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Abstract. The role of quadrics in Euclidean 3-space is similar to that of
conics. Therefore, it is natural to ask for string constructions of quadrics,
as spatial analogues of the gardener’s construction of ellipses. The first
solution given in 1882 by O. Staude is based on an ellipse e and its focal
hyperbola h. A string of a given length, fixed with one end at a focal point
of h, is passed behind the nearest branch of h and in front of e and finally
attached to the vertex of the second branch of h. If the string is stretched
at a point P , then P traces a patch of an ellipsoid E confocal with e and
h. Later, Staude presented a second type of string constructions where
e and h are replaced by an ellipsoid E0 and a confocal hyperboloid H0.
Here the ends of the string follow the two branches of the curvature line
E0 ∩ H0. We provide a synthetic approach to these constructions and
extend them to paraboloids.
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1 Introduction

In 1882, Otto Staude [9] presented a string construction for ellipsoids, based on
a pair of focal conics e and h (Fig. 1). It was proposed as a spatial analogue
of the gardener’s construction and Graves’s construction of ellipses (see, e.g., [4,
Figs. 1.8 and 2.29]). Some years later, Staude [10] came up with a second version:
Instead of the pair of focal conics, an ellipsoid E0 and a confocal hyperboloid H0

are used. A string which is stretched at the point P follows at its ends the two
branches of the curve of intersection E0 ∩H0, which are curvature lines of both
quadrics. Then the string continues along geodesics on E0 or H0, while point P
traces a portion of an ellipsoid E being confocal with E0 and H0.

Staude’s string constructions of ellipsoids are subject of two models in
Schilling’s famous collection of mathematical models (listed in [8]), namely
the models VII, no. 191 and 192 (see https://mathematical-models.org/
index.php/models/view/345 and https://mathematical-models.org/index.php/
models/view/279, Digitales Archiv Mathematischer Modelle, TU Dresden). Ac-
cording to D. Hilbert, Staude’s string constructions of quadrics were one of the
great mathematical results of the 19th century [1, p. 236].

We present a synthetic approach to these constructions, thus reducing the
proof to uniqueness theorems of first order differential equations. Moreover, we
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discuss the case of focal parabolas and, similar to the second version mentioned
above, that of confocal paraboloids. For historical remarks, generalizations an
additional references see [2], [3, p. 11], [5, p. 19], [6], or [9, Theorem 4.3]. Since
the string constructions result from properties of quadrics in a confocal family,
we start recalling the relevant ones.

2 Confocal central quadrics

Let E be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter family
of quadrics being confocal with E is given as

F (x, y, z; k) :=
x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
− 1 = 0, (1)

where k ∈ R \ {−a2,−b2,−c2} serves as a parameter within the family. In the
case a > b > c > 0, this family includes

for







−c2 < k < ∞ triaxial ellipsoids,

−b2 < k < −c2 one-sheeted hyperboloids,

−a2 < k < −b2 two-sheeted hyperboloids.
(2)

Confocal quadrics intersect their common planes of symmetry along confocal
conics. As limits for k → −c2 and k → −b2 we obtain ‘flat’ quadrics, i.e., the
focal ellipse e and the focal hyperbola h, satisfying

e :
x2

a2 − c2
+

y2

b2 − c2
= 1, z = 0 , h :

x2

a2 − b2
−

z2

b2 − c2
= 1, y = 0 . (3)

They form a pair of focal conics.1

The confocal family sends through each point P = (ξ, η, ζ) outside the coordi-
nate planes, i.e., with ξηζ 6= 0, exactly one ellipsoid, one one-sheeted hyperboloid,
and one two-sheeted hyperboloid. The respective parameters (k1, k2, k3) define
the three elliptic coordinates of P , where

−a2 < k3 < −b2 < k2 < −c2 < k1 . (4)

