On Arne Dür's Equation Concerning Central Axonometries

Hellmuth Stachel
Institute of Discrete Mathematics and Geometry, Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1040 Wien, Austria
email: stachel@dmg.tuwien.ac.at

Abstract

It is a classical Descriptive Geometry problem in the Euclidean nspace to characterize the central projections among collinear transformations with rank deficiency. Recently A. DüR presented for $n=3$ a characterization in form of an equation in complex coordinates - the central axonometric counterpart of the Gauss equation for orthogonal axonometries. Here two new proofs for Dür's equation are given combined with equivalent statements. And its n-dimensional generalization is addressed which characterizes two-dimensional orthogonal central views among central axonometries.

Key Words: central projection, central axonometry
MSC 2000: 51N05

1. The axonometric principle

At the beginning we summarize some results on n-dimensional axonometry.

1.1. Parallel projections

Let $\left(O ; E_{1}, E_{2}, E_{3}\right)$ be a cartesian basis of the Euclidean 3 -space \mathbb{E}^{3}. Then for arbitrarily given noncollinear points $\left(O^{p} ; E_{1}^{p}, E_{2}^{p}, E_{3}^{p}\right)$ in an image plane Π there is an unique affine transformation

$$
\alpha: \mathbb{E}^{3} \rightarrow \Pi \quad \text { with } \quad O \mapsto O^{p}, E_{i} \mapsto E_{i}^{p}, \quad i=1,2,3 .
$$

The point $X \in \mathbb{E}^{3}$ with coordinates $\left(x_{1}, x_{2}, x_{3}\right)^{T}$ is mapped onto its 'axonometric view'

$$
X^{p}=\alpha(X) \text { with } \overrightarrow{O^{p} X^{p}}=x_{1} \overrightarrow{O^{p} E_{1}^{p}}+x_{2} \overrightarrow{O^{p} E_{2}^{p}}+x_{3} \overrightarrow{O^{p} E_{3}^{p}}
$$

(see Fig. 1). The famous Pohlke theorem claims that α is the product of a 3D similarity and a parallel projection. Hence any axonometric view is similar to a parallel view.

Figure 1: The axonometric principle in \mathbb{E}^{3}

More general, an m-dimensional axonometric view of $\mathbb{E}^{n}, m<n$, is given by an axonometric reference system $\left(O^{p} ; E_{1}^{p}, \ldots, E_{m}^{p}\right)$ in \mathbb{E}^{m} as the image under the affine transformation

$$
\begin{equation*}
\alpha: \mathbb{E}^{n} \rightarrow \mathbb{E}^{m} \text { with } O \mapsto O^{p}, E_{i} \mapsto E_{i}^{p}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Point $X=\left(x_{1}, \ldots, x_{n}\right)$ is mapped onto $\alpha(X) \in \mathbb{E}^{m}$ with cartesian coordinates $\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ obeying

$$
\left(\begin{array}{c}
x_{1}^{\prime} \tag{2}\\
\vdots \\
x_{m}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
a_{10} \\
\vdots \\
a_{m 0}
\end{array}\right)+A \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)
$$

And the multi-dimensional version of Pohlke's Theorem reads (see, e.g., [17, 7, 2, 12])
Theorem 1. 1. The affine transformation α defined in (1) with the coordinate representation (2) is the product of a similarity and a surjective parallel projection if and only if either $2 m \leq n+1$ or the smallest singular value λ of matrix A, i.e., the smallest eigenvalue of $A \cdot A^{T}$, has a multiplicity $\geq 2 m-n$. For $\lambda=1$ the axonometric view is congruent to a parallel view.
2. The projection is orthogonal if and only if the row vectors of matrix A are of equal length and pairwise orthogonal, i.e., if there is one singular value only.

The columns in A are cartesian coordinates of the vectors $\overrightarrow{O^{p} E_{i}^{p}}$ in \mathbb{E}^{m}. According to L. Schläfli [11, p. 134 resp. 298], in the case of an orthogonal projection the images $E_{1}^{p}, \ldots, E_{n}^{p}$ of the unit points are called eutactic with respect to O^{p} (see also [6], or [3, p. 251]). Such points in \mathbb{E}^{m} are characterized by the property that for any hyperplane Γ^{\prime} through O^{p} the squared distances $\overline{E_{i}^{p} \Gamma^{\prime}}$ have a sum λ^{2} independent from $\Gamma ;{ }^{1} \lambda$ is the scaling factor of the involved similarity. This results from the fact that Γ^{\prime} can be seen as 'edge view' of a hyperplane Γ in \mathbb{E}^{n}; the distances from Γ are preserved under the orthogonal projection; and the unit points of a cartesian basis in \mathbb{E}^{n} are eutactic with respect to the origin.

