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Abstract. Due to A. KOKOTSAKIS a quad mesh consisting of congruent convex
quadrangles of a planar tessellation is flexible. This means, when the flat quad-
rangles are seen as rigid bodies and only the dihedral angles along internal edges
can vary, the mesh admits incongruent realizations in 3-space, so-called flexions.
It has recently be proved by the author that at each nontrivial flexion all vertices
lie on a cylinder of revolution. In the generic case the complete tessellation is an
example of a flexible periodic framework with the property that the symmetry
group of each flexion remains isomorphic to that of the initial flat pose.

The goal of this paper is to give a necessary and sufficient condition for a convex
quadrangle and for the dihedral angles such that the corresponding flexion forms a
tiling on a cylinder, i.e., after bending around a cylinder two boundaries of a finite
mesh fit precisely together — apart from a shift. When in such a closing pose the
boundaries are glued together along their overlap then the mesh is infinitesimally
rigid.
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1. Introduction

A quadrangular mesh (‘quad mesh’ by short) is a simply connected subset of a polyhedral
surface with planar quadrangles as faces in the Euclidean 3-space. The edges are either
internal when they are shared by two faces, or they belong to the boundary of the mesh.
Let the quadrangles be rigid bodies; only the dihedral angles along internal edges can vary.
A quad mesh is called continuously flexible when there is a one-parameter set of mutually

* A preliminary version of this paper was published under the title “A flexible quadrangular mesh tiling a
cylinder of revolution” in the Proceedings of the 15" International Conference on Geometry and Graphics,
that took place at McGill University in Montreal, Aug. 1-5, 2012.
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incongruent realizations of this mesh in 3-space, so-called flezions. The continuous movement
of the mesh is called a self-motion.

A complete classification of all continuously flexible quad meshes is still open (compare,
e.g., [2]). Open is in particular the classification of flexible 3 x 3 quad meshes, the so-called
Kokotsakis meshes (see, e.g., Fig. 2), named after Antonios KOKOTSAKIS [4]. In [7] a list of
five flexible types is presented. In the following we study the flexions of a very special example
(cf. [4]) whose 3 x 3 sub-meshes are of type 5 according to this list.

2. Flexions of tessellation meshes

The following continuously flexible quad mesh dates back to A. KOKOTSAKIS [4, p. 647]. Tts
initial pose is flat and consists of congruent convex quadrangles of a planar tessellation. Any
two quadrangles sharing an edge (like f;; and fi;; in Fig. 1) change place under a rotation
through 180° (half-turn) about the midpoint of the common edge. Such a pair of adjacent
quadrangles forms a centrally symmetric hexagon (see shaded area in Fig. 1). The complete
tessellation can be generated by iterated translations of this hexagon. The arrows in Fig. 2
indicate the directions of these generating translations r and .

For a generic quadrangle the symmetry group of this tessellation is the wallpaper group
p2. In the case of a deltoid the symmetry group includes also reflections and glide reflections;
we obtain the wallpaper group pmg, when the particular case of a rhombus is excluded. An
isosceles trapezoid gives rise to the group cmm.

Figure 2: The mesh is generated by iterated
Figure 1: Kokotsakis’ flexible tessellation half-turns p,,..., p, acting on the face fi;

2.1. Tessellation meshes

We recall a theorem from [9, Thm. 6, p. 12] where the flexions obtainable by a one-parameter
self-motion of our planar tessellation are characterized. Additional degrees of freedom of
single faces on the boundary of the mesh can be excluded by the request: Whenever the quad
mesh includes three faces with a common vertex, then also the fourth face of this pyramid
should be included. Thus we obtain a rectangular grid of m x n quadrangles. This is what
we call an m x n tessellation mesh (TM for brevity).

There is a natural way to denote the quadrangles of this mesh with m rows and n columns
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Figure 3: Three snap-shots of the self-motion of a 9 x 6 tessellation mesh. Dashes indicate
valley folds. The text line has been affixed to emphasize the crease pattern.

by fij with1 <i<mand1<j<n.

fml fm2 fm3 fmn

P foo fos o fon
fll f12 f13 fln

The sequences of edges between consecutive ‘rows’ {f;; |j =1,...,n}and {fit1;|j =1,...,n},
1 <i < m, are called horizontal folds. Those between the ‘columns’ {f;;|i =1,...,m} and
{fijmli=1,...,m}, 1 <j <mn, form the vertical folds of the mesh.

By extending the ‘rows’ or ‘columns’ or both of them in both directions to infinity, we
obtain respectively an oo X n or m x oo or co X oo TM. When at the oo x oo mesh we fulfill
the planarity constraint by erecting pyramids over the quadrangles, we obtain a periodic
bar-and-joint framework (compare [3]) which admits the symmetry group p2.

Suppose the basic quadrangle is a trapezoid. Then in the flat pose the folds of one type are
aligned. About each of these folds the mesh can be bended, independently from each other.
We call these particular flexions trivial. However, the same mesh admits also nontrivial
flexions (note Fig. 14), except the case with a basic parallelogram.

