On Arne Dür's Equation Concerning Central Axonometries

Hellmuth Stachel

Institute of Discrete Mathematics and Geometry, Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1040 Wien, Austria email: stachel@dmg.tuwien.ac.at

Abstract. It is a classical Descriptive Geometry problem in the Euclidean *n*-space to characterize the central projections among collinear transformations with rank deficiency. Recently A. DÜR presented for n = 3 a characterization in form of an equation in complex coordinates — the central axonometric counterpart of the Gauss equation for orthogonal axonometries. Here two new proofs for DÜR's equation are given combined with equivalent statements. And its *n*-dimensional generalization is addressed which characterizes two-dimensional orthogonal central views among central axonometries.

Key Words: central projection, central axonometry *MSC 2000:* 51N05

1. The axonometric principle

At the beginning we summarize some results on n-dimensional axonometry.

1.1. Parallel projections

Let $(O; E_1, E_2, E_3)$ be a cartesian basis of the Euclidean 3-space \mathbb{E}^3 . Then for arbitrarily given noncollinear points $(O^p; E_1^p, E_2^p, E_3^p)$ in an image plane Π there is an unique affine transformation

 $\alpha \colon \mathbb{E}^3 \to \Pi \text{ with } O \mapsto O^p, \ E_i \mapsto E_i^p, \ i = 1, 2, 3.$

The point $X \in \mathbb{E}^3$ with coordinates $(x_1, x_2, x_3)^T$ is mapped onto its 'axonometric view'

$$X^p = \alpha(X)$$
 with $\overrightarrow{O^p X^p} = x_1 \overrightarrow{O^p E_1^p} + x_2 \overrightarrow{O^p E_2^p} + x_3 \overrightarrow{O^p E_3^p}$

(see Fig. 1). The famous POHLKE theorem claims that α is the product of a 3D similarity and a parallel projection. Hence any axonometric view is similar to a parallel view.

ISSN 1433-8157/\$ 2.50 © 2004 Heldermann Verlag

Figure 1: The axonometric principle in \mathbb{E}^3

More general, an *m*-dimensional axonometric view of \mathbb{E}^n , m < n, is given by an *axono*metric reference system $(O^p; E_1^p, \ldots, E_m^p)$ in \mathbb{E}^m as the image under the affine transformation

$$\alpha \colon \mathbb{E}^n \to \mathbb{E}^m \quad \text{with} \quad O \mapsto O^p, \ E_i \mapsto E_i^p, \quad i = 1, \dots, n.$$
(1)

Point $X = (x_1, \ldots, x_n)$ is mapped onto $\alpha(X) \in \mathbb{E}^m$ with cartesian coordinates (x'_1, \ldots, x'_m) obeying

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_m \end{pmatrix} = \begin{pmatrix} a_{10} \\ \vdots \\ a_{m0} \end{pmatrix} + A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}.$$
 (2)

And the multi-dimensional version of POHLKE's Theorem reads (see, e.g., [17, 7, 2, 12])

- **Theorem 1.** 1. The affine transformation α defined in (1) with the coordinate representation (2) is the product of a similarity and a surjective parallel projection if and only if either $2m \leq n+1$ or the smallest singular value λ of matrix A, i.e., the smallest eigenvalue of $A \cdot A^T$, has a multiplicity $\geq 2m - n$. For $\lambda = 1$ the axonometric view is congruent to a parallel view.
 - 2. The projection is orthogonal if and only if the row vectors of matrix A are of equal length and pairwise orthogonal, i.e., if there is one singular value only.

The columns in A are cartesian coordinates of the vectors $\overrightarrow{O^p E_i^p}$ in \mathbb{E}^m . According to L. SCHLÄFLI [11, p. 134 resp. 298], in the case of an *orthogonal* projection the images E_1^p, \ldots, E_n^p of the unit points are called *eutactic* with respect to O^p (see also [6], or [3, p. 251]). Such points in \mathbb{E}^m are characterized by the property that for any hyperplane Γ' through O^p the squared distances $\overline{E_i^p \Gamma'}$ have a sum λ^2 independent from Γ ;¹ λ is the scaling factor of the involved similarity. This results from the fact that Γ' can be seen as 'edge view' of a hyperplane Γ in \mathbb{E}^n ; the distances from Γ are preserved under the orthogonal projection; and the unit points of a cartesian basis in \mathbb{E}^n are eutactic with respect to the origin.