For given Cartesian coordinates (ξ, η, ζ) of any point P , we obtain the elliptic
coordinates by solving F (ξ, η, ζ; k) = 0 in (1) for k. Conversely, if the tripel
(k1, k2, k3) of elliptic coordinates is given, then the Cartesian coordinates (ξ, η, ζ)
of the corresponding points P ∈ E satisfy

ξ2 =
(a2+ k1)(a

2+ k2)(a
2+ k3)

(a2 − b2)(a2 − c2)
, η2 =

(b2+ k1)(b
2+ k2)(b

2+ k3)

(b2 − c2)(b2 − a2)
,

ζ2 =
(c2+ k1)(c

2+ k2)(c
2+ k3)

(c2 − a2)(c2 − b2)
.

(5)

1 Conics of a pair of focal conics lie in orthogonal planes and share the principal axis.
The focal points of one conic coincide with vertices of the other (see Fig. ?? and,
e.g., [4, Sect. 4.2]).
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There exist eight such points, symmetric w.r.t. the coordinate planes.

At each point P outside the coordinate planes, the surface normals

vi :=

(

ξ

a2 + ki
,

η

b2 + ki
,

ζ

c2 + ki

)

, i = 1, 2, 3 (6)

to the three quadrics through P are mutually orthogonal. Therefore, confocal
quadrics form a triply orthogonal system of surfaces. Due to a classical theorem
of Dupin, they intersect each other along lines of curvature.

Lemma 1. The tangent cones from any point P to the quadrics of a confocal
family are confocal with the cones connecting P with the focal conics. Their
common planes of symmetry are tangent to the quadrics passing through P . The
tangent cones are coaxial cones of revolution if and only if P is a point of a focal
conic.

For the definition of confocal quadric cones see, e.g., [7, p. 284]. A proof of
Lemma 1 can be found in [7, p. 286]

Given a confocal family, each line other than a generator of any contained
ruled quadric contacts exactly two surfaces of the family, and the tangent planes
at the corresponding points of contact are orthogonal. This results in the lemma
below, which dates back to Jacobi (1839) and Chasles (note [7, p. 291]).

Lemma 2. On each quadric Q, the geodesics are curves with tangents contact-
ing another fixed quadric Q′ that is confocal with Q (see [7, Fig. 7.7]).

3 String constructions of central quadrics

Theorem 1 (Staude’s first string construction). Let e be an ellipse with
the focal hyperbola h. Let F1 denote a vertex of e and focal point of h and F2

the focal point of e and vertex of h at a greater distance to F1. A string of given
length, fixed with one end at F1, is passed behind the nearest branch of h and in
front of e and finally attached to F2. If the string is stretched at a point P such
that it forms a spatial polygon with vertices F1, G1 ∈ h, P , G2 ∈ e, and F2, then
P traces a patch of an ellipsoid E confocal with e and h (see Fig. 1).

The presented proof is based on two lemmas.

Lemma 3. Let a string with fixed endpoints F1 and F2 be stretched over a given
curve c. Then, the corner-point G ∈ c of the string satisfies two conditions:

(i) The tangent tG to c at G subtends congruent angles with the straight segments
F1G and F2G, and

(ii) the normal plane to c at G either passes through both endpoints or separates
F1 and F2. In the latter case, the lines [F1, G] and [F2, G] are generators of a
cone of revolution with apex G and axis tG (Fig. 2).
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P

G1

G2

F1

F2

nP

e

h
E

Fig. 1. Staude’s first string construction of an ellipsoid uses its focal conics e and h.

Proof. When the string has reached its equilibrium at G ∈ c, the stress along
the string induces two forces of equal quantity which act along the segments
GF1 and GF2 and result in a force orthogonal to c. Therefore, the components
of the two forces in direction of the tangent tG must be opposite in order to
compensate each other (see Fig. 2). This implies congruent angles between tG
and the two segments of the strengthened string.

