
On the Diagonals of Billiards

Hellmuth Stachel[0000−0001−5300−4978]

Vienna University of Technology, Vienna, Austria
stachel@dmg.tuwien.ac.at, https://www.geometrie.tuwien.ac.at/stachel

Abstract. A billiard is the trajectory of a mass point in a domain with
ideal physical reflections in the boundary e. If e is an ellipse, then the bil-
liard’s sides are tangents of a confocal conic called caustic c. The variation
of billiards in e with caustic c is called billiard motion. We recall and extend
a classical result of Poncelet on the diagonals of billiards which envelope
motion-invariant conics. Each billiard in e with caustic c is the flat pose of
a Henrici framework. Its spatial poses define focal billiards in an ellipsoid
with a fixed focal conic c . We prove that for even j the j-th diagonals are
located on a motion-invariant one-sheeted hyperboloid.
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1 Introduction

A billiard is the trajectory of a mass point in a domain with ideal physical reflections
in the boundary. Already for two centuries, billiards in ellipses and their projectively
equivalent counterparts have attracted the attention of mathematicians, beginning
with J.-V. Poncelet [7] and C.G.J. Jacobi [5]. Computer animations carried out by
Dan Reznik [8] stimulated a new vivid interest on these well studied objects. They
offer an arena where problems can be attacked with analytic and algebraic methods
(see, e.g., [2, 13]).

The sides of any billiard in an ellipse e are tangent to a confocal ellipse or hyper-
bola c called caustic (Fig. 1). Accordingly, we speak briefly of elliptic or hyperbolic
billiards in e. It was Poncelet who proved in the projective setting [7] that if one
billiard in e with caustic c closes after N reflections, then it closes for each choice
of the initial vertex P1 ∈ e. The variation of P1 along e defines a socalled billiard
motion, though it neither preserves angles or side lengths nor is a projective motion.
However, the total length of periodic billiards remains constant, and D. Reznik [8]
identified about 50 other invariants, e.g., the sum of cosines of the exterior angles
θi (Fig. 1), which was first proved in [1].

As shown in [10], the billiards in e with caustic c can be isometrically transformed
into spatial billiards in the ellipsoid E through e with the focal conic c . These
billiards, which in the periodic case share the total length, are called focal billiards
in E since their side lines are generators of confocal one-sheeted hyperboloids H1

and therefore focal lines of E (see [6, p. 284]).

The goal of this paper is to present new invariants of billiard motions for planar
billiards as well as for spatial focal billiards. These invariants are related to the
diagonals. In 1822, Poncelet proved in the projective setting that the envelopes of
diagonals are conics [7]. A few years later, in 1828 Jacobi showed in [5, p. 388] that
in the concyclic case, where the circumscribed and inscribed conics are circles, the
diagonals envelope circles, too. It must be noted that the computation of billiards is
not as easy as one might expect. The vertices of billiards can either be determined
iteratively or, due to Jacobi’s brilliant disclosure, be explicitely represented only in
terms of Jacobian elliptic functions (see, e.g., [12]).

Structure of the article. We begin with planar billiards. In Section 2 we extend
Poncelet’s result by presenting formulas for the envelopes of the j-th diagonals of
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Fig. 1. Periodic billiard P1P2 . . . P5 in e with caustic c and its conjugate P ′
1P
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2 . . . P

′
5.Fig. 1. Periodic billiard P1P2 . . . P5 in e with caustic c and its conjugate P ′1P

′
2 . . . P

′
5.

elliptic billiards, and we determine the contact points. Similar results for hyperbolic
billiards follow in Section 3, while Section 4 focuses on a general equivalence in the
projective setting: We prove for polygons with circumconic and inconic that there
exists a polarity which sends the vertices to the first diagonals. Finally in Section 5,
we show for the spatial case and even j, that the j-th diagonals of focal billiards
are generators of one-sheeted hyperboloids. For the sake of completeness, we repeat
at the beginning a few theorems and proofs from the author’s paper [11].