¹This is equivalent to the statement that for E_1^p, \ldots, E_n^p the ellipsoid of inertia centered at O^p is a sphere. In [12, Satz 6] an iterative procedure is given for obtaining eutactic points in \mathbb{E}^m . Eutactic points define 'almost orthonormal' vector systems with various properties (see [5]).

Figure 2: E_1^p, \ldots, E_5^p are *eutactic* with respect to O^p , i.e., they are similar to an orthogonal view of a cartesian basis. For $d_i = \overline{E_i^p \Gamma'}$ the sum $\lambda^2 = \sum_{i=1}^5 d_i^2$ is independent from Γ' through O^p

In the case m = 2 the coordinates (x'_1, x'_2) of each image point can be combined to a complex number $\mathbf{x}' := x'_1 + ix'_2$. Then the second part of Theorem 1 gives the *n*-dimensional version [14] of the Gauss theorem:

 $\mathbf{e}_1^p,\ldots,\mathbf{e}_n^p$ are complex coordinates of points being eutactic with respect to the origin \iff

$$\mathbf{e}_1^{p_2} + \ldots + \mathbf{e}_n^{p_2} = 0.^2$$
 (3)

1.2. Central axonometry

For handling central projections we extend \mathbb{E}^n and the image space \mathbb{E}^m by their points at infinity to projective spaces \mathbb{E}^{n*} and \mathbb{E}^{m*} , respectively:

Let U_1, \ldots, U_n denote the points at infinity of the axes of the cartesian basis $O; E_1, \ldots, E_n$. Then any (2n + 1)-tupel $(O^c; E_1^c, \ldots, E_n^c; U_1^c, \ldots, U_n^c)$ in \mathbb{E}^{m*} , m < n, with pairwise different and collinear $\{O^c, E_i^c, U_i^c\}$ for $i = 1, \ldots, n$ is called a *central axonometric reference system* in \mathbb{E}^{m*} , provided these points span \mathbb{E}^{m*} and $O^c, E_1^c, \ldots, E_n^c$ are finite as well as at least one U_i^c .

There is a unique surjective collinear transformation

$$\kappa \colon \mathbb{E}^{n*} \to \mathbb{E}^{m*} \quad \text{with} \quad O \mapsto O^c, \ E_i \mapsto E_i^c, \ U_i \mapsto U_i^c, \quad i = 1, \dots, n.$$

We homogenize the cartesian coordinates in \mathbb{E}^{n*} and \mathbb{E}^{m*} and indicate this by the symbol '*'. E.g., for a finite point $X \in \mathbb{E}^{n*}$ with the coordinate vector $\mathbf{x} = (x_1, \ldots, x_n)$ a particular homogeneous coordinate vector reads

$$\mathbf{x}^* = (x_0^*, \dots, x_n^*) = (1, x_1, \dots, x_n) = (1, \mathbf{x}) \text{ and } X = \mathbb{R}\mathbf{x}^*.$$

²In any case the points with complex coordinates $\pm \mathbf{f}$ obeying $\mathbf{f}^2 = \mathbf{e}_1^{p^2} + \ldots + \mathbf{e}_n^{p^2}$ are the focal points of the visual contour of the unit sphere of \mathbb{E}^n .

Figure 3: Central axonometric principle

Then $\kappa: \mathbb{E}^{n*} \to \mathbb{E}^{m*}$ can be expressed as the linear map

$$\mathbf{x}^{\prime*} = \begin{pmatrix} x_0^{\prime*} \\ x_1^{\prime*} \\ \vdots \\ x_m^{\prime*} \end{pmatrix} = l(\mathbf{x}^*) = A \cdot \begin{pmatrix} x_0^* \\ x_1^* \\ \vdots \\ x_n^* \end{pmatrix}, \quad A = \begin{pmatrix} \underline{a_{00} \ a_{01} \ \dots \ a_{0n}} \\ \underline{a_{10} \ a_{11} \ \dots \ a_{1n}} \\ \vdots \\ \underline{a_{m0} \ a_{m0} \ \dots \ a_{mn}} \end{pmatrix}.$$
(5)

Due to the *central axonometric principle* a central axonometric reference system can be arbitrarily specified, and the image of \mathbb{E}^{n*} under κ is called *central axonometric view*.