It is noteworthy that G needs not be unique. If, for example, the curve c is an
ellipse with focal points F1 and F2, then each point G ∈ c satisfies the claimed
equilibrium condition, since the sum of distances GF1 and GF2 is stationary.
Other examples can be found below in Fig. 7 (with c = o) or in [4, p. 143,
Fig. 4.17]).

Lemma 4. Let a strengthened string of given length with one fixed endpoint F1

be bent over a curve c while the second endpoint P traces a smooth curve p. Then,
at each pose P , the curve p is orthogonal to the final segment of the string.

Proof. With respect to F1 as the origin of a coordinate frame, the curve c can be
parametrized as c(t) = λ(t)e1(t) with ‖e1(t)‖ = 1 for t in some interval J . After
being bent over c, the upper segments form a ruled surface, and the position
vector of the trajectory of P can be written as

f(t) = c(t) + (k − λ(t)) e2(t) with ‖e2(t)‖ = 1 for k = const.

The angle condition claimed in Lemma 3 implies for all t ∈ J

〈 ċ, e2〉 = 〈 ċ, e1〉, and hence 〈λ̇e1 + λ ė1, e2〉 = λ̇
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G

F1

F2

tG

c

Fig. 2. A string with fixed endpoints F1, F2

and stretched over the curve c makes equal
angles with the tangent to c at the vertex G

(Lemma 3).

P

G1 G2

nP

τP
vP

vr1

vt1

vr2

vt2

Fig. 3. Decomposition of the velocity
vector vP at P , while the length of
the strengthened string F1G1PG2F2 is
kept fixed.

if the dot indicates differentiation by t. Consequently, we obtain

〈 ḟ , e2〉 = 〈ċ− λ̇e2 + (k − λ) ė2, e2〉 = λ̇+ 〈−λ̇e2 + (k − λ) ė2, e2〉 = λ̇− λ̇ = 0.

This proves Lemma 4.

Proof. [Theorem 1] By virtue of Lemma 3, point G1 ∈ h is the apex of a cone of
revolution which passes through F1 and P and has the tangent tG1

to h as its
axis (Fig. 1). We learned in Lemma 1 that both conics e and h are the locus of
apices of cones of revolution which pass through the other focal conic, and the
axes of these cones are tangents to the conic. Therefore, since the segment G1F1

meets the focal ellipse e, the same must hold for the extension of the segment
G1P .

Lines through the point P meeting e and h are common generators of two con-
focal cones (Lemma 1). Thus, if there exists one transversal, then there are
four that are mutually symmetric w.r.t. the tangent planes to the three confocal
quadrics through P . A 180◦ rotation about the surface normal nP of the ellipsoid
E through P takes the line [P,G1] to a line [P,G2] which again meets the two
focal conics e and h. The traces of the plane [P,G1, G2] in the planes of e and
h reveal that, starting from P , the line [P,G2] meets first e and then h. Due to
the properties of a pair of focal conics, the bent portion PG2F2 of the string is
in equilibrium because of Lemma 3.

Let point P move in such a way that the string remains strengthened. We are
going to prove that in this case the tangents to all possible trajectories of P are
orthogonal to nP .

If the point P is fixed on the moving string, then, by Lemma 4, the tangent vector
vt1 of the point P is orthogonal to PG1. Similarly, for the point P being fixed
on the final portion of the string, the velocity vector vt2 would be orthogonal to
PG2. Because of the constant total length of the string, the relative velocities
of P with respect to the two parts of the string must be equal; when the length
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of the initial part increases, that of the final part must decrease about the same
rate, and vice versa. This implies for the vector vP of the absolute velocity of P

vP = vt1 + vr1 = vt2 + vr2 (7)

that the vectors vr1 and −vr2 are symmetric w.r.t. nP . The orthogonal projec-
tion of the involved vectors into the plane [P,G1, G2] reveals (see Fig. 3) that
vP must be orthogonal to nP .
Consequently, at all poses in some neighbourhood, point P moves tangentially
to the confocal ellipsoid through P , or in other words, if we set up the wanted
trajectory of P by F (x, y, z) = 0, then with an appropriate scalar λ(x, y, z)

gradλF =
( x

a2
,

y

b2
,

z

c2

)

.