2 Diagonals of elliptic billiards

The extended sides of a billiard P1P2 . . . intersect at points which define the asso-
ciated Poncelet grid and are located on confocal ellipses and hyperbolas. We follow
the notation in [9] and define1

S
(j)
i :=

{
[Pi−k−1, Pi−k] ∩ [Pi+k, Pi+k+1] for j = 2k,

[Pi−k, Pi−k+1] ∩ [Pi+k, Pi+k+1] for j = 2k − 1
(1)

where i, j = 1, 2, . . . (Fig. 2). For fixed j, the points S
(j)
i are located on a confocal

ellipse e(j), which remains invariant under the billiard motion [9, Theorem 3.6]. For
example, the principal semiaxes of e(1) and e(2) are

ae|1 =
ac(a

2
eb

2
e − d2ke)

a2cb
2
c − k2e

, ae|2 =
ae
[
(a2eb

2
e − d2ke)2 + 4d2b2ek

2
e

]
(b2ca

2
e − 3b2eke)(a

2
eb

2
e − d2ke)− 4d2b2ek

2
e

with (ac, bc) and (ae, be) as respective semiaxes of the confocal ellipses c and e, and
moreover

ke = a2e − a2c and d2 = a2c − b2c = a2e − b2e . (2)

For fixed i, the points S
(1)
i , S

(3)
i , . . . belong to the confocal hyperbola through Qi

(but not necessarily to the same branch), while S
(2)
i , S

(4)
i , . . . are located on the

confocal hyperbola through Pi (Fig. 2).
As introduced in [9], for each elliptic billiard P1P2 . . . in e with the contact

points Qi ∈ c exists a conjugate billiard P ′1P
′
2 . . . in e with contact points Q′i ∈ c . It

can be defined in the following way (see Fig. 1). There is an affine transformation

α : (x, y) 7→
(
ac
ae
x,

bc
be
y

)
with e 7→ c , (3)

1 Note that XY denotes the segment bounded by the points X and Y , while [X,Y ]
denotes the connecting line.
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which sends P ′i to Qi and Pi to Q′i−1.2 Thus, the relation between the original
billiard P1P2 . . . and its conjugate P ′1P

′
2 . . . is symmetric. Below we use the symbol

S
′(j)
i for the vertices of the Poncelet grid associated with the conjugate billiard. Then

for fixed i, the points S
′(1)
i , S

′(3)
i , . . . belong to the confocal hyperbola through Q′i

and Pi+1, while the points S
′(2)
i , S

′(4)
i , . . . are located on the confocal hyperbola

through P ′i and Qi (Fig. 2).

Theorem 1. Let P1P2P3 . . . be an elliptic billiard in the ellipse e with the caustic
c. Then for fixed j = 1, 2, . . . , the envelope of the diagonals [Pi, Pi+j+1] is a coaxial
ellipse he|j, provided that in the particular case of N -periodic billiards with even N

holds j ≤ [N−32 ]. The ellipse he|j has the semiaxes

aj =
aeac
ae|j

and bj =
bebc
be|j

, (4)

where (ae|j , be|j) are the semiaxes of the ellipse e(j) (Fig. 2). The ellipses he|2, he|3,
. . . belong to the pencil spanned by c and e.

Proof. We focus on the j-th diagonal PiPi+j+1 (with j vertices between Pi and
Pi+j+1). For the case of N -periodic billiards with even N we assume 0 < j ≤ [N−32 ]
in order to exclude main diagonals passing through the center O.

The affine scaling α, as defined in (3), sends PiPi+j+1 to Q′i−1Q
′
i+j , where Q′i−1

and Q′i+j are contact points of the conjugate billiard P ′1P
′
2 . . . with the caustic

c . The pole of [Q′i−1, Q
′
i+j ] w.r.t. c is the point of intersection between [P ′i−1, P

′
i ]

and [P ′i+j , P
′
i+j+1]. This point belongs to the ellipse e(j) included in the associated

Poncelet grid. According to the notation explained in (1), we obtain the point S
′(j)
i+k

for j = 2k as well as for j = 2k + 1 (Fig. 2).
For further details see [11], where it is also proved that the standard equation of
he|j is an affine combination of the standard equations of c and e .

According to (4), the envelope he|j of the j-th diagonals can also be determined

as the image of e under an affine scaling with e(j) → c . The following lemma holds
for elliptic and hyperbolic billiards.