According to [7, 8] the central axonometric analogon of Theorem 1 needs some preparatory steps: From the $(m + 1 \times n + 1)$ -matrix A in (5) we compute a $(m \times n)$ -matrix \widetilde{A} as follows:

- drop the first column and the first row,
- replace for i = 1, ..., m the row vector \mathbf{a}_i by the component which is orthogonal (6) to the row vector \mathbf{a}_0 .
- **Theorem 2.** 1. The collinear transformation κ in (4) with coordinate representation (5) is the product of a surjective central projection and an isometry if and only if either $2m \leq n$ or the smallest singular value of the derived matrix \widetilde{A} has a multiplicity $\geq (2m - n + 1)$.
 - 2. This central projection is orthogonal, i.e., the (n-m-1)-dimensional center is totally orthogonal to the image space \mathbb{E}^{m*} if and only if the row vectors of the derived matrix \widetilde{A} are of equal length and pairwise orthogonal.

Remark 1: [13] reveals why these conditions look similar to that in Theorem 1: Any central projection is associated to a parallel projection with (n - m)-dimensional fibres parallel to the center and to the common perpendicular p between the center and the image space. \widetilde{A} is proportional to the coordinate matrix of the associated parallel projection. Exactly for orthogonal central projections the associated projection is orthogonal.

And for any finite point $X = (x_1, \ldots, x_n)$ the central projection X^c and the associated parallel projection X^p are aligned with the *principal point* H which is the central (and parallel) view of the common perpendicular p. The ratio $(X^p X^c H) := \overline{HX^p}/\overline{HX^c}$ (signed lengths) equals $\overline{X\Pi_v}/\overline{H\Pi_v}$ where Π_v is the *vanishing hyperplane* of κ , i.e., the hyperplane through the center and parallel to the image space (see Fig. 4).

However, Theorem 2 says nothing about how the central axonometric reference systems for central projections can be charactized. For the case (n,m) = (3,2) some characterizations are known (e.g., [10]). We pick out J. SZABÓ's condition in [16] which works only for the case that all points of the reference system are finite: $(O^c; E_1^c, \ldots, U_3^c)$ is the central view of a cartesian reference system if and only if with the notation of Fig. 3

$$\left(\frac{e_1}{f_1}\right)^2 : \left(\frac{e_2}{f_2}\right)^2 : \left(\frac{e_3}{f_3}\right)^2 = \tan\alpha_1 : \tan\alpha_2 : \tan\alpha_3 .$$
(7)

According to [9] the limit of this condition for one point U_i^c tending to infinity equals that given in [15].

Recently A. DÜR presented in [4] a new characterization which works without restrictions on U_i^c . He uses the ratios

$$\rho_i := (O^c E_i^c U_i^c) = \overline{O^c U_i^c} / \overline{E_i^c U_i^c} \quad \text{(signed distances)} \quad \text{and} \quad \rho_i' := 1 - \rho_i \,. \tag{8}$$

Like in the Gauss equation (3) point O^c is the origin of the coordinate system in \mathbb{E}^2 and the cartesian coordinates of E_i^c are combined in the complex number \mathbf{e}_i^c . Then we obtain

Theorem 3. (A. DÜR [4]) Any planar central view of a three-dimensional cartesian reference system is characterized by

$$(\rho_{2}^{\prime}\rho_{1}\mathbf{e}_{1}^{c}-\rho_{1}^{\prime}\rho_{2}\mathbf{e}_{2}^{c})^{2}+(\rho_{3}^{\prime}\rho_{2}\mathbf{e}_{2}^{c}-\rho_{2}^{\prime}\rho_{3}\mathbf{e}_{3}^{c})^{2}+(\rho_{1}^{\prime}\rho_{3}\mathbf{e}_{3}^{c}-\rho_{3}^{\prime}\rho_{1}\mathbf{e}_{1}^{c})^{2}=0, \quad \mathbf{e}_{1}^{c},\ldots,\mathbf{e}_{3}^{c}\in\mathbb{C}.$$
 (9)