Theorem 1 ([9]). All' m xn tessellation meshes with convex quadrangles are flexible (Fig. 3).
For m,n > 3 at each nontrivial flexion obtainable by a self-motion the vertices are located on
a cylinder of revolution (see Fig. 6).

The union of two quadrangles with a common edge is a line-symmetric hexagon. The images
of this hexagon under iterated coaxial helical displacements r and l cover the complete mesh.

Proof: Here is a summary of the proof presented in [9]:

We start with the four faces fi1, fia, f22, fo1 sharing the vertex V; (shaded area in Fig. 2).
These pairwise congruent faces of a 2 x 2 TM form a four-sided pyramid. It is flexible,
provided the fundamental quadrangle is convex. Otherwise, one interior angle of a face at V}
is greater than the sum of the other three interior angles so that the pyramid admits only the
flat realization.

Step 1: Let a non-planar flexion of this pyramid be given (Fig. 4). For each pair (fi1, fi2), ...,
(fo1, fi1) of adjacent faces there is a respective 180°-rotation (= half-turn) p,, ..., p, which
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Figure 4: Flexion of a 2x2 tessellation mesh ~ Figure 5: Flexion of a 3 x3 tessellation mesh

swaps the two faces. So, e.g., fiz = p;(f11) and fi; = p;(fi2). The axis of p, is perpendicular
to the common edge of f;; and fi2, and it is located in the plane which bisects the dihedral
angle between fi; and fi».

After applying the four half-turns py, ..., p, consecutively, the quadrangle f;; is mapped
via fia, foz, and fo; onto itself. Hence the product p,...p; equals the identity. (We indicate
the composition of mappings by left multiplication.) Because of p; ! = p, for i =1,...,4 we
obtain

P2P1 = P3Py (1)
Now we recall a standard result from the geometry in 3-space: The product of two half-
turns about non-parallel axes a, as is a helical displacement.
e Its axis is the common perpendicular of a; and as;
e [ts angle of rotation is twice the angle made by a; and as;
e [ts length of translation is twice the distance between a; and as.
Note that any two coaxial helical displacements commute.

Suppose the axes of p, and p, are parallel (compare Fig. 4); then they were orthogonal
to two adjacent edges of fi5 and therefore orthogonal to the face fi». As a consequence all
four faces fi1,..., fo1 are coplanar.

Hence conversely, when our pyramid with apex V} is not flat, then the axes of neighbouring
half-turns cannot be parallel. Their common perpendicular is unique. Therefore (1) implies:

Lemma 2. (i) The axes of the four half-turns py, ..., py have a common perpendicular p.
(ii) At each non-flat flexion of a tessellation mesh the displacements

T = popy = p3py and l:=p,p, = ps3p, (2)

are helical motions with a common axis p. Therefore they commute. In the initial flat pose r
and l convert into the generating translations (see Fig. 2).

Now we extend the flexion of the 2 x 2 TM (shaded area in Fig. 2) step by step to the
complete m x n mesh by adding congruent copies of the initial pyramid without restricting
the flexibility. First we concentrate on the 3 x 3 mesh displayed in Fig. 2:
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Step 2: The half-turn p, exchanges not only fi» with fo; but maps the pyramid with apex V;
onto a congruent copy with apex V5 sharing two faces with its preimage. We get fi3 = py(fo1)
and fo3 = py(fi1). Analogously, p; generates a pyramid with apex V; which shares the two
faces fae and fo; with the initial pyramid, and f3; = p3(fi2), fs2 = p3(fi1)-

Finally there are two ways to generate a pyramid with apex V3. Either, we transform p,
by p, and apply p,p,p,, which exchanges foo with fo3 and swaps V5 and V3. Or we proceed
with p;p,ps, which exchanges foo with f55 and swaps V, and Vs.

Thus we obtain mappings (pop1P2)ps = popy and (p3pyps)p; = pspy With Vi — V.
Both displacements are equal by (1), and we notice

T = popy = P3Py Vi Vs, fui fa, fia e foz, for v fao, fao = fas (3)

Hence each flexion of the initial pyramid with apex V] is compatible with a flexion of the 3 x 3
TM displayed in Figs. 2 or 5. It is proved in [9, Lemma 8] that this the only way to extend
the given flexion of the 2 x 2 TM, provided we restrict to flexions obtainable by a self-motion
from the initial flat pose.!

According to Lemma 2 the helical displacements » = p,p, and I = p,p, = p;p, are the
spatial analogues of the generating translations in the plane. » maps V; onto V3, and I maps
the pyramid with apex V5 onto that with apex V. Thus we have

L= p,p, = p3py: Vo= Vi, fia= for, fis = faa, foa = f31, fos = foo. (4)

Step 3: Finally, we continue this flexion of the 3 x 3 mesh to the complete m x n TM: From
Egs. (3) and (4) we conclude that ™' = rI~" acts like a horizontal shift and maps the left
column (fi1, fo1, f31) onto the right column (fi3, fas, fs3) of our 3x 3 TM. When I ™7 acts on
the complete 3 x 3 mesh, we get a second mesh which shares with the original one the column
(fi3, fo3, f33); the union is a 5 x 3 mesh. This can be iterated; (I"'r)? = I"*r? extends by
two more columns, and so on. After k extensions we end up with a (2k + 3) x 3 mesh.