Now we conclude, based on theorems from the theory of differential equations,
that P traces a patch of the unique ellipsoid E through the given initial pose.

Conversely, if P remains on the ellipsoid E , then vP is orthogonal to nP . This
implies equal relative velocities ‖vr1‖ = ‖vr2‖ in appropriate directions, and
therefore, a constant length of the string.

We find the total length L of the string by specifying the point P at one of
the vertices of the ellipsoid E . This yields L = 2a + ae − ah, where a, ae, and
ah are the respective principal semiaxes of the ellipsoid E , the focal ellipse e,
and the focal hyperbola h. It should be noted that W. Böhm [2] used Ivory’s
Theorem (see, e.g., [7, Sect. 7.2]) to prove that, for all poses of P , the sum of
distances equals L.

Remark 1. 1. One cannot obtain the complete ellipsoid with the string construc-
tion described in Theorem 1, since the string, starting at F1 and coming from
behind, has to be bent around the hyperbola h. This does not work if point P
also lies behind the plane spanned by h. With regard to the other end of the
string, the point P cannot lie under the plane of the ellipse e.
2. The same ellipsoid can be generated by using the remaining two common
generators of the confocal cones which connect P with the pair of confocal conics.
The two strengthened strings could even be bound together at P by a small ring
through which the two strings can glide independently from each other, while P
remains on the quadric.

Corollary 1. The string construction of Theorem 1 for the triaxial ellipsoid E
remains valid if the fixed endpoints F1 and F2 are replaced by other sufficiently
close points of the respective conics. This variation affects only the total length
L of the string and the boundary of the domain, that is traced by the point P on
the ellipsoid E.

Proof. The condition stated in Lemma 3 remains valid when F1 is replaced by
a sufficiently close point F ′

1
∈ e (Fig. 4). On the other hand, since tG1

forms
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P

G1

G2

F1

F2

F ′

1 F ′

2

tG1

e

h

Fig. 4. The fixed points F1 and F2 can be replaced by F ′

1 ∈ e and F ′

2 ∈ h.

congruent angles with G1F1 and G1F
′

1
, while F1 and F ′

1
lie on the same side of

the normal plane to tG1
at G1, the difference of distances

d := G1F ′

1
−G1F1

remains constant. Therefore, the difference d must be added to the total length
L of the string in order to keep P on the same ellipsoid. The same is valid for
the other fixed endpoint F2 ∈ h.

In [10], Staude presented another string construction, which is also docu-
mented as a historical model in [8, p. 139]. It generalizes the version of Graves’s
construction on an ellipsoid E0, as displayed in [7, Fig. 7.14].

Theorem 2 (Staude’s second string construction). Let a string of appro-
priate length with both ends be attached to a pair of antipodal curvature lines
e1, e2 of an ellipsoid E0 and kept taut so that it follows a geodesic crossing from
e1 to e2. If we elongate this string to a fixed length and keep it taut at a point
P between the two curves e1 and e2, then P traces a patch of an ellipsoid E
confocal with E0. Conversely, for a point P moving locally on E, the length of
the described taut string connecting e1 via P with e2 remains fixed.

If the string is sufficiently short, then if follows, from the two antipodal
curvature lines e1, e2 ⊂ E0 on, geodesic arcs and furtheron respective tangents
meeting at the point P (see Fig. 5). By virtue of Lemma 2, the two tangents
[P, T1] and [P, T2] contact E0 and a confocal hyperboloid H0, which is the second
confocal quadric through e1 and e2. Due to Lemma 1, they are common to two
confocal tangent cones with apex P , and consequently, in symmetric position
w.r.t. the normal at P to one of the three confocal quadrics through P . In order
to prove Theorem 2, we need a statement similar to Lemma 4.

