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Abstract 

     A few years ago, the author was involved in the design of a sundial 
in connection with a big mosaic-work on a cylindrical wall. The 
original plan of the artist was based on the shadow of a slim vertical 
tower; but this was not realizable for geometrical reasons. The only 
solution was to use suitable stripes on the East- and Westface of this 
tower as a mirror such that reflected sunlight became suitable for a 
sundial. 
     In the lecture the geometric background for this sun-reflection-
dial, which is unique in Austria, will be analyzed. This is also a good 
opportunity to explain why sundials cannot show the exact time all 
over the year.  
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1. INTRODUCTION 

     In the years 2011-12 the author came in contact with the „Verein 
Moderner Sakralbau”, an Austrian organization which promotes 
modern art for Christian churches. This organization planned a 
monument in the area of the Heiligenkreuz monastry2. This monument 
(see Fig. 4, left) should consist of a big mosaic-work (8 x 3.5 m) on a   

                                             
1 emer. Univ.Prof., Institute of Discrete Mathematics and Geometry, Vienna 
University of Technology 
2 a Cistercian monastery, approx. 25 km south-west of Vienna, the eldest con-
tinuously occupied Cistercian monastery in the world. It is also famous be-
cause of its Gregorian Chant. <http://www.stift-heiligenkreuz.org/english> 



cylindrical wall and − at the center of the cylinder − of an 8 m high 
slim tower, called ‘Gnomon’, in form of a three-sided pyramid made 
from reflecting steel. According to the design of the French artist 
Philippe Lejeune (*1924), the shadow of this tower falling onto the 
cylindrical wall  should be utilized for a time telling device.  
    The exact position of this monument (Fig. 1) is as follows: Eastern 
longitude 16.132° and Northern latitude 48.049°.  
     It is well-known that the shadow casted from a vertical tower on a 
vertical wall has not the necessary property that its position depends 
only on the local time but is independent from variations of the season 
(see, e.g., [1, p. 393]). On the other hand, meeting the necessities for 
a sundial, i.e., inclining the ‘Gnomon’ until it is parallel to the earth’s 
axis, would totally destroy the appearance of the artist’s design. The 
only compromise was to use suitable reflecting stripes on the East- and 
Westface of the central tower such that the reflected sunlight works 
like a sundial. 
     In the following, the geometric background for this sun-reflection-
dial, which is unique in Austria [4], will be presented. This offers also 
the opportunity to explain with the help of Descriptive Geometry [3, 
p.50] why (surprisingly) sundials cannot show the exact time all over 
the year − because of the ‘Equation of Time’ (for further details see 
[1, 392-402] or [2]).  

 
Figure 1. Heiligenkreuz Abbey with the marked monument „Epiphanie“  
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2. WHY NO SUNDIAL WITH SHADOWS ? 

We expect from a usual sundial that − independent from the season 
− at any given day-time t (e.g., 10 a.m.) the shadow of the style falls 
onto the same line. These so-called hour-lines are usually marked on 
the sundial. Of course, our requirement has consequences for the 
position of the gnomon, i.e., the style which causes the shadow. Let us 
first have a look on the shadow of one single point.  

For the purpose of understanding sundials, it is convenient to adopt 
the geocentric view. This means we consider the earth to be fixed 
while the sun is moving relative to the earth. This motion is exactly 
inverse to the motion displayed in Fig. 6, the composition of the 
rotation of the earth about its axis and the translational movement 
along an elliptic path around the sun.   
    During the run of a year the line connecting the center M of the 
earth with the center S of the sun changes its inclination with respect 
to (‘w.r.t.’ in short) the equator plane. When the true local day-time3 
t is kept fixed over the year, the connecting lines SM vary within a 
plane through the earth’s axis. Now we replace the center M by an 
arbitrary point P on the earth. In this respect, we may assume an 
infinite distance to the sun. Therefore we apply the translation M P 
and conclude: All sun rays which pass every day at the same true local 
time t through point P belong to a plane  parallel to the original 

meridian plane. We call this translated plane a hour-plane . Which 

instant t we ever choose, the corresponding hour-plane  contains the 
line a which is parallel to the earth’s axis and passes through P. All 
hour-planes belong to a pencil with axis a, and when the date t 
increases by one hour the corresponding hour-plane rotates through an 
angle of 360/24 = 15°.  



t

t

t

The sun casts a shadow from point P onto a given surface . The 
shadow originating from this single point at the same true local day-



                                             
3 For any position X on the earth, the true local time is defined in the follow-
ing way: Noon is fixed by the fact that the sun reaches its daily culmination 
relative to X, i.e., the sun passes exactly the meridian plane of X (= plane 
connecting X with the axis of the earth). One hour (in true local time) equals 
the 24th part of the period between consecutive noons. For details like the 
deviation from the mean time see Section 4.  
Historically, the need for an international mean time started only when a 
railway-network has been established.  



time t varies from day to day along a hour-line which is the 
intersection of the surface  with the hour-plane .   t
    The gnomon must be chosen in such a way that the shadows of all 
its points fall onto the same hour-line. Therefore all its points must be 
located in the same hour-plane , and this must hold for all t. We can 
summarize (see also [1, p. 393 ff]):   

t

Lemma 1: The shadow casted from a style (=gnomon) at given local 
time t is for each t placed on the same hour-line independently from 
the season if and only if the gnomon is parallel to the earth’s axis.   