On the other hand the vertical shift Ir = vl maps the row (f11, fi2, fi3) onto the third
row (f31, fa2, fa3). Since this vertical shift commutes with the horizontal one, the same holds
for our (2k+3) x 3 mesh. The same procedure as before allows to extend our flexion stepwise
upwards by pairs of rows. Hence after [ extensions we obtain a flexion of a (2k + 3) x (2 + 3)
TM. Due to [9, Lemma 8] for each added 3 x 3 mesh the flexion is unique when we restrict
to nontrivial flexions which can be reached during a (continous) self-motion.

All vertices of this flexion arise from V; by displacements which keep the common per-
pendicular p of the half-turns’ axes fixed. For example, according to Fig. 2

This is the reason why all vertices have the same distance to p. Hence they are located on a
cylinder of revolution with axis p (note the cylinder in Fig. 6).

When fi5 and foo are glued together, we obtain a skew hexagon, one half of our initial
pyramid with apex V; (see Fig. 2). The half-turn p, maps this hexagon onto itself; hence it
is line-symmetric. By (3) the helical displacement r maps this hexagon onto the compound
of fo3 and f33. The displacement I maps the compound of fi5 and fes onto fo; and f3;. When

! According to [9] under particular conditions also other flexions are possible, but they are isolated.
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Figure 6: At each flexion of the first or second kind all vertices are placed on a
cylinder of revolution; the marked vertices can be joined by a helical line.

these two helical displacements act repeatedly on the line-symmetric hexagon, the complete
flexion is obtained. This completes the main arguments for Theorem 1. O

According to [9, Remark 2] the flat pose admits a bifurcation between two analytic self-
motions of the TM. Figure 6 shows flexions of different kinds of a 6 x 6 TM.

2.2. Computation of flexions

How to compute a flexion? According to Fig. 7 the interior angles (4, «, 7, 3) of the faces
define the consecutive side lengths of the spherical four-bar which controls the dihedral angles
of the (flexible) 2 x 2 mesh. The related formulas can be found in [7, (1)—(6)]. Figure 7 (b)
reveals that for given dihedral angle ¢; along the edge V;V; there exist two corresponding
points B and B at the spherical four-bar and therefore two flexions of the TM.

In the initial pose the corresponding spherical four-bar constitutes a great circle. The
statement Lemma 2 (i) is equivalent to the claim that at non-folded poses the exterior bisectors
of the spherical quadrangle AygABB, share a pair of antipodal points. Corresponding to the

Figure 7: The interior angles in the flat quadrangle serve as side lengths of the
spherical four-bar AgAB B, which controls the dihedral angles of the flexion
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trivial flexions (note page 155) in the trapezoidal case, e.g., a+v =+ = 7, point B stays

fixed opposite to Ay and the half-circle from Ay via A to B rotates about the axis AgB.
After extending our 2 x 2 mesh to an m xn TM self-intersections can occur. But they can

even show up at our initial pyramid as soon as the spherical quadrangle has a self-intersection.

There is a second way to compute the flexions (see Fig. 8): The plane |[fs] spanned by
the convex quadrangle V; ...V} of foy intersects the circumcylinder of the flexion (Theorem 1)
along an ellipse e. There is a pencil of conics passing through the four vertices Vi, ...,
V4. Hence we can choose any ellipse from this pencil and specify one of the two cylinders
of revolution passing through this ellipse. Now we define the half-turns p, and p;: Their
axes pass through the midpoints of the sides ViV, and Vi Vy, respectively, and intersect the
cylinder’s axis p perpendicularily (compare Fig. 4). The common normal between V5V3 and
p is the axis of p,p,p,, that between V3V, and p is the axis of p;p,p5. Interations of these
half-turns transform our initial face fso into all faces of the flexion.

Figure 8: Each ellipse e through the planar quadrangle V; ...V}
defines a non-flat flexion of the tessellation mesh

It is wellknown from Projective Geometry that the centers of conics passing through the
vertices Vi ...V, of a quadrangle are placed on a conic, the nine-point conic of the quadrangle.
It contains the midpoints of the sides and diagonals and the vertices of the diagonal triangle.
For a convex quadrangle different from a trapezoid the center curve is a hyperbola, and one
branch is reserved for the centers of ellipses included in the pencil (see [5, p. 411]).

Due to [5, p. 409] the axes of the cylinders are parallel to the generators of an orthogonal
quadratic cone which intersects the spanned plane in two real lines parallel to the axes of
parabolas passing through V; ... Vj. In the generic case the ruled surface swept by the cylinder
axes is algebraic of degree 8.

Corollary 3. For a given tessellation mesh the cylinders of revolution addressed in Theorem 1
have the following properties:

(i) Their azes intersect the affine span of any face f;, of the mesh along one branch of a
hyperbola, the nine-point conic of the included quadrangle. Only in the case of a trapezoid or
parallelogram the hyperbola splits into two lines.