2. A new proof of Dür's equation

We start with a central projection in \mathbb{E}^{3*} with center Z, image plane $\Pi = \mathbb{E}^2$ and principal point H. Due to standard formulas from Projective Geometry the ratios ρ_i and ρ'_i from (8) can be expressed as cross ratios³ (see Fig. 4). For this purpose we insert on the coordinate axis OE_i the vanishing point V_i which under κ is mapped into infinity. All vanishing points in space are located in the vanishing plane Π_v through Z parallel Π .

$$\rho_i = (O^c E_i^c U_i^c) = (O^c E_i^c U_i^c V_i^c) = (O E_i U_i V_i), \tag{10}$$

$$\rho'_{i} = 1 - \rho_{i} = (OU_{i}E_{i}V_{i}) = (E_{i}V_{i}OU_{i}) = (E_{i}V_{i}O).$$
(11)

For $\rho'_i = 0$ point U_i^c is at infinity; otherwise the vanishing point V_i on the axis OE_i obeys $\overline{OV_i} = 1/\rho'_i$. Due to our assumption for central axonometric reference systems there is at least one $\rho'_i \neq 0$. The equation of the vanishing plane spanned by V_1, \ldots, V_3 reads

$$\Pi_v: \ \rho'_1 x_1 + \ldots + \rho'_3 x_3 = 1.$$
(12)

³The ratio $(X_1X_2X_3)$ is equal to the cross ratio $(X_1X_2X_3U)$ with the aligned point U at infinity.

220

and $\rho'_i = 1 - \rho_i$, seen as cross ratios

Figure 5: Proof of A. DüR's equation

Now the coordinate representation (5) of our central projection $\kappa : \mathbb{E}^{3*} \to \mathbb{E}^{2*}$ is already available. The following matrix equation looks unusual as for points in the image space two of the three homogeneous coordinates are combined in a complex number.

$$\mathbf{x}^{\prime*} = \left(\frac{x_0^{\prime*}}{x_0^{\prime*}\mathbf{z}^{\prime}}\right) = l(\mathbf{x}^*) = \left(\frac{1 \mid -\rho_1^{\prime} \quad \dots \quad -\rho_3^{\prime}}{\mathbf{o} \mid \rho_1 \mathbf{e}_1^c \quad \dots \quad \rho_3 \mathbf{e}_3^c}\right) \cdot \left(\frac{x_0^*}{x_1^*} \\ \vdots \\ x_3^* \right).$$
(13)

Proof. Exactly the points of Π_v give $x_0^{\prime*} = 0$ and are therefore mapped onto points at infinity. On the other hand E_i is mapped onto the point with the inhomogeneous complex coordinate

$$\frac{1}{1-\rho_i'}\rho_i\,\mathbf{e}_i^c=\mathbf{e}_i^c,$$

which is E_i^c as required.

The normal vector $\mathbf{p} := (\rho'_1, \rho'_2, \rho'_3) \neq \mathbf{o}$ of the vanishing plane has the direction of the *principal ray* p = ZH. The cross products with the unit vectors \mathbf{e}_i in direction of the coordinate axes are

$$\mathbf{p} \times \mathbf{e}_1 = (0, \rho'_3, -\rho'_2), \quad \mathbf{p} \times \mathbf{e}_2 = (-\rho'_3, 0, \rho'_1), \quad \mathbf{p} \times \mathbf{e}_3 = (\rho'_2, -\rho'_1, 0).$$

These are 3D coordinates of points P_1, P_2, P_3 in a plane Π_0 parallel zu Π . The geometric meaning of cross products (see Fig. 5)

$$\|\mathbf{p} \times \mathbf{e}_i\| = |\sin \varphi_i| \cdot \|\mathbf{p}\| = \|\mathbf{e}_i^n\| \cdot \|\mathbf{p}\|$$

implies that P_1, P_2, P_3 are related to the orthogonal views E_1^n, E_2^n, E_2^n of the unit points by a dilation from O with factor $||\mathbf{p}||$ and a rotation about O through 90°. Hence P_1, P_2, P_3 are eutactic, too, and this is preserved under the projection from Z into Π as Π_0 is parallel to Π .