Lemma 1. Let P1P2P3 . . . be a billiard in the ellipse e with Q1, Q2, Q3, . . . as con-

tact points with the caustic c and with S
(j)
i ∈ e(j) for j = 1, 2, 3, . . . as points of the

associated Poncelet grid according to (1).
If there is an affine scaling

β : e(j) → c with S
(j)
i 7→ Qi or S

′(j)
i 7→ Qi , (5)

then β sends e to the envelope he|j of the j-th diagonals, and the diagonal [Pi, Pi+j+1]
contacts he|j at the point of intersection between the j-th diagonals [Qi−1, Qi+j ] and
[Qi, Qi+j+1] of the polygon Q1Q2Q3 . . . .

Proof. We distinguish two cases.
1. j is odd, say j = 2k − 1: Then, according to the properties of the Poncelet grid,

β sends S
(j)
i to Qi . We proceed in two steps: We determine the β-image of Pi ∈ e

and we show that the j-diagonal [Pi−k, Pi+k] is the β-image of a tangent to e . This
confirms the claim.
(i) Due to (1), the extensions of the two sides Pi−1Pi and PiPi+1 through the vertex

Pi ∈ e are the lines [S
(j)
i−k−1, S

(j)
i+k−1] and [S

(j)
i−k, S

(j)
i+k]. Hence, the intersection Ti of

their β-images [Qi−k−1, Qi+k−1] and [Qi−k, Qi+k] is the β-image of Pi ∈ e (Fig. 2).

2 An affine transformation which keeps the coordinate axes fixed is called affine scaling.
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Fig. 2. Periodic elliptic billiard P1P2 . . . P8 inscribed in e with caustic c along with the
conjugate billiard P ′

1P
′
2 . . . P

′
8 (dashed) and the envelopes he|1 of the first diagonals (green)

and he|2 of the second diagonals (orange). The polarity in the ellipse pe|1 (dotted) sends
the vertices Pi to the adjacent first diagonals [Pi−1, Pi+1].

Fig. 2. Periodic elliptic billiard P1P2 . . . P8 inscribed in e with caustic c along with the
conjugate billiard P ′1P

′
2 . . . P
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8 (dashed) and the envelopes he|1 of the first diagonals (green)

and he|2 of the second diagonals (orange). The polarity in the ellipse pe|1 (dotted) sends
the vertices Pi to the adjacent first diagonals [Pi−1, Pi+1].

(ii) The vertex Pi+k is the intersection of the tangents to c at Qi+k−1 and Qi+k.
Therefore, the β-preimage Ri+k of Pi+k is the intersection of the tangents to e(j)

at S
(j)
i+k−1 and S

(j)
i+k. The four tangents drawn from S

(j)
i+k−1 and S

(j)
i+k to c form a

quadrilateral where Pi and Pi+2k are two opposite vertices. Now we refer to [9,
Theorem 3.5] which says that this quadrilateral is concyclic; the tangents to c at

Pi and Pi+2k and those to e(j) at S
(j)
i+k−1 and S

(j)
i+k are concurrent angle bisectors.

This means that the tangent to e at Pi passes through Ri+k.
After replacing k by −k, the same reasoning yields that the tangent to e at Pi also
passes through the β-preimage Ri−k of Pi−k (see also [9, Fig. 6]). Thus we confirmed
that β sends e to a conic that contacts the j-th diagonal [Pi−k, Pi+k] at the image
Ti of Pi .

2. j even, say j = 2k. In this case holds β : S
′(j)
i 7→ Qi . In view of the j-th diagonal

[Pi−k, Pi+k+1] we note that

P ′i = [P ′i−1, P
′
i ] ∩ [P ′i , P

′
i+1] = [S

′(j)
i−k−1, S

′(j)
i+k] ∩ [S

′(j)
i−k, S

′(j)
i+k+1]

with the β-image T ′i = [Qi−k−1, Qi+k] ∩ [Qi−k, Qi+k+1]. In order to show that β
sends the tangent to e at P ′i to the j-th diagonal [Pi−k, Pi+k+1], we proceed similar
to the previous case. The only difference is that the quadrilateral circumscribed to

c consists now of the c-tangents passing through S
′(j)
i+k+1 or S

′(j)
i+k at the endpoint

Pi+k+1 and through S
′(j)
i−k−1 or S

′(j)
i−k at the other endpoint Pi−k .