(i) Relative to fj the azes are parallel to generators of an orthogonal quadratic cone, which
has a symmetry plane parallel to [f;r]. This director cone splits into planes if and only if the
basic quadrangle Vi ...V, has a circumcircle. Then these two planes are orthogonal.
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Figure 9: In the case of a symmetric Figure 10: The axial or planar symmetries of a
trapezoid the nontrivial flexion has deltoid as basic quadrangle cannot be extended
planes of symmetry to local symmetries of non-flat flexions

2.3. Particular cases

In this subsection we study the particular cases where the basic convex quadrangle is either
a trapezoid, a deltoid or a cyclic quadrangle, i.e., a quadrangle with circumcircle.

Theorem 4. (i) When the quadrangles of the tessellation mesh are trapezoids (note Fig. 14),
then at each nontrivial flezion either lr or I 'r is a translation along p.

(ii) For a symmetric trapezoid all nontrivial flexions admit locally planar reflections.’

Proof:  According to the proof of Lemma 2 the axis p of the cylinder is the common perpen-
dicular of all axes of half-rotations which exchange pairs of neighbouring faces (fi;, fi+1;) or
(fij, fij+1). For each internal edge e of a flexion there exists a half-rotation p, mapping e,
onto itself. The axis of p, is orthogonal to e (see Fig. 4).

(i) Let fi11 be a trapezoid with parallel edges e; and ey . There are two cases to distinguish:

e When the axes of the half-rotations corresponding to e; and e, are not parallel, then
their common perpendicular p is unique and necessarily parallel to e; and ey. This
implies, that the images of e; and e, under all helical motions about p are parallel to p.
The folds of one type are aligned; the flexion is trivial in the sense mentioned above on
page 155.

e When the axes of the half-rotations corresponding to e; and ey are parallel then the
product of these half-rotations is a translation, which maps the neighbour face of fi;
along e; onto the neighbour face along the opposite side e .

(ii) Now the quadrangle Vi ...V, in Fig. 4 is a symmetric (or isosceles) trapezoid foy with
parallel sides e; = V4V, and e; = V45V3. Then the reflection in the plane of symmetry of the
pair (V1,V)) (and at the same time of (V5, V3)) maps the trapezoid onto itself. Its product
with ps is a planar reflection 14 which interchanges fos and its neighbor face fo;. The plane
of reflection is spanned by the common edge e; = V1V and by the axis of p;. There is also a
planar reflection o3 interchanging the faces fos and fo3 through the opposite edge e, = V5 V3.
The reflecting planes of 14 and o535 must be parallel since the edges ey, es are parallel as

2‘Local’ means that for a finite TM the symmetry works only in a sufficiently small neighborhood of the
face but need not map the boundary onto itself.
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Figure 11: For particular quadrangles with a circumcircle a 3 x 2 tessellation mesh
can continuously be folded without self-intersections so that finally it
can be ‘packed’ into the interior of one single circumcircle

well as the axes of the corresponding axes — due to the first part of this proof. The product
093 014 of these reflections is a translation mapping fo; onto fas. Due to statement (a) this
is a translation along the cylinder axis p. Therefore the reflecting planes of o4 and 93 of
the planar reflections are orthogonal to p and the same holds for the included parallel edges
ey, ex of the symmetric trapezoid (note Fig. 9). D

Figure 10 reveals that in the case of a deltoid the axis of symmetry of a single deltoid is
not orthogonal to the axis of the circumscribed cylinder, and the plane of symmetry of the
deltoid does not pass through the cylinder axis p. Hence, neither the half-turn nor the planar

reflection which maps a single face onto itself gives a local symmetry operation of the non-flat
flexion of the TM.

When the quadrangle in Fig. 8 has a circumcircle, then among the ellipses through the
vertices there is a circle with only one cylinder of rotation passing through. In this case the
axes of half-turns p,, ..., p, are all coplanar. The complete flexion is flat; the circumcircles of
all faces coincide. Similar to Miura-ori (see, e.g., [8]) this TM can be ‘packed’ into very small
size such that it finds place in the circumcircle of one quadrangle — at least ‘theoretically’, i.e.,
without paying attention to self-intersections. Since opposite angles in the convex quadrangle
Vi ...V are complementary (compare Fig. 7), the included 3 x 3 Kokotsakis meshes are of
isogonal type ([7, type I1I]), while at the same time all 3 x 3 TMs are particular examples of
the line-symmetric type V ([7, p. 436]).