By (13) the images P_1^c, P_2^c, P_3^c have the complex coordinates

$$\mathbf{p}_{1}^{c} = (\rho_{3}^{\prime}\rho_{2}\mathbf{e}_{2}^{c} - \rho_{2}^{\prime}\rho_{3}\mathbf{e}_{3}^{c})^{2}, \quad \mathbf{p}_{2}^{c} = (\rho_{1}^{\prime}\rho_{3}\mathbf{e}_{3}^{c} - \rho_{3}^{\prime}\rho_{1}\mathbf{e}_{1}^{c})^{2}, \quad \mathbf{p}_{3}^{c} = (\rho_{1}^{\prime}\rho_{3}\mathbf{e}_{3}^{c} - \rho_{3}^{\prime}\rho_{1}\mathbf{e}_{1}^{c})^{2}, \quad (14)$$

and the Gauss equation (3) $\mathbf{p}_1^{c2} + \mathbf{p}_2^{c2} + \mathbf{p}_3^{c2} = 0$ coincides with (9).

Conversely, we note that for any central axonometric reference system in \mathbb{E}^2 the linear map (13) describes the underlying collinear transformation κ defined in (4) because collinear transformations preserve cross ratios on each line which is not mapped onto a single point. And (13) assigns to each collinear triple (O, E_i, V_i) the required images (O^c, E_i^c, V_i^c) .

Now, let the given central axonometric reference system $(O^c; E_1^c, \ldots, U_3^3)$ in the plane Π obey (9) and let P_1^c, P_2^c, P_3^c be the eutactic points with coordinates \mathbf{p}_i^c by (14) with ρ_i, ρ_i' by (8). We embed Π into \mathbb{E}^{3*} and erect a normal vector \mathbf{p} of length $\|\mathbf{p}\| = \sqrt{\rho_1'^2 + \cdots + \rho_3'^2}$. Then we reverse the procedure displayed in Fig. 5: We set $O = O^c, P_i = P_i^c, i = 1, 2, 3$, and obtain an unique cartesian frame $(O; E_1, \ldots, E_3)$ with $\mathbf{p}_i = \overrightarrow{OP_i} = \mathbf{p} \times \mathbf{e}_i$. There are at least two linearly independent vectors, say $\mathbf{p}_1, \mathbf{p}_2$. With respect to this particular cartesian frame the plane $\Pi = \Pi_0$ has the equation

$$\rho_1' x_1 + \ldots + \rho_3' x_3 = 0$$

It remains to prove that the corresponding collinear transformation κ defined in (4) and represented by the linear map $\mathbf{x}^* \mapsto \mathbf{x}'^* = l(\mathbf{x}^*)$ in (13) is a projection:

First we note that besides O and P_i all finite points $X \in \Pi$ remain fixed under κ because we can set up the homogeneous coordinate vector of X as $\mathbf{x}^* = (1, \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2)$ with $\alpha_1, \alpha_2 \in \mathbb{R}$, and this implies $l(\mathbf{x}^*) = (1, \alpha_1 \mathbf{p}_1^c + \alpha_2 \mathbf{p}_2^c)$, hence $\kappa(X) = X$.

 κ has rank deficiency 1. Therefore there is a center Z with coordinate vector \mathbf{z}^* in the kernel of l, to say $l(\mathbf{z}^*) = \mathbf{o}^*$.⁴ For any point $Y \neq Z$ let X denote the point of intersection $YZ \cap \Pi$. We can set up $\mathbf{y}^* = \beta_1 \mathbf{z}^* + \beta_2 \mathbf{x}^*$ with $\beta_2 \neq 0$. Then $l(\mathbf{y}^*) = \beta_2 l(\mathbf{x}^*)$ means $\kappa(Y) = \kappa(X) = X$. Hence, κ is a projection.

3. Analoga of Dür's equation

We now concentrate on two-dimensional central-axonometric views of \mathbb{E}^{n*} , $n \geq 3$, i.e., on collinear transformations $\kappa : \mathbb{E}^{n*} \to \mathbb{E}^{2*}$. We still use the ratios ρ_i and ρ'_i from (8); their interpretations (10), (11) as cross ratios are still valid. We obtain the linear map l describing κ when we replace the subscript 3 by n in (13). The image of U_i under (13) has the complex coordinate

$$\mathbf{u}_i^c = -\frac{\rho_i}{\rho_i'} \mathbf{e}_i^c, \quad i = 1, \dots, n.$$
(15)

This is in accordance with $\rho_i = (O^c E_i^c U_i^c)$ in (8).