Lemma 5. Let one end of a strengthened string of given length be attached to
a line e of curvature, which is the intersection of an ellipsoid E0 with a confocal
hyperboloid H0. Suppose that, in each pose, the string is a C1-composition of
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P

C1

C2

T1

T2

e1

e2

E0

H0

E

Fig. 5. According to Staude’s generalized string construction, the two ends of the string
have to be attached to two antipodal curvature lines e1, e2 of an ellipsoid E0, while the
point P moves on a confocal ellipsoid E .

three arcs. It begins along the curved edge e, continues from a point C ∈ e on
along a geodesic c ⊂ E0 until point T . Finally, there is a straight segment tangent
to c at T . Then, in which way ever, the second endpoint P of the string moves
smoothly in space, its trajectory p is orthogonal to the straight segment TP .

Proof. Any point Q that is attached to the string between C and T runs on an
orthogonal trajectory of the geodesic c. There is a local parametrization x(u, v),
(u, v) ∈ I × J , of E0 with geodesics tangent to c as u-lines and its orthogonal
trajectories as v-lines. By virtue of a theorem by Gauss, u can be assumed as
common arc length along the geodesics. This implies for the partial derivatives

〈xu,xv〉 = 0, 〈xu,xu〉 = 1, 〈xu,xuu〉 = 〈xu,xuv〉 = 〈xv,xuu〉 = 0

for all (u, v) ∈ I × J . The equations 〈xu,xuu〉 = 〈xv,xuu〉 = 0 confirm that the
osculating planes of the u-lines are orthogonal to the tangent plane.

Now we distinguish between two cases:
(i) If, under the motion of the string’s endpoint P in space, the point C and the
geodesic c remain fixed, i.e., T runs along c, then the point P traces an involute,
which is an orthogonal trajectory of the generators on the tangent surface of c.
(ii) Otherwise, the v-coordinate of T varies. Let T trace the curve p(t) on E0
given by u = u(t) and v = t for t ∈ J . If the point P is supposed to be attached
to the string, then we obtain for its path the parametrization

p(t) = x (u(t), t) + (k − u(t))xu(t) with k = const.
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From

ṗ(t) :=
dp(t)

dt
= u̇xu + xv − u̇xu + (k − u)(u̇xuu + xuv)

follows the stated orthogonality, since

〈xu, ṗ〉 = 〈xu, xv〉+ (k − u)〈xu, u̇xuu〉+ (k − u)〈xu, xuv〉 = 0.

The same holds when we replace the ellipsoid E0 by the hyperboloid H.

Proof. [Theorem 2] Based on Lemma 5, the proof is similar to that of Theorem 1.
With respect to the part of the string attached to the line of curvature ei, i ∈
{1, 2}, a point P which is fixed on the moving string has a tangent vector vti

orthogonal to the segment PTi. If, additionally, the point P is moving relative to
the string with velocity vector vri in direction of PTi, we obtain for the absolute
velocity of P the decomposition (7). When the total length of the string remains
constant, the relative velocities ‖vr1‖ and ‖vr2‖ must be equal. This implies, as
depicted in Fig. 3, that vP is orthogonal to the interior angle bisector of ∠T1P T2

and tangent to the confocal ellipsoid E passing through P .
Conversely, if P remains on the ellipsoid, then we obtain equal relative velocities
in appropriate directions, and therefore, a constant length of the string.

4 Paraboloids

The quadrics confocal with an elliptic paraboloid can be represented as

x2

a2 + k
+

y2

b2 + k
− 2z − k = 0 for k ∈ R \ {−a2,−b2}. (8)

In the case a > b > 0, this one-parameter family contains

for







−b2 < k < ∞ elliptic paraboloids,

−a2 < k < −b2 hyperbolic paraboloids,

k < −a2 elliptic paraboloids.