However, we can state that such a flat folded pose cannot be obtained with a physical 3 x 3
TM without self-intersections — except the case with a square V; ... V,. Only a 3 x2 TM can
admit a self-movement without collisions between the unfolded initial pose and the completely
folded second flat pose in the interior of one single circumcircle (see series of snapshots in
Fig. 11).3

3Under the assumption 3 < v < § < « a sufficient condition for an intersection-free folded flat pose is
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2.4. Symmetry group of flexions

Figure 12: This table shows the images of f;; under the indicated
transformations for a 7 x 7 tessellation mesh

We recall from the proof of Theorem 1 that for any nontrivial flexion of an m x n TM the
helical displacements 7, I and the half-turn p, are local symmetry operations. This holds for
arbitrarily large (m,n), hence also for the co x oo mesh. According to Egs. (3) and (4) we
have
v fii e firijn U fip o fior (6)
The scheme in Fig. 12 shows which transformations must be applied to the face fi; to cover
the faces of the displayed 7 x 7 TM. These orientation-preserving displacements are unique
provided the quadrangle itself does not admit an axial symmetry.* Hence, after applying r?
and 1Y on the face fi;, we obtain f;; with

(5)=() ()= (5)-(1225)

with i4+j = 2(1+x) = 0 (mod 2). For given ¢, j with an even sum we can solve these equations
for x and y which yields an unique result. For odd ¢ + j at first p, has to be applied to fi;.
We summarize:

Lemma 5. At each nontrivial flexion of an m xn tessellation mesh the face fi1 can be mapped
onto the face f;; according to the following rule:

fz’j =

i=j—=1 i+j-3

I 2 r 2 pyfnn) for i+j =1 (mod 2).

{ U2 e Y fy) for i +j =0 (mod 2),

From (6) we obtain for the shifts along ‘rows’ and ‘columns’

lr =7l: fij = firaj, U'r=vl" fiy = fijia,

B < ¥ V4V1 V3. Then the faces can be placed one upon the other in the order foq, fo1, fi1, fo3, f13, f12. If this
mesh is extended by a third row to a 3 x 3 TM then this sequence must start under foo either with f31, f32, f3
or with f3s, f31, f33. However, there is not enough space, neither for f3o between f3; and f33 nor for f3;
between f3o and f33.

4The uniqueness of the displacement does not imply that its decomposition into a product of 7, I and p,
is unique, too. We find counterexamples in the case of horizontally closing flexions (Theorem 7).
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and furthermore

Pyt fij = fa—ia—j. (7)
The group generated by I, » and p, acts sharply transitive on the faces of the flexion. This
follows from the fact that due to

lr=rl, p;'=p, pdp,=1" and prp,=r""

each product of I, » and p, can be rewritten as I“rY or as ["rYp,. Therefore in the case of
a non-flat flexion the group generated by I, » and p, is isomorphic to that of the initial flat
pose. This can also be concluded more explicitely from the representations of I, » and p,
in cylinder coordinates by (9) in the next section or from an unfolding of the circumference
cylinder.

In Section 2.3 we learned that only in the case of a symmetric trapezoid (Fig. 9) the
non-flat flexions admits additional symmetry operations. This results in

Theorem 6. All poses obtained by nontrivial self-motions of an co X oo tessellation mesh are
periodic. The group of symmetries of the immersed flexion® is isomorphic to the wallpaper
group p2 except in the case of a symmetric trapezoid where the symmetry group includes also
planar reflections and is isomorphic to cmmm.

3. Horizontally closing flexions of tessellation meshes

3.1. Closure conditions

Figure 13: A flexion of a 9 x 7 tessellation mesh which closes horizontally
with shift £ = 5. The flat initial pose is shown in gray color.

Suppose, a particular non-trivial flexion of an m x n tessellation has the property that after
surrounding the circumscribed cylinder the right border fits exactly to the left border of the
mesh — apart from a vertical shift by & faces (Fig. 13). Then we call this flexion horizontally

5When the flexion closes in the sense of Theorem 7, then the symmetry group of the embedded flexion, i.e.,
of a cylinder tessellation, changes because then a product 1*r? with a,b € Z equals the identity.
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closing. Of course, also a wertically closing flexion is possible when the upper border fits
exactly to the lower border. However, by interchanging rows with columns this case can be
reduced to the previous one.

Let a horizontally closing flexion of our m x n mesh with a vertical shift of k£ faces be
given.% Then there are two cases to distinguish:

e For odd n the face fy,,41 = r(f1,) must be identical with the face f 21 of the most-left
row, k = 1 (mod 2). Lemma 5 implies

where o, stands for a full turn, i.e., a rotation about the axis p through 27. Since the
involved coaxial helical motions commute, we obtain

n+k n—k

I 2r 72 :t27|—. (8)

e n even: Now in the case of an exact fit fi,41 equals fri11 with & = 0 (mod 2), which
means by Lemma 5

This is again equivalent to (8).

+k

Note k£ = n (mod 2). We substitute a = —nT and b= " and summarize:

Theorem 7. A non-trivial flezion of the m x n tessellation mesh is horizontally closing, i.e.,
after surrounding the circumscribed cylinder the right border zig-zag fits exactly to the left
border zig-zag under a vertical shift of k faces, if and only if there are integers a,b € Z. with

n=—a+b," k=—-a—>b and 17" = t,,

where to, denotes the full rotation about the cylinder azis p. A band with |a+ b| rows, i.e., an
00 X |a+ b| tessellation mesh based on the same quadrangle has a flexion in form of a simply
covered cylinder tessellation (note, e.g., Fig. 16). The extension of our horizontally closing
flexion to an oo x oo mesh has the property f;ivn = fitk;-

3.2. First examples

The following two examples of horizontally closing flexions have been found numerically: The
dimensions of the quadrangle and the bending angles were varied such that after surrounding
the cylinder one vertex of the right border line converges against an appropriate vertex of the
left border line.