[^0]

Figure 2: $E_{1}^{p}, \ldots, E_{5}^{p}$ are eutactic with respect to O^{p}, i.e., they are similar to an orthogonal view of a cartesian basis. For $d_{i}=\overline{E_{i}^{p} \Gamma^{\prime}}$ the sum $\lambda^{2}=\sum_{i=1}^{5} d_{i}^{2}$ is independent from Γ^{\prime} through O^{p}

In the case $m=2$ the coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ of each image point can be combined to a complex number $\mathbf{x}^{\prime}:=x_{1}^{\prime}+i x_{2}^{\prime}$. Then the second part of Theorem 1 gives the n-dimensional version [14] of the Gauss theorem:
$\mathbf{e}_{1}^{p}, \ldots, \mathbf{e}_{n}^{p}$ are complex coordinates of points being eutactic with respect to the origin \Longleftrightarrow

$$
\begin{equation*}
\mathbf{e}_{1}^{p 2}+\ldots+\mathbf{e}_{n}^{p 2}=0 .^{2} \tag{3}
\end{equation*}
$$

1.2. Central axonometry

For handling central projections we extend \mathbb{E}^{n} and the image space \mathbb{E}^{m} by their points at infinity to projective spaces $\mathbb{E}^{n *}$ and $\mathbb{E}^{m *}$, respectively:

Let U_{1}, \ldots, U_{n} denote the points at infinity of the axes of the cartesian basis $O ; E_{1}, \ldots, E_{n}$. Then any $(2 n+1)$-tupel $\left(O^{c} ; E_{1}^{c}, \ldots, E_{n}^{c} ; U_{1}^{c}, \ldots, U_{n}^{c}\right)$ in $\mathbb{E}^{m *}, m<n$, with pairwise different and collinear $\left\{O^{c}, E_{i}^{c}, U_{i}^{c}\right\}$ for $i=1, \ldots, n$ is called a central axonometric reference system in $\mathbb{E}^{m *}$, provided these points span $\mathbb{E}^{m *}$ and $O^{c}, E_{1}^{c}, \ldots, E_{n}^{c}$ are finite as well as at least one U_{i}^{c}.

There is a unique surjective collinear transformation

$$
\begin{equation*}
\kappa: \mathbb{E}^{n *} \rightarrow \mathbb{E}^{m *} \text { with } O \mapsto O^{c}, E_{i} \mapsto E_{i}^{c}, U_{i} \mapsto U_{i}^{c}, \quad i=1, \ldots, n . \tag{4}
\end{equation*}
$$

We homogenize the cartesian coordinates in $\mathbb{E}^{n *}$ and $\mathbb{E}^{m *}$ and indicate this by the symbol '*'. E.g., for a finite point $X \in \mathbb{E}^{n *}$ with the coordinate vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ a particular homogeneous coordinate vector reads

$$
\mathbf{x}^{*}=\left(x_{0}^{*}, \ldots, x_{n}^{*}\right)=\left(1, x_{1}, \ldots, x_{n}\right)=(1, \mathbf{x}) \text { and } X=\mathbb{R} \mathbf{x}^{*} .
$$

[^1]

Figure 3: Central axonometric principle

Then $\kappa: \mathbb{E}^{n *} \rightarrow \mathbb{E}^{m *}$ can be expressed as the linear map

$$
\mathbf{x}^{\prime *}=\left(\begin{array}{c}
x_{0}^{\prime *} \tag{5}\\
x_{1}^{* *} \\
\vdots \\
x_{m}^{\prime *}
\end{array}\right)=l\left(\mathbf{x}^{*}\right)=A \cdot\left(\begin{array}{c}
x_{0}^{*} \\
x_{1}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right), \quad A=\left(\begin{array}{c|ccc}
a_{00} & a_{01} & \ldots & a_{0 n} \\
\hline a_{10} & a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{m 0} & a_{m 0} & \ldots & a_{m n}
\end{array}\right) .
$$

Due to the central axonometric principle a central axonometric reference system can be arbitrarily specified, and the image of $\mathbb{E}^{n *}$ under κ is called central axonometric view.

According to $[7,8]$ the central axonometric analogon of Theorem 1 needs some preparatory steps: From the $(m+1 \times n+1)$-matrix A in (5) we compute a $(m \times n)$-matrix \widetilde{A} as follows:

- drop the first column and the first row,
- replace for $i=1, \ldots, m$ the row vector \mathbf{a}_{i} by the component which is orthogonal to the row vector \mathbf{a}_{0}.