In the elliptic case the conics e(j) are ellipses confocal with e and c . Therefore,

there exists an affine scaling β : e(j) → c with S
(j)
i 7→ Qi for odd j and S

′(j)
i 7→ Qi

for even j (note, e.g., [3, p. 40]). Thus, by virtue of Lemma 1 follows (see Fig. 3)
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of the third diagonals of a hyperbolic billiard (bottom) along with the contact points Ti .
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of the third diagonals of a hyperbolic billiard (bottom) along with the contact points Ti .

Theorem 2. Referring to the previous notation, the envelope he|j of the j-th di-
agonals of the elliptic billiard P1P2P3 . . . is the image of e under an affine scaling
β with e(j) → c . The envelope he|j equals the locus of the points of intersection
Ti+[ j

2 ] = [Qi−1, Qi+j ] ∩ [Qi, Qi+j+1] between consecutive j-th diagonals of the poly-

gon Q1Q2Q3 . . . inscribed in the caustic c (Fig. 3).

The following theorem is a consequence of one of D. Reznik’s experiments.

Theorem 3. Let P1P2 . . . be an elliptic billiard in the ellipse e . Then for any
j ∈ {1, 2, . . . }, the diagonal line [Pi, Pi+j+1] is polar for even j to P ′i+(j/2) and for
odd j to Pi+[(j+1)/2] w.r.t. a coaxial ellipse pe|j with semiaxes

ap|j = ae

√
ac
ae|j

and bp|j = be

√
bc
be|j

.

A proof can be found in [11, p. 147]; an alternative proof follows in Section 4.

3 Diagonals of hyperbolic billiards

Hyperbolic billiards in ellipses, i.e., billiards with a hyperbola as caustic c differ in
various ways from their elliptic counterparts. We recall a few of them.

During the billiard motion the vertices of a hyperbolic billiard vary only either
on an upper or a lower subarc of the ellipse e (note Figs. 4 or 5). The turning
number τ of a periodic billiard counts how often the vertices run to and fro along

these arcs. According to [9, Theorem 3.12], the points S
(1)
i , S

(3)
i , . . . of the Poncelet

grid are located on confocal ellipses through the contact point Qi of [Pi, Pi+1] with

c , while the points S
(2)
i , S

(4)
i , . . . are located on the confocal hyperbola through
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Fig. 4. Periodic billiard P1P2 . . . P12 with τ = 1 in the ellipse e with the hyperbola c as
caustic, together with the hyperbolas e(1), e(3), the secondary axis e(5), and the ellipse e(2).

Fig. 4. Periodic billiard P1P2 . . . P12 with τ = 1 in the ellipse e with the hyperbola c as
caustic, together with the hyperbolas e(1), e(3), the secondary axis e(5), and the ellipse e(2).

Pi , but not necessarily on the same branch. For even j, the conic e(j) is a confocal
ellipse (if finite), while for odd j we obtain confocal hyperbolas e(j) or an axis of
symmetry.

As stated in [9, Corollary 4.3], periodicN -sided billiards withN ≡ 0 (mod 4) are
symmetric w.r.t. the secondary axis. For N ≡ 2 (mod 4) and odd turning number τ
(Fig. 5), the hyperbolic billiards are centrally symmetric, for even τ symmetric w.r.t.
the principal axis of e and c . This results in an exceptional behavior of the N−2

2 -th
diagonals: If N ≡ 0 (mod 4), then these diagonals are parallel to the principal axis,
while for N ≡ 2 (mod 4) and odd turning number they are diameters of e and
otherwise orthogonal to the principal axis. In Theorem 4 we exclude these cases.

According to [9, Lemma 3.14], also for hyperbolic billiards there exist one or two
conjugate billiards (note Fig. 5). However, there is no kind of symmetry between the
contact points Qi ∈ c and the vertices P ′i ∈ c since there is no affine transformation
α between the ellipse e and the hyperbola c . This is the reason, why the proofs in
Section 3 cannot be transferred one-to-one from elliptic to hyperbolic billiards.

Theorem 4. Let P1P2P3 . . . be a billiard in e with the hyperbola c as caustic. Then,
apart from the exceptions listed above, the j-th diagonals envelope for odd j a coaxial
ellipse he|j, for even j a coaxial hyperbola. These envelopes belong to the pencil
spanned by e and c and have the semiaxes

aj =
aeac
ae|j

and bj =
bebc
be|j

,

where (ae|j , be|j) are the semiaxes of e(j) (Fig. 2). The construction of contact points
according to Lemma 1 is still valid for hyperbolic billiards.