Example 1. At the example depicted in Fig. 13 we have n = 7 and k = 5 and therefore by
(8) 1% = ty,, hence a = —6 and b = 1. The respective angles of rotation and lengths of
translation of the related helical displacements are

= (—54.231°, 3.6456), r = (34.614°, 21.8738).

The basic quadrangle Vi ...V, has the interior angles 70.0° at V7, 50.0° at V5, 160.0° at V3,
and 80.0° at V4. The side lengths are V;V, = 25.0, VoV3 = 13.7416, V3V, = 11.7705, and

®When in the sequel faces fi; with i > m or j > n show up then they belong to extensions of our m x n
tessellation mesh.
"In this context a negative n means for the column index j of the faces fi;: j=1,0,—1,...,n.



H. Stachel: A Flexible Planar Tessellation with a Flexion Tiling a Cylinder of Revolution 165

Figure 14: A basic trapezoid yields a modified Schwarz lantern (or Schwarz boot)

V,Vi = 17.4653. The dihedral angles of the depicted flexion are at V1V, 205.052° (valley fold),
at V3V 145.731°, at V4oV3 112.759°, and at V3V 143.029°.

The flexion bounds a solid. It can be produced by Boolean operations from the solid cylinder
of revolution C passing through the vertices as follows: We start with two faces sharing a
valley fold (indicated by dashes in the figures). The exterior half spaces of the spans of these
two faces intersect in a wedge W. Now we subtract from the solid cylinder C all wedges which
arise from W by iterated helical displacements r and .

Example 2. In Fig. 14 the basic quadrangle is an unsymmetric trapezoid. The displayed
flexion can be seen as generalized Schwarz lantern or Schwarz boot: The original Schwarz
lantern (‘diamond pattern’ in origami) is a triangular mesh approximating a cylindrical sur-
face. The German mathematician Hermann Amandus SCHWARZ (1843-1921) could prove
that depending on the refinement of this mesh the discrete area either converges towards the
surface area of the cylinder or tends to infinity.

We notice at the 17 x 16 TM in Fig. 14 that according to Theorem 4 sequences of vertices
are placed on generators of the cylinder.

Data: The basic trapezoid has the side lengths ViV, = 20.0, VoV3 = 12.9332, V3V, =
7.0668, and V,V; = 10.9316. The interior angles at V;,...,Vy are 65.0°, 50.0°, 130.0° and
115.0°. The bending angle at edge V1 V5 is 194.6615° (valley fold), at VoV3 151.0106°, at V3V,
165.3385°, and at V, V4 155.5731°. The respective angles of rotation and lengths of translation
of the generating helical displacements are

= (—22.5°, 7.49883), r = (22.5°, 12.49804).

We have (n, k) = (16, 4), (a,b) = (—10,6) and we can confirm —10-7.49883+6-12.49804 = 0
and —10 - (—22.5) + 6 - 22.5 = 360.0.

3.3. Another approach to closing flexions

There is an alternative approach to tessellation meshes with a horizontally closing flexion: We
start with half-turns p,, ..., p, such that by (2) the corresponding r and l obey Theorem 7.

First we specify an appropriate cartesian coordinate frame: The z-axis is the axis of the
half-turn p,, the z-axis coincides with the helical axis p. Let (7, ¢, z) denote the corresponding
cylinder coordinates with x = rcos ¢, y = rsin¢.
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We set up the respective cylinder coordinates of the axes of p;, py, p, by

Roo. (253 (31

Then we obtain a representation of these half-turns and by (1) of p; = p,p,p, in cylinder
coordinates:

P (r,ap,z)l—>(r, —¥, _Z>

py: (1, 2)— (r, —p+0, —2+s) l: (r,p,z)—=(r, p+71,2+1) ()
ps: (ryp,2)—=(r,—p+o+717, —2+s+t) r: (r,p,2)—(r,o+0, 2+5s)

py: (ryp,2)—=(r, —p+7, —2+1)

The closure conditions given in Theorem 7 are equivalent to
at +bo =2m, at+bs=0 for a,be Z. (10)

By (5) we obtain for any arbitrary vertex Vi the other vertices of the face foy (see Fig. 2 or
7). The vertices of fi; = r~1(fa) are

i (Vs) = Vi=(r ¢, 2),

r_l(v2) = pl(‘/l) = (Ta —p _Z)a
T_l(‘/1> = (Tv Y—0,z 8)7

T (V) = ps(Vi) = (r, —p+ 7, —2 +1).

However, this implies a condition on V;: The planarity of this quadrangle is equivalent to

x Y z

x -y —z
rcoso +ysino ycoso—xsino z—s
rcosT+ysinT xsinT —ycosT t— =z

1
1

det 1 =0.
1

After some computation we obtain from the determinant the polynomial

P(x,y,2) := [t(coso — 1) + s(cosT — 1)] 2y + (tsino + ssin ) y?