Theorem 2. 1. The collinear transformation κ in (4) with coordinate representation (5) is the product of a surjective central projection and an isometry if and only if either $2 m \leq n$ or the smallest singular value of the derived matrix \widetilde{A} has a multiplicity $\geq(2 m-n+1)$.
2. This central projection is orthogonal, i.e., the $(n-m-1)$-dimensional center is totally orthogonal to the image space $\mathbb{E}^{m *}$ if and only if the row vectors of the derived matrix \widetilde{A} are of equal length and pairwise orthogonal.

Remark 1: [13] reveals why these conditions look similar to that in Theorem 1: Any central projection is associated to a parallel projection with $(n-m)$-dimensional fibres parallel to the center and to the common perpendicular p between the center and the image space. \widetilde{A} is proportional to the coordinate matrix of the associated parallel projection. Exactly for orthogonal central projections
the associated projection is orthogonal.
And for any finite point $X=\left(x_{1}, \ldots, x_{n}\right)$ the central projection X^{c} and the associated parallel projection X^{p} are aligned with the principal point H which is the central (and parallel) view of the common perpendicular p. The ratio $\left(X^{p} X^{c} H\right):=\overline{H X^{p}} / \overline{H X^{c}}$ (signed lengths) equals $\overline{X \Pi_{v}} / \overline{H \Pi_{v}}$ where Π_{v} is the vanishing hyperplane of κ, i.e., the hyperplane through the center and parallel to the image space (see Fig. 4).

However, Theorem 2 says nothing about how the central axonometric reference systems for central projections can be charactized. For the case $(n, m)=(3,2)$ some characterizations are known (e.g., [10]). We pick out J. Szabó's condition in [16] which works only for the case that all points of the reference system are finite: $\left(O^{c} ; E_{1}^{c}, \ldots, U_{3}^{c}\right)$ is the central view of a cartesian reference system if and only if with the notation of Fig. 3

$$
\begin{equation*}
\left(\frac{e_{1}}{f_{1}}\right)^{2}:\left(\frac{e_{2}}{f_{2}}\right)^{2}:\left(\frac{e_{3}}{f_{3}}\right)^{2}=\tan \alpha_{1}: \tan \alpha_{2}: \tan \alpha_{3} . \tag{7}
\end{equation*}
$$

According to [9] the limit of this condition for one point U_{i}^{c} tending to infinity equals that given in [15].

Recently A. Dür presented in [4] a new characterization which works without restrictions on U_{i}^{c}. He uses the ratios

$$
\begin{equation*}
\rho_{i}:=\left(O^{c} E_{i}^{c} U_{i}^{c}\right)=\overline{O^{c} U_{i}^{c}} / \overline{E_{i}^{c} U_{i}^{c}} \quad \text { (signed distances) and } \rho_{i}^{\prime}:=1-\rho_{i} . \tag{8}
\end{equation*}
$$

Like in the Gauss equation (3) point O^{c} is the origin of the coordinate system in \mathbb{E}^{2} and the cartesian coordinates of E_{i}^{c} are combined in the complex number \mathbf{e}_{i}^{c}. Then we obtain

Theorem 3. (A. DÜr [4]) Any planar central view of a three-dimensional cartesian reference system is characterized by

$$
\begin{equation*}
\left(\rho_{2}^{\prime} \rho_{1} \mathbf{e}_{1}^{c}-\rho_{1}^{\prime} \rho_{2} \mathbf{e}_{2}^{c}\right)^{2}+\left(\rho_{3}^{\prime} \rho_{2} \mathbf{e}_{2}^{c}-\rho_{2}^{\prime} \rho_{3} \mathbf{e}_{3}^{c}\right)^{2}+\left(\rho_{1}^{\prime} \rho_{3} \mathbf{e}_{3}^{c}-\rho_{3}^{\prime} \rho_{1} \mathbf{e}_{1}^{c}\right)^{2}=0, \quad \mathbf{e}_{1}^{c}, \ldots, \mathbf{e}_{3}^{c} \in \mathbb{C} \tag{9}
\end{equation*}
$$

2. A new proof of Dür's equation

We start with a central projection in $\mathbb{E}^{3 *}$ with center Z, image plane $\Pi=\mathbb{E}^{2}$ and principal point H. Due to standard formulas from Projective Geometry the ratios ρ_{i} and ρ_{i}^{\prime} from (8) can be expressed as cross ratios ${ }^{3}$ (see Fig. 4). For this purpose we insert on the coordinate axis $O E_{i}$ the vanishing point V_{i} which under κ is mapped into infinity. All vanishing points in space are located in the vanishing plane Π_{v} through Z parallel Π.