Replacing 3 by *n* converts (12) into the equation of the vanishing hyperplane of κ . Its normal vector $\mathbf{p} := (\rho'_1, \ldots, \rho'_n)$ defines a point at infinity $(0, \mathbf{p})\mathbb{R}$ which is mapped under κ onto the principal point H with the complex coordinate

$$\mathbf{h} = \frac{-1}{\|\mathbf{p}\|^2} \left(\rho_1 \rho_1' \mathbf{e}_1^c + \dots + \rho_n \rho_n' \mathbf{e}_n^c \right) = \frac{1}{\rho_1'^2 + \dots + \rho_n'^2} \left(\rho_1'^2 \mathbf{u}_1^c + \dots + \rho_n'^2 \mathbf{u}_n^c \right).$$
(16)

This expresses \mathbf{h} as a weighted mean of $\mathbf{u}_1^c, \ldots, \mathbf{u}_n^c$ — with nonnegative weights.

 $^{^4}Z$ is the point of intersection between Π_v and the line p through the principal point H by (16) orthogonal to $\Pi.$

3.1. Case n = 3:

222

Corollary 4. SZABÓ's condition (7) is equivalent to the statement that the principal point H given by (16) coincides with the orthocentre of $U_1^c U_2^c U_3^c$.

Proof. A straightforward computation reveals that for a non-rectangular triangle the orthocentre is the weighted mean of the vertices with weights $\tan \alpha_i$. The ratios on the left hand side of (7) obey $e_i/f_i = -\rho'_i$. Hence (7) states proportional weights for H and the orthocentre.

Remark 2: For central projections this coincidence is obvious. Conversely, if for a central axonometry in Π the principal point H coincides with the orthocentre of $U_1^c U_2^c U_3^c$, then by standard methods of Descriptive Geometry a center Z relative to Π can be reconstructed. Now there are four points in the plane at infinity for which the axonometric view coincides with their projection via Z into Π . This turns out to be sufficient for the identity between κ and this projection.

Theorem 5. The characterization (9) of central projections among central axonometries due to A. DÜR is equivalent to

$$(\rho_1'\mathbf{h} + \rho_1\mathbf{e}_1^c)^2 + (\rho_2'\mathbf{h} + \rho_2\mathbf{e}_2^c)^2 + (\rho_3'\mathbf{h} + \rho_3\mathbf{e}_3^c)^2 = 0.$$
(17)

For finite U_i^c it is also equivalent to

$$\frac{1}{\rho_1^{\prime 2}} (\mathbf{u}_2^c - \mathbf{u}_3^c)^2 + \frac{1}{\rho_2^{\prime 2}} (\mathbf{u}_3^c - \mathbf{u}_1^c)^2 + \frac{1}{\rho_3^{\prime 2}} (\mathbf{u}_1^c - \mathbf{u}_2^c)^2 = 0.$$
(18)

Proof. For $\rho'_1 \rho'_2 \rho'_3 \neq 0$ we substitute in (9) \mathbf{e}_i^c by \mathbf{u}_i^c according to (15) and obtain (18).

Eq. (17) is related to Remark 1: For any point E_i in \mathbb{E}^{3*} the central view E_i^c and its associated parallel view E_i^p (which is an orthogonal view here) are aligned with the principal point H. The dilation with center H mapping E_i^c onto E_i^p has the scaling factor $f = \overline{E_i \Pi_v} / \overline{H \Pi_v}$. Without loss of generality we can replace the image plane by the parallel plane Π_0 through point O as the translation of Π in direction of the principal ray p = ZH acts on the central view like a dilation from H. Then the scaling factor reads

$$f = \overline{E_i V_i} / \overline{OV_i} = (E_i O V_i U_i) = \rho_i$$

according to (10). Hence

$$\mathbf{e}_{i}^{p} = \mathbf{h} + \rho_{i}(\mathbf{e}_{i}^{c} - \mathbf{h}) = \rho_{i}'\mathbf{h} + \rho_{i}\mathbf{e}_{i}^{c}$$
(19)

is the complex coordinate of an orthogonal view of E_i . So, E_1^p , E_2^p , E_3^p are eutactic with respect to $O^p = O^c$, and (18) results from the Gauss equation (3).⁵ The equivalence between (9) and (18) will be demonstrated for each $n \ge 3$ in the proof of Theorem 6, and this ends a second new proof for DÜR's equation.