+2[cos(o + 7) — coso — cosT + 1] xyz + [sin(o + 7) —sino — sin 7] (y? — 2%)z. (11)
The zero set of P is a ruled surface of degree 3 with the cylinder axis p (= z-axis) as double
line and with generators orthogonal to p. For geometrical reasons this cubic surface passes
through the axes of the half-turns p, and p,.
For a cylinder tessellation with planar quadrangles it is necessary that besides (10) vertex
V] is a point of the cubic surface P = 0. In addition, we have to check whether the quadrangle
Vi...Vy is convex. When V; is specified on the axis of p; we obtain a triangle since two
vertices coincide; of course, a triangle is convex. Hence a small variation of V; on the cubic
surface gives a planar quadrangle V; p; (V1) r=1(V}) p,(V1) which is either convex or has a
self-intersection. In the latter case we choose V; sufficiently close to the previous p, (V1) in
order to obtain convexity. The same holds for V} in the neighbourhood of the axis of p,.

Theorem 8. When the azes of py, ..., p, are given with a common perpendicular p and obey-
ing (1) as well as Theorem 7, then there is a two-parameter set of planar conver quadrangles
which define horizontally closing tessellation meshes.
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Figure 15: Two 4 x 8 tessellations with rotational symmetry (k = 0),
see Example 3. The flexion (b) arises from (a) by an axial dilatation.

Example 3. In Fig. 15 two horizontally closing flexions of 4 x 8 TMs with vertical shift &k = 0
nER _  4and b= "=F — 4 The data defining the

helical displacements r and I are as follows: In both cases we have ¢ = 32.0° and 7 = —58.0°.
The angle of rotation for the vertical shift Ir is 0 + 7 = —26°. In the left hand figure (a) we
have s =t = 35.293, in (b) s =t = 17.805.

The flexion (b) arises from (a) by an azial dilation which preserves the rotational symmetry
about the cylinder axis p thus underlining that the radius r plays no role in Eq. (11) . Despite
of this close relation between these two flexions the dimensions of the underlying quadrangles
and the bending angles are totally different:

The quadrangle V; ...V, of (a) has the interior angles 62.479°, 156.031°, 97.034°, 44.456°,
and the side lengths V1V, = 25.000, VoV3 = 17.424, V3V, = 47.148, and V4V, = 58.840. The
respective dihedral angles along these edges are 155.086°, 126.757°, 197.868° (valley fold), and
137.674°.

In (b) the interior angles are 112.143° 152.072°, 61.577°, 34.208°, the side lengths V;V, =
25.000, VoV3 = 11.389, V3V, = 61.344, and V,V; = 42.456. The corresponding bending angles
are 132.705°, 113.998°, 224.137° (valley fold), and 122.053°.

are displayed. This implies a = —

Example 4. Figure 16 shows a flexion of a 3 x 18 TM wrapped without gaps around a cylinder.
The first nine columns determine a horizontally closing flexion with vertical shift £ = —3.
Note that this crease ribbon only admits a one-parameter self-motion; once a single bending
angle is fixed, the flexion of the whole TM is uniquely determined. Hence, the ribbon cannot
be wrapped around the cylinder sequentially like a tape.

The base quadrangle V; ...V, has the interior angles 26.588°, 133.692°, 132.893°, 66.827°,
and the side lengths ViV, = 35.0, VoV3 = 17.272, V3V, = 10.700, and V4V; = 51.769. The
respective dihedral angles along these edges are 193.209° (valley fold), 133.866°, 139.599°, and
170.854°.

The angles of rotation and lengths of translation of the related helical displacements

I = (—50.40°, 45.290), 7 = (34.80°, 22.645).
fulfill the conditions of Theorem 7 with ¢ = —3 and b = 6.
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Figure 16: A 3 x 18 tessellation mesh with a flexion tiling the cylinder (Example 4)
The marked points indicate the border line between consecutive windings.

3.4. On the rigidity of a closing flexion

We learned that non-trivial flexions of tessellation meshes are either isolated or poses obtained
during a one-parameter self-motion. Therefore one can expect that in the case of a horizontally
closing flexion the constraint of attaching the right border line to the left one restricts the
flexibility. We can even state:

Theorem 9. Let a horizontally closing non-trivial flexion of a m X n tessellation mesh be
given with m,n > 3 and with vertical shift k obeying —m < k < n. When the right and the
left border line are glued together at least at one vertex, then in the case of non-cyclic base
quadrangles the resulting quad mesh is infinitesimally rigid.

Proof: Under the restriction —n < k < n there is an overlap of at least one vertex between
the left and the right border zig-zag. We must prove that the only infinitesimal motion, which
the quad mesh with one pair of glued vertices can perform, is the trivial one.

For this purpose we keep face fi; fixed and assume that in our flexion (in the sense of
Footnote 6) f1; coincides by Theorem 7 with fi_x14.,. Now we confirm on the basis of screw-
theory that there is no non-trivial infinitesimal motion of our quad mesh such that any vertex
of fi_r1.m Obtains a zero-velocity.