Proof. 1. j even, say j = 2k, and the conic e(j) is an ellipse, provided that we exclude

the particular case with points S
(j)
i at infinity: There exists an affine scaling

γ : (x, y) 7→
(
± ae
ae|j

x, ± be
be|j

y

)
with e(j) → e and S

(j)
i 7→ Pi (6)
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Fig. 5. Twofold covered periodic hyperbolic billiard P1P2 . . . P14 with τ = 3 and its mirror
(dashed) along with the conjugate billiard, the second diagonals (green) enveloping the
hyperbola he|2, and the third diagonals (orange) enveloping the ellipse he|3 .

Fig. 5. Twofold covered periodic hyperbolic billiard P1P2 . . . P14 with τ = 3 and its mirror
(dashed) along with the conjugate billiard, the second diagonals (green) enveloping the
hyperbola he|2, and the third diagonals (orange) enveloping the ellipse he|3 .

for a particular choice of the signs. This affine scaling sends [S
(j)
i , S

(j)
i+j+1] to the

diagonal line [Pi, Pi+j+1]. The preimage is the extension of the side Pi+kPi+k+1 and
contacts the caustic c at the pointQi+k . Consequently, the j-th diagonal [Pi, Pi+j+1]
contacts the γ-image of the caustic at the γ-image γ(Qi+k) of Qi+k . Thus, we obtain
the hyperbola with semiaxes acae/ae|j and bcbe/be|j as the envelope he|j .3

How to determine the contact point γ(Qi+k) of [Pi, Pi+j+1] with the envelope he|j ?
Let πc denote the mapping of lines to their poles w.r.t. the caustic c . Then the
coordinate representations of these mappings show that γ ◦ πc = πc ◦ γ−1 and
therefore

γ(Qi+k) = γ ◦ πc ([Pi+k, Pi+k+1]) = πc ◦ γ−1 ([Pi+k, Pi+k+1])

= πc

(
[S

(j)
i+k, S

(j)
i+k+1]

)
= [Qi−1, Qi+j ] ∩ [Qi, Qi+j+1].

In the last equation we use the rule that the pole of the connection of two points is
the intersection of the two respective polar lines.

2. j is odd, say j = 2k − 1, and the conic e(j) is a hyperbola. There is an affine
transformation

β : e(j) → c with S
(j)
i 7→ Qi ,

and the claim follows directly from Lemma 1 (note Fig. 3, right).

The affine combination in [11, p. 146] reveals that also in the case of hyperbolic
billiards the conics c, e and he|j belong to a pencil — in alignement with the
arguments used below in the proof of Theorem 5.

3 Note that the axial scaling γ can also be used for proving Theorem 1.
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4 An excursion to projective billiards

There is a certain converse of Theorem 3 (Fig. 2). We present a projective version
which is valid in all pappian projective Fano planes.

Theorem 5. Let P1P2P3 . . . with Pi 6= Pi+1 for i = 1, 2, 3 . . . be a polygon inscribed
in a conic e . Then the extended sides [Pi, Pi+1] are tangent to a conic c if and only
if there exists a polarity w.r.t. a conic p which sends the vertices P2, P3, . . . to the
respectively adjacent first diagonals [P1, P3], [P2, P4], . . . .

Remark 1. The statement in Theorem 5 is trivial for N -periodic billiards with N ≤
5, since there always exists a second-degree curve with five given tangents or five
given pairs (pole, polar).