Concerning the initial plan for Heiligenkreuz (Fig. 4, left), what are 
the conclusions ? A vertical tower used as a gnomon contradicts Lemma 
1. Only at noon we would obtain a correct result as the shadow points 
North. In order to obtain a classical sundial, the gnomon must be 
slanted with an inclination of about 48° against the North direction. 
However, this would totally destroy the optical appearance of the 
artist’s design. This was the reason why we started to pay attention to 
the reflecting properties of the faces at the original ‘Gnomon’.  

 

3. SUNDIAL BASED ON THE REFLECTION OF SUNLIGHT  

    Suppose, the sunbeam which is reflected at any point Q of the 
reflecting face   meets a given surface   at the point Q’. Then due 
to Fig. 2 (left), the luminous point Q' coincides with the shadow of point 

Q w.r.t. a virtual sun S  which is the mirror of the original sun S w.r.t.  

 . The daily movement of this virtual sun S  around the earth is a 
rotation about an axis which is the mirror of the earth’s axis w.r.t.  . 
Therefore, for any given true local day-time t, the luminous point Q' in 

 varies over a year along a hour-line which is the trace of the 

reflected hour-plane 



t , and t  includes the mirror a  of line a. Now, 
Lemma 1 implies the following:   

Lemma 2: Suppose, the reflection of sunbeams along a line segment  
in the reflecting plane 


  generates at given local time t on a surface 

 a luminous curve segment . This spot  is for each t a subset of 
a corresponding ‘hour-line’ all over the year if and only if the 
reflecting segment   is parallel to the mirror of the earth’s axis 

 t t
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w.r.t.  . Because of  the reflecting plane   must be parallel to 
the earth's axis.   

 

 
Figure 2. The luminous point Q’ caused by reflection of a sunbeam in the 

plane  at point Q equals the ’shadow’ of Q  w.r.t. the reflected sun.  

    Now we face a problem: According to the design of the ‘Gnomon’ in 
Heiligenkreuz  (Fig. 4, left), no face is parallel to the earth’s axis; 

neither any line a (Lemma 1) nor its mirror a  (Lemma 2) is located in 
one of the reflecting faces   of the 'Gnomon'. 4 
     Consequently, we have to confine ourselves to an approximation: 

We replace a  by its orthogonal projection  in na  , which at the same 
time is the orthogonal projection of line a (Fig.2, right). The angle 
between a and the reflecting face   is smaller than 5°. Therefore this 
approximation seems to be admissable. Fig. 3 reveals that in fact the 

reflection of a stripe  along  gives luminous stripes  in  which 
for each t follow almost a ‘hour-line’ over the seasons.  

 na t 

Remark: We note in Fig. 3 that for t = 7 a.m. the monthly luminous 
stripes  fit better to a hour-line than for t = 11 a.m. This results 

from the fact that the exact hour-plane 
t

6  for 6 a.m. is orthogonal to 
the meridian plane and therefore very close to the plane which 

connects the lines a and . So, the error of our approximation by na

                                             
4 After reflection in   the sunlight would cast from a style parallel to a  a 
shadow which satisfies the requirements of a classical sundial. 



choosing  instead of na a  is smallest at 6 o’clock in the morning and in 
the afternoon. 

  
Figure 3. The luminous stripes  on the wall  vary from month to month,  

but can be combined to hour-lines 
t 

    The result of our approximation was the plan displayed in Fig. 4 
(right). The East-face of the ‘Gnomon’ serves as a mirror in the 
morning, the West-face in the afternoon. Only around noon the 
reflection fails; at this time only side-sunlight meets the two faces. 
This is the reason why the noon line, i.e., the hour-line for true local 
noon is missing at the final status (Fig. 10). Fortunately, just at noon 
the shadow of the ‘Gnomon’ shows the correct time.    
    The altitude of the reflecting stripes on the ‘Gnomon’ (Fig. 4, right) 
and the position of the ‘Gnomon’ w.r.t. the curved wall  resulted 
from the fact that even at winter and summer solstices a luminous 
stripe should be visible on . While at classical sundials on the 
Northern hemisphere the shadow moves during each day from left to 
right, i.e., from West to East, at a sun-reflection-dial the luminous 
spots move in the opposite direction. The hour-lines on the monument 
in Heiligenkreuz are portions of (almost) ellipses since they are the 
intersections of the cylindrical wall  with the (almost planar) 

reflected ‘hour-planes’ 







t .  
    Figure 5 shows the original plan for the workmen. The hour-lines 
were drawn only outside the mosaic-work. Since on the left and right 
hand side of the mosaic the portions of the hour-lines are rather short, 

 

6



they were extended over the vertical edge of the wall. These 
extensions were defined in such a way that for a visitor who stands 
exactly on the middle-axis a few meters in front of the ‘Gnomon’, the 
extensions look like straight elongations of the hour-lines (note the 
photo in Fig. 10 and compare the right and left hand side extensions). 
  