Any infinitesimal motion of our TM assigns to each face fj, a twist (see, e.g., [1] or [6]),
i.e., a pair of vectors (g, q;0) — usually combined to a dual vector @, = qj; + € Qo
obeying €2 = 0 — such that for any point @ attached to f;; the velocity vector reads

Ve = Q0+ (g, X T).

Due to the spatial Aronhold-Kennedy-Theorem, for any two faces sharing an edge e the
relative motion is a rotation about the common edge with any angular velocity w. This
implies that the difference of the associated twists equals we = w(e + cey) with e as unit
direction vector and ey as momentum vector of edge e (see, e.g., [6]).

For the primary 2 x 2 TM with faces fi1, fi2, fo1, and fos the corresponding spherical
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four-bar defines the respective twists inclusive g;; = 0 up to a common real factor.® This can
be continued step by step to other 2 x 2 sub-meshes until finally we obtain the twist q;_; 4.,
of the face fi_r11m. We will see that the instantaneous motion of this face is again helical
with axis p.

For the sake of brevity we prefer a direct way to compute the twist q;_;,,. We know by
Lemma 5 that for each non-trivial flexion there is a helical motion about an axis p through
angle ¢ and with translational length [ which maps fi; onto fi_p14m. We use a coordinate
frame attached to fi1; and set up p by a unit direction vector d and its point m of intersection
with the plane [f11]. By Corollary 3 point m is always finite. Of course, when the self-motion
is performed, p, m, ¢ and [ are functions of time u. We may suppose p # 0 due to a regular
parametrization of the quadratic director cone (Corollary 3).

The required helical motion mapping a point € f;; onto a point ' € fi_p14., can be
expressed by

' —m=cosp(@—m)+ [(1—cosp)(p-(x—m))+1]|p+sinppx (x—m)]. (12)
Differentiation by time u yields for the infinitesimal motion of fi_g14m

x —m = —¢sinp(x —m)—cosprm + [ singp(p-(w—m?)
+(1=cosp)(p-(x—m)) — (1 —cosp)(p-m)+1]p (13)
+ [1=cosp)(p-(x—m)) +1] p+ ¢ cospp x (x —m)]
+sing [(p x (x—m)) — (p x m)].

We focus on the pose u = u which is horizontally closing, i.e., ¢(up) = 27 and I(ug) = 0.
Then (13) implies ‘
vy = =Ilp+¢[px(x—m).

Therefore the instantaneous twist of fi_51.,, for u = ug reads

Gpram = 9P +e[lp—@(Pxm)] = (@+el)(pre(mxp)=(p+ehp. (1)

The instantaneous motion of f; 14, is a helical motion about axis p with angular velocity
¢ and translational velocity . In the case [ = 0, ¢ # 0 point m is fixed, but by Corollary 3
point mm never coincides with one vertex of fi_gi1m. Only under ¢ = | = 0 there exists a
fixed vertex; the face fi;_p1., has a stillstand. However, we prove in the sequel that [ =0 for
u = ug leads to a contradiction:

By Lemma 5 and Theorem 7 we have a,b € Z\ {(0,0)} with ¢ = ar + bo and | = at + bs
where by (9) the pairs (7,%) and (o, s) denote the angles of rotation and lengths of translation
of I and 7, respectively. When the vertices of f;; have coordinate vectors vq,..., vy, then
s = (v3 —wvy)-pand t = (vy — vy) - p (compare Fig. 2). This implies [ = at + bs with
§=(v3—vy)-pand f = (vy —vy) - p. Hence, | = = 0 for u = ug results in

n-p=n-p=0 for n:=a(vy —vs) +b(vg—v,)#0. (15)

The linearly independent vectors p and p span a tangent plane of the quadratic director cone
of cylinder axes, and this plane is orthogonal to the vector n which — as a linear combination

8Qnly for a trivial flexion in the trapezoidal case the space of infinitesimal motions is two-dimensional since
the spherical four-bar consists of two half-circles (note page 159).
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of the two diagonal vectors of fi;; — lies in a symmetry plane of the cone. Hence for a non-
degenerate cone, i.e., for a non-cyclic base quadrangle, p(ug) must be a direction vector of
one of the generators in the symmetry plane parallel [f11], but by Corollary 3 these generators
are no more axes of cylinders of rotation through the base quadrangle. O

Remark: Tt remains open whether in the case of a cyclic quadrangle Vi, ...,V the necessary and
sufficient conditions ar + bo = 27, at + b = at + bs = af + bs = 0 for infinitesimal flexibility of a
non-flat horizontally closing TM can simultaneously be fulfilled. Note that because of the splitting
director cone the vector n defined in (15) must bisect the angle between the diagonals in fi;.

4. Conclusions

We studied flexions of the planar tessellation with congruent convex quadrangles. Under
the conditions given in Theorem 7 there are flexions which tile a cylinder. This offers a
possibility to build rigid discrete models of cylinders of revolution from congruent planar
convex quadrangles. One can find the dimensions of such cylinder tilings either numerically
by an appropriate algorithm or by starting with a pair of coaxial helical motions r, I obeying
Eq. (10) and specifying one vertex on a cubic surface.
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