Proof. We use homogeneous coordinates (x0 : x1 : x2) with e : x0x2 − x21 = 0
and an inhomogeneous parameter t on e such that for the billiard’s vertices holds
Pi = (t2i : ti : 1). The vertices are the poles of the first diagonals [Pi−1, Pi+1] w.r.t.
p :
∑
pikxixk = 0 with pik = pki if and only if for all i ∈ {1, 2, 3, . . . } consecutive

vertices Pi and Pi+1 are conjugate w.r.t. p . This is equivalent to

p00t
2
i t

2
i+1 + p11titi+1 + p22 + p01titi+1(ti + ti+1) + p02(t2i + t2i+1) + p12(ti + ti+1) = 0. (7)

On the other hand, the line [Pi, Pi+1] with homogeneous line coordinates (u0 : u1 :
u2) = (1 : −(ti + ti+1) : titi+1) is tangent to c given by the tangential equation∑
cikuiuk = 0 with cik = cki iff

c00 + c11(ti + ti+1)2+ c22t
2
i t

2
i+1− 2c01(ti + ti+1) + 2c02titi+1− 2c12titi+1(ti + ti+1)=0. (8)

The conditions in (7) and (8) are equivalent iff

p00 : p01 : p02 : p11 : p12 : p22 = c22 : −2c12 : c11 : 2(c11 + c02) : −2c01 : c00 . (9)

Clearly, for a given conic c with coefficient matrix (cik) the second-degree curve p
with the coefficient matrix (pik) is uniquely defined, and vice versa. The geometric
meaning guarantees that c and p are irreducible, i.e., det cik 6= 0 and det pik 6= 0,
which proves the claim.

Theorem 5 provides a new approach to Poncelet’s classical result.

Corollary 6 If a polygon has a circumconic e and an inconic c, then the first
diagonals envelope the conic he|1 which is polar to e w.r.t. p . The conic he|1 belongs
to the pencil spanned by e and c .

Proof. The envelope he|1 is polar to e w.r.t. the conic p , since the polarity in p
sends points of e to tangents of he|1 and tangents of p to points of he|1 .
If we specify the vertex Pi ∈ e at a point of intersection with c, then the neigbouring
vertices Pi−1, Pi+1 ∈ e coincide and the first diagonal [Pi−1, Pi+1] becomes a tangent
of e . Hence, the p-pole of this tangent, namely the point Pi ∈ e , must be located
on he|1 . If all points of intersection between e and c have the multiplicity 1 , then in
the complex extension of the real projective plane and in all projective planes over
an algebraically closed field K, the conics e, c and he|1 share four points and belong
to a pencil.
In all other projective planes we proceed in the following way. Let E, C and P
denote the respective symmetric coefficient matrices of the conics e, c and p as used
above in the proof of Theorem 5. The points Kx of e satisfy xT Ex = 0, and their
polars w.r.t. p have the line coordinates u = Px, or conversely, x = P−1u . Thus,
the envelope he|1 has the tangential equation uT P−1EP−1u = 0 . The points Ky
of he|1 satisfy

yT PE−1Py = 0 .
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It remains to prove that there exist λ, µ ∈ K such that

PE−1P = λE + µC .

We substitute C =
(
cik
)−1

,

E =




0 0 1
0 −2 0
1 0 0


, , E−1 =

1

2




0 0 2
0 −1 0
2 0 0


, P =




c22 −2c12 c11
−2c12 2(c11 + c02) −2c01
c11 −2c01 c00


,

and obtain as their product PE−1P the matrix



2c12c22 − 2c212 −2c01c22 + 2c02c12 c00c22 − 2c01c12 + c211
−2c01c22 + 2c02c12 8c01c12 − 4c02c11 − 2c202 − 2c211 −2c00c12 + 2c01c02
c00c22 − 2c01c12 + c211 −2c00c12 + 2c01c02 2c00c11 − 2c201


,

and this equals λE+µC with λ = c00c22− 4c01c12 + 2c02c11 + c211 , µ = 2 det
(
cik
)
,

which confirms the claim.

Remark 2. Theorem 5 holds not only for the first diagonals of any elliptic billiard in
an ellipse e, but also for the j-th diagonals with j = 3, 5 . . . . This follows iteratively,
when we replace c by one of the envelopes of diagonals he|1, he|3, . . . . In the billiard

case, there is also another extension: We can replace e with one of the conics e(1),
e(2), . . . of the Poncelet grid and apply an affine scaling γ with e(j) → e .

5 Diagonals of focal billiards

We follow the notation in [9] and [10]. Let E be the ellipsoid with the semiaxes
ae > be > ce . Then, its focal ellipse c′ has the semiaxes a′c, b

′
c with

a′2c = a2e − c2e and b′2c = b2e − c2e .

