaussian 

curvature of the vertices is 00≠ . There would 

be no coplanar stretched position for 00δ = . 

Any interior parallelogram together with its 

eight neighbor-parallelograms constitutes an 

example of a flexible Kokotsakis mesh (see 

[2,3]). 

2. More general, the first zig-zag strip between 

ε1  and 2ε  can be combined with another zig-

zag strip placed between parallel planes 2ε  and 

3ε , provided the boundaries in 2ε  are identical.  

This can be iterated so that the parallelograms 

in different strips are incongruent. In this way 

again examples of flexible Kokotsakis meshes 

are obtained. 

 

2. THE NET OF EDGES AT MIURA-ORI 
 

The edges of miura-ori constitute two sets of 

folds on the flexible polygonal structure. For 

better orientation we assume that the planes ε1 , 

2ε  are horizontal. Then the zig-zag lines placed 

in the horizontal planes are the lines of the first 

set and called horizontal. They are aligned in 

the flat position (Fig. 1) and the compounds of 

alternate valley and mountain folds. 

The transversal folds, called the vertical zig-zag 

lines, are either pure valley folds or mountain 

folds. The segments of the vertical lines can be 

obtained from their initial part in the starting 

strip by reflections in the horizontal planes ε1 , 

2ε , ... Hence these vertical zig-zag lines are 

located in vertical planes. 

For the sake of simplicity we assume that all 

edges of our folding have unit length. Now we 

keep the planes of the horizontal and vertical 

fold with crossing point V  fixed and concen-

trate on one parallelogram P1  of the four  

parallelograms 4...P P1  meeting at V : Two sides 

of P1  can rotate within the fixed planes (see 

Fig. 5) such that the included interior angle, say 

α , remains constant at V . A second parallelo-

gram 2P  is the mirror of P1  with respect to the 

horizontal plane 2ε . It has the same interior 

angle α  at V  and moves like P1 . We may 

assume 090α < . 

Let us we elongate the horizontal sides of the 

other two parallelograms 3P  and 4P  (with inte-

rior angle 0180 α− ) by unit length  beyond the 

fixed vertical plane. This gives two additional 

parallelograms *
3P  and *

4P  with interior angle 

α  at V  (Fig. 5). Each shares a ‘vertical’ edge 

with P1  or 2P . Hence, *
3P  and *

4P  are the 

mirrors of P1  and 2P  with respect to the fixed 

vertical plane. 



 

 

This reveals a hidden local symmetry of miura-

ori: When at each vertex V  two adjacent 

parallelograms 3P , 4P  with congruent interior 

angles at V  are replaced by their ‘horizontal 

elongations’ *
3P  and *

4P , respectively, we obtain 

a pyramide consisting of four congruent 

parallelograms * *
1 2 3 4, , , P P P P  with apex V . This 

pyramide flexes such that it remains symmetri-

cal with respect to the planes spanned by the 

horizontal and vertical folds passing trough V . 
 

2.1 Angles  
Next we study the relations between angles: We 

use a coordinate frame with origin V , with the 

x - and y -axis in the horizonal plane 2ε , and 

with the [ ]xy -plane spanned by the vertical 

fold passing through V . Let 2ϕ  and 2ψ  be the 

bending angles between consecutive segments 

of the horizontal and vertical folds (red lines in 

Fig. 5), respectively. Thus, the sides of P1  have 

the direction vectors  

sin
cos

0

ϕ
ϕ

 
 
 
 

=h ,    
0

sin
cos

ψ
ψ

 
 
 
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=v  

with the constant dot product  

 cos sin cos⋅ = =ϕ ψ αv h   (1) 

 
Fig. 5. There is a hidden local symmetry at each vertex 

 

In the stretched position the parallelogram P1  is 

located in the vertical [ ]yz -plane; the corre-

sponding (half) bending angles are 00ϕ =  and 
090 αψ −= . The other limit is the totally folded 

position with P1  in the [ ]xy -plane, with ϕ α= , 

and 090ψ = . In order to obtain formulas for the 

dihedral angles 2γ  and 2δ  along edges of the 

horizontal and vertical folds (see Fig. 5) we 

need the unit vector 

cos cos
1 1 sin cos

sin sin sin sin
( )

 
 −
 
 

= × =
ϕ ψ
ϕ ψ

α α ϕ ψ
n h v  

perpendicular to the plane of P1 . Its dot 

products with the unit vectors along the x - and 

z -axis give 

 
cos sin cos cos

 sin sin sin sin

=


=

δ α ϕ ψ

γ α ϕ ψ
 (2) 

We have 00δ γ= =  in the stretched position 

and 090δ γ= =  when miura-ori is completely 

folded.  