 

Figure 4. Left: The initial plan of the monument; Right: the final position of 
the reflecting stripes on the East- and Westface of the ’Gnomon’. 

    
 Figure 5 shows also that the hour-lines for morning and afternoon are 
not totally symmetric. This is caused by the fact that the sun-
reflection-dial shows not the local time for Heiligenkreuz but CET, i.e., 
Middle European Time (wintertime). Because of the longitude ~16° of 
Heiligenkreuz, the sun reaches its daily culmination here at approx. 
11:56 p.m. − apart from the general deviation according to the 
Equation of Time (see Section 4).   

 

 

7



4. ON THE PRECISION OF SUNDIALS 

     Now we skip the geocentric view and turn over to the heliocentric 
view. From now on, our fixed frame includes the sun and the 
directions to the fixed stars.  

 

Figure 5. The original plan for workmen in order to paint the hour-lines 

    During the movement of the earth along the ecliptic around the sun 
(see Fig. 6) the direction of the earth’s axis remains fixed (in first 
order approximation). The angle   between the planes of the equator 
and the ecliptic is called obliquity of the ecliptic.  

 

Figure 6. The earth travels around the sun along the ecliptic 
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    In order to inspect the rotation of the earth about its axis in true 
size, we use an auxiliary view in direction of the earth's axis (Fig. 7). 
This view reveals: During consecutive sun culminations, i.e., from noon 
until noon of the next day (true local time), the earth must rotate 
about its axis through an angle of 360°+   where   is the center 
angle swept during this time interval (~360°/365). However, even when 
the earth would move along a circular path with constant velocity, the 
center angle   varies because of the affine distortion of this circle in 
our auxiliary view. Consequently, the duration of a day (w.r.t. true 
local time)  measured in mean time is not constant.  
 

 

Figure 7. Auxiliary view in direction of the earth’s axis 

    However, the obliquity of ecliptic is not the only reason for the 
variable duration of the period between consecutive sun culminations. 
Due to Kepler’s First and Second Law, the ecliptic is an ellipse with 
focal point S, and the earth travels along this ellipse (with very small 
numeric eccentricity e/a = 0.0167) with constant areal velocity. This 
means, in periods of equal duration the segment SM connecting the 
centers of the sun and the earth sweeps sectors of equal area (Fig. 8). 
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Note that affine transformations preserve the ratio of areas; therefore 
also in our auxiliary view the earth moves with constant areal velocity.   

 

Figure 8. According to Kepler’s First and Second Law the earth moves around 
the sun with constant areal velocity along an ellipse with focal point S 

    Both effects, the affine distortion in our auxiliary view and the 
elliptic shape of the ecliptic, influence the ’Equation of Time’ (Fig. 9), 
which shows the difference z between true local time (reduced to CET) 
and mean time on our clocks. This deviation lies between approx. +15 
and -15 minutes. The dotted line in Fig. 9 shows the pure influence of 
the obliquity of ecliptic, i.e., the deviation for a circular path. The 
dashed line in Fig. 9 indicates the influence of Kepler’s Laws in the 
case of a vanishing obliquity. 
    The biggest deviations happen at the beginning of November – the 
sun is about 16 minutes before the median time (it is „getting dark 
earlier“) – and at February 10 when the sun is approx. 14 minutes 
delayed (days „last already longer“). On the other hand, there is a high 
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conformity between true time and mean time at midth of April and June, 
at the beginning of September and at (catholic) Christmas time. Of 
course, we cannot expect that a sundial pays attention to the change 
from CET to CET summertime every year. 

 

Figure 9. Equation of Time: z = true time – mean time 

 

5. HOW TO READ THE TIME ?  

   

 

Figure 10. The final appearance of ’Epiphanie’, a declared monument 
„for Freedom of Conscience and Religion as a Foundation for Peace“  
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    Figure 10 shows how the monument ’Epiphanie’ with the hour-lines in 
the final status looks like. The photo was taken on August 14 and shows 
in the upper right corner the (additionally marked) luminous stripe. It 
indicates approx. 8:05 a.m. However, we must pay attention to the 
summertime. And, in addition, for midth of August the Equation of Time 
shows 5 minutes delay of the sun against CET. Hence, the result is 
approx. 9:10 a.m. which comes very close to the date stored in the 
camera. 
    The photo in Fig. 10 shows near the bottom some irregular light 
concentrations which can be confusing for visitors as they have nothing 
to do with the sundial. These strange looking spots are caused by the 
fact that the lower parts of the East- and West-face are slightly bent (due 
to production errors) but still reflecting. One can actually note that the 
reflection in the total East-face, which apart from the reflecting stripe and 
the lowest portion is unpolished, produces a vertical shine on the wall; 
this shine includes the marked luminous stripe above as well as the light 
concentrations at the bottom.  
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