The quadrics which are confocal with E satisfy the equations

x2

a′2c + k
+

y2

b′2c + k
+
z2

k
= 1 with k ∈ R \ {−a′2c ,−b′2c , 0} (10)

as a parameter called elliptic coordinate. The family of confocal central quadrics
contains

for


0 < k = k0 <∞ triaxial ellipsoids,

−b′2c < k = k1 < 0 one-sheeted hyperboloids,

−a′2c < k = k2 < −b′2c two-sheeted hyperboloids,

(11)

the focal ellipse c′ as the limit for k = 0, and the focal hyperbola c′′ in the plane
y = 0 as the limit for k = −b′2c with the semiaxes a′′c =

√
a′2c − b′2c = d′ and b′′c = b′c .

We recall that the family of confocal quadrics sends through each point P =
(x, y, z) with xyz 6= 0 three mutually orthogonal surfaces, one of each type (see, e.g.,
[6, p. 279]). The parameters (k0, k1, k2) of these quadrics are the elliptic coordinates
of P and satisfy

x2 =
(a′2c + k0)(a′2c + k1)(a′2c + k2)

(a′2c − b′2c )a′2c
, y2 =

(b′2c + k0)(b′2c + k1)(b′2c + k2)

b′2c (b′2c − a′2c )
, z2 =

k0k1k2
a′2c b′2c

.

Conversely, eight points in space, symmetrically placed w.r.t. the coordinate frame,
share the elliptic coordinates (k0, k1, k2). The given ellipsoid E has the elliptic co-
ordinate k0 = c2e > 0 .

As described in [10], each elliptic billiard with circumellipse e′ and caustic c′ in
the plane z = 0 can be isometrically transformed into a focal billiard on the ellipsoid
E through e′ with focal ellipse c′. The sides of this spatial billiard lie on generators
of a confocal hyperboloid H1, which intersects E along a line of curvature e , the
common trajectory of the vertices during a billiard motion (Fig. 6).
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inscribed focal billiard (orange) consisting of two 11-gons S
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i+6 . . . with τ = 5 each

on the confocal one-sheeted hyperboloid H1 .

Theorem 7. Let P1P2 . . . be a focal billiard on the ellipsoid E with vertices on
the line of curvature e being the intersection between E and the confocal one-sheeted
hyperboloid H1 with semiaxes ah1 , bh1 and ch1 . Then for even j = 2k, the diagonals
[Pi, Pi+j+1] are generators of a coaxial one-sheeted hyperboloid Dj which belongs to
the pencil of quadrics spanned by E and H1. The hyperboloid Dj has the semiaxes

ad|j =
aeah1

ae|j
, bd|j =

bebh1

be|j
, cd|j =

cech1√
a2e|j − a′2c

=
cech1

ce|j
,

where ae|j , be|j , ce|j are the semiaxes of the confocal ellipsoid through the ellipse

e′(j) of the planar Poncelet grid. Only for N -periodic focal billiards and j = N
2 − 1,

the diagonals belong to a quadratic cone.

In the plane z = 0 of the focal ellipse c′, the trace points of the j-th diagonals form
a polygon where the extended sides coincide with the j-th diagonals of the polygon
formed by the trace points of the original focal billiard. The same holds for the plane
y = 0 of the focal hyperbola c′′.

Remark 3. It is worth to be noted that at focal billiards any two consecutive j-th
diagonals [Pi, Pi+j+1] and [Pi+1, Pi+j+2] are intersecting when j is even.

Proof. The j-th diagonals form a spatial polygon with vertices Pi, Pi+j+1, Pi+2(j+1),
Pi+3(j+1), . . . on e , provided that the billiard is not (2j + 2)-periodic. In a similar
way, the associated spatial Poncelet grid on the hyperboloid H1 (note Fig. 6 or [10,

Figs. 6 and 7]) contains the quartic e(j), and the points S
(j)
i , S

(j)
i+j+1, S

(j)
i+2(j+1), . . .

on e(j) are vertices of a spatial polygon with sides along the rulings of H1, provided
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that j is even.4 There is an axial scaling of the form

δ : (x, y, z) 7→
(
± ae
ae|j

x, ± be
be|j

y, ± ce
ce|j

z

)
with e(j) → e and S

(j)
i 7→ Pi .

Hence, the j-th diagonals belong to the δ-image of H1 , which is a one-sheeted
hyperboloid Dj with the stated semiaxes and the gorge ellipse in the plane z = 0 .