Remark: Miura-ori admits more flexions than 

the one-parameter bending explained above. It 

is trivial to bend the stretched position about its 

(aligned) horizontal folds independently from 

each other. In addition, one can fold some 

adjacent horizontal strips one behind the other 

and treat them like one single strip at the one-

parameter miura-ori as mentioned above. 

 

3. A FLEXIBLE TESSELATION 
 

 
 

Fig. 6. The tesselation with any plane convex 

quadrangles gives also a flexible polyhedral structure 
 

Among several generalizations of miura-ori 

there is one remarkable case which dates back 

zu Kokotsakis [3, p. 647]: Take any arbitrary 

plane convex quadrangle. By iterated 0180 -

rotations about the midpoints of the sides we 

obtain a wellknown regular tesselation of the 

whole plane (Fig. 6). If the quadrangles are 

seen as planar faces of a polyhedral structure 

with an initial flat position, but changeable 

dihedral angles, then this polyhedron is 

flexible. 

Proof: First we extract four pairwise congruent 

faces 4,...,P P1  adjacent to the vertex 1V  from our 



 

 

 
 

Fig. 7. How to continue the flexion of one pyramide to 

the whole structure 

 

tesselation (note the shaded area in Fig. 7).  

These faces form a four-sided pyramide which 

is flexible, provided the fundamental quadran-

gle is convex. We start with any nonplanar 

flexion. 

For any pair 2,(P P )1 ,…, 4 1,(P P )  of neighbouring 

faces there is a respective 0180 -rotation 1ρ , …, 

4ρ  which swaps the two faces. So, e.g., 

2 1 1P (P )= ρ  and 1 1 2P (P )= ρ . The axis of 1ρ    (see 

Fig. 7) is perpendicular to the common edge 

1 2V V , and it is located in the plane which 

bisects the dihedral angle between P1   and 2P . 

After applying all four 0180 -rotations consecu-

tively in ascending order to the quadrangle P1 , 

this is mapped via 2P , 3P , 4P  onto itself, hence 

2 3 4 id1 =ρ ρ ρ ρ . Because of 1− =i iρ ρ  we obtain 

 4 3 1 2=ρ ρ ρ ρ .  (3) 

After that we extend this flexible structure 

stepwise by adding congruent copies of the 

initial pyramide without restricting the flexibil-

ity: The rotation 1ρ  exchanges P1  with 2P  and 

transforms the pyramide with vertex 1V  into a 

congruent copy with vertex 2V  sharing two 

faces with its preimage. Analogously, 4ρ   

generates a pyramide with vertex 4V  including 

the faces 1P  and 4P . 

Finally there are two ways to generate a 

pyramide with vertex 3V  (see Fig. 7). Either, 

we transform 2ρ  with 1ρ  and use 2 11ρ ρ ρ , 

which swaps 2V  and 3V . Or we proceed with 

4 3 4ρ ρ ρ , which exchanges 4V  and 3V . Hence,  

the product 2 1 1( )1ρ ρ ρ ρ  as well as 4 3 4 4( )ρ ρ ρ ρ  

maps the original paramide into a pyramide 

with vertex 3V . Fortunately, both displacements 

are equal by (3), and we get 1 2 4 3=ρ ρ ρ ρ :  

3 1P P֏ , 2 1 3P (P )֏ ρ , 4 4 3P (P )֏ ρ , and 1 5P P֏ . 

Hence each compound of 3 3×  quadrangles like 

that schematically displayed in Fig. 7, is 

flexible. 

 

4. CONCLUSION  
 

We presented two examples of flexible polyhe-

dral structures which can be produced from a 

sheet of paper. The proofs for their continuous 

flexibility are given by pure geometric reason-

ing thus demonstrating the power of this kind 

of  argumentation. 
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BEMERKUNGEN ZU MIURA-ORI, EINER JAPANISCHEN FALTTECHNIK: 
 

Abstract: Miura-ori ist eine Japanische Falttechnik, benannt nach Prof. Koryo Miura von der University 
of Tokyo. Diese Technik wird z.B. in der Satellitentechnik zum Falten der Sonnensegel verwendet, denn 
diese lassen sich entfalten, indem lediglich an einer Ecke angezogen wird. Außerdem wird diese Faltung 
in der Leichtbautechnik eingesetzt als Kern zum Versteifen von Platten in Sandwich-Bauweise. Ziel dieses 
Beitrages ist eine geometrische Analyse von Miura-ori und gewisser Verallgemeinerungen.  
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