3.2. Case $n \ge 4$:

From Theorem 2 we learn that for $n \ge 4$ any central axonometric image is congruent to a central view. So, there is no restriction on central axonometric reference systems. However, we will confine ourselves to *orthogonal central views*, i.e., the center of the projection is supposed to be totally orthogonal to the image plane. Then there are higher-dimensional analoga to A. DüR's equation (9):

⁵When we apply the procedure (6) to the matrix in (13) then we get \widetilde{A} with column vectors $(\mathbf{e}_1^p, \mathbf{e}_2^p, \mathbf{e}_3^p)$.

Theorem 6. For any central axonometric reference system $(O^c; E_1^c, \ldots, U_n^c)$ of \mathbb{E}^{n*} in the plane \mathbb{E}^{2*} the collinear transformation κ defined by (4) is the product of a surjective orthogonal central projection and an isometry if and only if

$$(\rho_1'\mathbf{h} + \rho_1\mathbf{e}_1^c)^2 + \dots + (\rho_n'\mathbf{h} + \rho_n\mathbf{e}_n^c)^2 = 0$$

with the complex number \mathbf{h} being defined by (16). This equation is equivalent to

$$\sum_{\substack{i,j=1\\i< j}}^{n} \left(\rho_i \rho_j' \mathbf{e}_i^c - \rho_j \rho_i' \mathbf{e}_j^c\right)^2 = 0 \quad and \quad under \quad \rho_1' \dots \rho_n' \neq 0 \quad also \quad to \quad \sum_{\substack{i,j=1\\i< j}}^{n} \rho_i'^2 \rho_j'^2 \left(\mathbf{u}_i^c - \mathbf{u}_j^c\right)^2 = 0.$$

Proof. We follow exactly the arguments in the proof of Theorem 5, eq. (17), (see also [13]) and obtain the first equation as Gauss equation for the associated (and now again orthogonal) views E_1^p, \ldots, E_n^p with the complex coordinates (19).

The equivalence to the second and the third equation is proved straightforward:

$$\begin{split} &\sum_{i} (\rho_{i}'\mathbf{h} + \rho_{i}\mathbf{e}_{i}^{c})^{2} = \mathbf{h}^{2} \|\mathbf{p}\|^{2} - 2\mathbf{h}^{2} \|\mathbf{p}\|^{2} + \sum_{i} \rho_{i}^{2} \mathbf{e}_{i}^{c\,2} = \\ &= \frac{1}{\|\mathbf{p}\|^{2}} \left[- \left(\sum_{i} \rho_{i} \rho_{i}' \mathbf{e}_{i}^{c}\right)^{2} + \|\mathbf{p}\|^{2} \sum_{i} \rho_{i}^{2} \mathbf{e}_{i}^{c\,2} \right] = \frac{1}{\|\mathbf{p}\|^{2}} \left[-\sum_{i} \rho_{i}^{2} \rho_{i}'^{2} \mathbf{e}_{i}^{c\,2} - \\ &- 2 \sum_{i < j} \rho_{i} \rho_{j}' \rho_{j}' \mathbf{e}_{i}^{c} \mathbf{e}_{j}^{c} + \sum_{i} \rho_{i}^{2} \rho_{i}'^{2} \mathbf{e}_{i}^{c\,2} + \sum_{i < j} \left(\rho_{i}^{2} \rho_{j}'^{2} \mathbf{e}_{i}^{c\,2} + \rho_{j}^{2} \rho_{i}'^{2} \mathbf{e}_{j}^{c\,2} \right) \right] = \\ &= \frac{1}{\|\mathbf{p}\|^{2}} \left[\sum_{i < j} \left(\rho_{i} \rho_{j}' \mathbf{e}_{i}^{c} - \rho_{j} \rho_{i}' \mathbf{e}_{j}^{c} \right)^{2} \right] = \frac{1}{\|\mathbf{p}\|^{2}} \left[\sum_{i < j} \rho_{i}'^{2} \rho_{j}'^{2} \left(\mathbf{u}_{i}^{c} - \mathbf{u}_{j}^{c} \right)^{2} \right] \end{split}$$

by (15) and (16).