The axial scaling

α′ : (x, y, z) 7→
(
a′c
ah1

x,
b′c
bh1

y, 0

)
sends H1 to the exterior of the focal ellipse c′ in z = 0 , the j-th diagonals of the
focal billiard to j-th diagonals of e′, and the gorge ellipse of H1 to c′. The restriction
of α′ to z = 0 is bijective and maps the top views of the j-th diagonals to the j-th
diagonals of e′. Thus, the envelope to the top views of the spatial diagonals, i.e., the
gorge ellipse of Dj , is bijectively related to the envelope h′e|j , and we can transfer

the construction of contact points of h′e|j , as given in Lemma 1, to that of trace
points of the spatial diagonals.

Finally, it should be noted that several of the presented theorems can also be
verified using the canonical parametrization of the billiards in terms of the Jacobian
elliptic functions to the modulus d/ac (see, e.g., [4] and [12, Theorem 4.3]). As an
example, we demonstrate this for Theorem 7.

According to [10, Theorem 13], the two components of e = E ∩ H1 can be
parametrized as

e1,2(ũ) =

(
−aeah1

a′c
sn ũ,

bebh1

b′c
cn ũ, ±cech1

b′c
dn ũ

)
(12)

where the transition from any vertex Pi of the billiard to the next one Pi+1 cor-
responds to the parameter’s shift by a constant 2∆ũ combined with a change of
the sign of the z-coordinate. Hence, if Pi has the parameter ũ, then for even j
the vertex Pi+j+1 has the parameter ũj := ũ + 2(j + 1)∆ũ , i.e., Pi = e1(ũ) and
Pi+j+1 = e2(ũj).

In order to verify that [Pi, Pi+j+1] ⊂ Dj , it is necessary and sufficient to show
that for even j the points Pi and Pi+j+1 are conjugate w.r.t. Dj . From [12, Cor. 4.5]
follows

ae|j =
a′c dn[(j + 1)∆ũ]

cn [(j + 1)∆ũ]
=
a′c dn

ũj−ũ
2

cn
ũj−ũ

2

, be|j =
b′c

cn[(j + 1)∆ũ]
=

b′c

cn
ũj−ũ

2

,

hence

ke|j = a2e|j − a
′2
c = a′2c

dn2 ũj−ũ
2 − cn2 ũj−ũ

2

cn2 ũj−ũ
2

=
b′2c sn2 ũj−ũ

2

cn2 ũj−ũ
2

.

Thus, it remains to show that

a2e|j

a2ea
2
h1

a2ea
2
h1

a′2c
sn ũ sn ũj +

b2e|j

b2eb
2
h1

b2eb
2
h1

b′2c
cn ũ cn ũj +

ke|j

c2ec
2
h1

c2ec
2
h1

b′2c
dn ũ dn ũj = 1 ,

hence

dn2 ũj − ũ
2

sn ũ sn ũj + cn ũ cn ũj + sn2 ũj − ũ
2

dn ũ dn ũj = cn2 ũj − ũ
2

.

This is an identity due to the addition theorems and half-angle theorems of elliptic
functions [4].

4 For odd j the points Pi and Pi+j+1 belong to the same component of e(j), and the line

[S
(j)
i , S

(j)
i+j+1] is no generator of H1.



12 H. Stachel

6 Conclusion

We extended Poncelet’s classical results and discussed the diagonals of elliptic and
hyperbolic billiards P1P2 . . . in an ellipse e as well as that of focal billiards in an
ellipsoid E . We proved that the envelopes of the j-th diagonals in the plane belong to
a pencil of conics, and we disclosed a remarkable relation between the j-th diagonals
of the original billiard P1P2 . . . and that of the contact pointsQ1Q2 . . . . In space, the
j-th diagonals form ruled quadrics contained in a pencil through E , but only for even
j . Periodic billiards yield periodic polygons of j-th diagonals. All obtained results
can immediately be projectively generalized to statements on planar polygons with
circumconic and inconic as well as to spatial counterparts.
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Velichová, D., Lávička, M., Szarková, D. (eds.): Proceedings of the Slovak-Czech
Conference on Geometry and Graphics 2021, Kočovce/Slovakia, pp. 143–148, http:
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