(9)

For each k, the vertex of the corresponding paraboloid has the coordinates
(0, 0,−k/2). The point (0, 0, b2/2) is the common focal point of the principal
sections in the plane x = 0, and (0, 0, a2/2) is the focus for sections in y = 0.

The limits for k → −b2 or k → −a2 define the pair of focal parabolas

p1 :
x2

a2 − b2
− 2z + b2 = 0, y = 0 , p2 :

y2

a2 − b2
+ 2z − a2 = 0, x = 0 . (10)

within the family of confocal paraboloids. The vertex of each focal parabola
coincides with the focal point of the other parabola. Therefore, this pair is the
same as shown in [4, Fig. 4.15]: each parabola is the locus of apices of cones
of revolution passing through the other parabola. This holds since the results
stated in Lemmas 1 and 2 are also true for confocal paraboloids.
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P

G1

G2

F1

F2

p1

p2

nP

Pe

Fig. 6. A string construction based on focal conics fails at the elliptic paraboloid Pe:
Lemma 3,(ii) is not satisfied at the point G2.

When the first string construction, as displayed in Fig. 4, is modified and
applied to two focal parabolas p1, p2, then it fails for two reasons:

(i) At an elliptic paraboloid Pe (Fig. 6), the strengthened string does not satisfy
the second condition of Lemma 3, i.e., the normal plane of p2 at G2 does not
separate the two adjacent segments G2F2 and G2P .

P

G1

G2

F1

F2

p1

p2

nP

o P
h

Fig. 7. The difference (PG1 + G1F1) − (PG2 + G2F2) of the strings’ lengths remains
constant if point P moves on the hyperbolic paraboloid Ph. For points P on the orthog-
onal trajectory o (dotted green line) of the confocal hyperbolic paraboloids the total
length of the strengthened string with fixed endpoints F1, F2 remains constant.
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(ii) At a hyperbolic paraboloid Ph (Fig. 7), the surface normal nP of Ph is not
the interior angle bisector of ∠G1P G2, but the exterior. Therefore, we can state
for points P ∈ Ph that the difference of lengths of the two parts F1G1P and
F2G2P of the string,

(PG1 +G1F1)− (PG2 +G2F2)

P

Pe

Ph

P

e1
e2

C1

T1

T2

C
2

C′

1

T
′

1

T′

2

C′

2

Fig. 8. String construction of the elliptic paraboloid P .
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remains constant. Otherwise, for points P running on the orthogonal trajectory
o of the family of confocal hyperbolic paraboloids, the sum of these two lengths
remains constant, i.e., the string remains strengthened. However, the string does
not define a constrained motion of P but admits two degrees of freedom.2

On the other hand, Staude’s second string construction remains valid for
paraboloids. Figure 8 shows a string of fixed length with both ends attached to
the two connected components e1, e2 of the line of curvature that is shared by
the confocal paraboloids Pe and Ph. If this string is strengthened at the point P ,
then P is movable on an elliptic paraboloid P that is confocal with Pe and Ph.
The proof is the same as that for Theorem 2, when the points Ci on the string
denote for i = 1, 2 the endpoints of the sections along the line of curvature, while
TiP are the straight segments tangent to the geodesics at Ti.

If conversely point P moves locally on the elliptic paraboloid P , then the
string remains strengthened, because nP is the interior angle bisector of ∠T1P T2.
There are even two possibilities for this string (Fig. 8) since the four common
tangents from P to Pe and Ph consist of two pairs of lines which are symmetric
w.r.t. the surface normal nP of P at P (note Lemma 1). We summarize:

Theorem 3. Staude’s second string construction, as explained in Theorem 2
for triaxial ellipsoids, works similar for elliptic paraboloids, when the two ends of
the string are attached to different components of the intersection curve between
confocal elliptic and hyperbolic paraboloids (Fig. 8).
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