The following version is valid also for a higher-dimensional image space \mathbb{E}^{m*} , provided \mathbf{e}_i^c and \mathbf{h} denote cartesian coordinate vectors of E_i^c and the principal point H.

Corollary 7. The central axonometric reference system $(O^c; E_1^c, \ldots, U_n^c)$ in \mathbb{E}^{m*} , $2 \le m < n$, defines an orthogonal central view of \mathbb{E}^{n*} if and only if the points E_i^p with cartesian coordinate vectors $\mathbf{e}_i^p = \rho'_i \mathbf{h} + \rho_i \mathbf{e}_i^c$ by (8) and (16) are eutactic with respect to O^c .

As already mentioned in Footnote 5, the affine combinations $\mathbf{e}_i^p = \rho_i' \mathbf{h} + \rho_i \mathbf{e}_i^c$ are the columns of the 'reduced' matrix \widetilde{A} according to (6).

Remark 3: We finally recall that due to [13, Satz 3] for m < n/2 the orthogonal central views of \mathbb{E}^{n*} in \mathbb{E}^{m*} cannot be distinguished from *isocline* central views, where the center is supposed to be isocline to the image space. This is an analogue to the fact that for $m \leq n/2$ orthogonal views are similar to oblique views with fibres being isocline to the image space (cf. [12, p. 164]).

References

- [1] H. BRAUNER: Lehrbuch der konstruktiven Geometrie. Springer, Wien 1986.
- [2] H. BRAUNER: Lineare Abbildungen aus euklidischen R\u00e4umen. Beitr. Algebra Geom. 21, 5-26 (1986).
- [3] H.S.M. COXETER: Regular Polytopes. 2nd ed., Macmillan, New York 1963, or 3rd ed., Dover Publ., New York 1973.
- [4] A. DÜR: An Algebraic Equation for the Central Projection. J. Geometry Graphics 7, 137–143 (2003).

- [5] D. HAASE, H. STACHEL: Almost-orthonormal Vector Systems. Beitr. Algebra Geom. 37, 367–381 (1996).
- [6] H. HADWIGER: Uber ausgezeichnete Vektorsterne und reguläre Polytope. Comm. Math. Helv. 13 (1940), 90–107.
- [7] V. HAVEL: O rozkladu singulárních lineárních transformací. Casopis Pést. Mat. 85, 439–447 (1960).
- [8] H. HAVLICEK: On the Matrices of Central Linear Mappings. Math. Bohem. 121, 151– 156 (1996).
- [9] M. HOFFMANN: On the Theorems of Central Axonometry. J. Geometry Graphics 2, 151–155 (1997).
- [10] E. KRUPPA: Zur achsonometrischen Methode der darstellenden Geometrie. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 119, 487–506 (1910).
- [11] L. SCHLÄFLI: Theorie der vielfachen Kontinuität. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 38 (1901) (ed. J.H. GRAF), 1–237 = Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel 1950.
- [12] H. STACHEL: Mehrdimensionale Axonometrie. Proceedings of the Congress of Geometry, Thessaloniki 1987, 159–168.
- [13] H. STACHEL: Zur Kennzeichnung der Zentralprojektionen nach H. Havlicek. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 204, 33–46 (1995).
- [14] E. STIEFEL: Zum Satz von Pohlke. Comment. Math. Helv. 10, 208–225 (1938).
- [15] E. STIEFEL: Lehrbuch der darstellenden Geometrie. 3. Aufl., Basel, Stuttgart 1971.
- [16] J. SZABÓ, H. STACHEL, H. VOGEL: Ein Satz über die Zentralaxonometrie. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 203, 3–11 (1994).
- [17] K. VALA: A propos du théorèm de Pohlke. Ann. Acad. scient. Fennicae 270, 3–5 (1959).

Received October 30, 2004