$$
\begin{gather*}
\rho_{i}=\left(O^{c} E_{i}^{c} U_{i}^{c}\right)=\left(O^{c} E_{i}^{c} U_{i}^{c} V_{i}^{c}\right)=\left(O E_{i} U_{i} V_{i}\right), \tag{10}\\
\rho_{i}^{\prime}=1-\rho_{i}=\left(O U_{i} E_{i} V_{i}\right)=\left(E_{i} V_{i} O U_{i}\right)=\left(E_{i} V_{i} O\right) . \tag{11}
\end{gather*}
$$

For $\rho_{i}^{\prime}=0$ point U_{i}^{c} is at infinity; otherwise the vanishing point V_{i} on the axis $O E_{i}$ obeys $\overline{O V_{i}}=1 / \rho_{i}^{\prime}$. Due to our assumption for central axonometric reference systems there is at least one $\rho_{i}^{\prime} \neq 0$. The equation of the vanishing plane spanned by V_{1}, \ldots, V_{3} reads

$$
\begin{equation*}
\Pi_{v}: \rho_{1}^{\prime} x_{1}+\ldots+\rho_{3}^{\prime} x_{3}=1 \tag{12}
\end{equation*}
$$

[^2]

Figure 4: Dür's ratios $\rho_{i}=\left(O^{c} E_{i}^{c} U_{i}^{c}\right)$ and $\rho_{i}^{\prime}=1-\rho_{i}$, seen as cross ratios

Figure 5: Proof of A. DüR's equation

Now the coordinate representation (5) of our central projection $\kappa: \mathbb{E}^{3 *} \rightarrow \mathbb{E}^{2 *}$ is already available. The following matrix equation looks unusual as for points in the image space two of the three homogeneous coordinates are combined in a complex number.

$$
\mathbf{x}^{\prime *}=\left(\frac{x_{0}^{\prime *}}{x_{0}^{*} \mathbf{z}^{\prime}}\right)=l\left(\mathbf{x}^{*}\right)=\left(\begin{array}{c|ccc}
1 & -\rho_{1}^{\prime} & \ldots & -\rho_{3}^{\prime} \tag{13}\\
\hline \mathbf{o} & \rho_{1} \mathbf{e}_{1}^{c} & \ldots & \rho_{3} \mathbf{e}_{3}^{c}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0}^{*} \\
x_{1}^{*} \\
\vdots \\
x_{3}^{*}
\end{array}\right)
$$

Proof. Exactly the points of Π_{v} give $x_{0}^{\prime *}=0$ and are therefore mapped onto points at infinity. On the other hand E_{i} is mapped onto the point with the inhomogeneous complex coordinate

$$
\frac{1}{1-\rho_{i}^{\prime}} \rho_{i} \mathbf{e}_{i}^{c}=\mathbf{e}_{i}^{c}
$$

which is E_{i}^{c} as required.
The normal vector $\mathbf{p}:=\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \rho_{3}^{\prime}\right) \neq \mathbf{o}$ of the vanishing plane has the direction of the principal ray $p=Z H$. The cross products with the unit vectors \mathbf{e}_{i} in direction of the coordinate axes are

$$
\mathbf{p} \times \mathbf{e}_{1}=\left(0, \rho_{3}^{\prime},-\rho_{2}^{\prime}\right), \quad \mathbf{p} \times \mathbf{e}_{2}=\left(-\rho_{3}^{\prime}, 0, \rho_{1}^{\prime}\right), \quad \mathbf{p} \times \mathbf{e}_{3}=\left(\rho_{2}^{\prime},-\rho_{1}^{\prime}, 0\right)
$$

These are 3D coordinates of points P_{1}, P_{2}, P_{3} in a plane Π_{0} parallel zu Π. The geometric meaning of cross products (see Fig. 5)

$$
\left\|\mathbf{p} \times \mathbf{e}_{i}\right\|=\left|\sin \varphi_{i}\right| \cdot\|\mathbf{p}\|=\left\|\mathbf{e}_{i}^{n}\right\| \cdot\|\mathbf{p}\|
$$

implies that P_{1}, P_{2}, P_{3} are related to the orthogonal views $E_{1}^{n}, E_{2}^{n}, E_{2}^{n}$ of the unit points by a dilation from O with factor $\|\mathbf{p}\|$ and a rotation about O through 90°. Hence P_{1}, P_{2}, P_{3} are eutactic, too, and this is preserved under the projection from Z into Π as Π_{0} is parallel to Π.

By (13) the images $P_{1}^{c}, P_{2}^{c}, P_{3}^{c}$ have the complex coordinates

$$
\begin{equation*}
\mathbf{p}_{1}^{c}=\left(\rho_{3}^{\prime} \rho_{2} \mathbf{e}_{2}^{c}-\rho_{2}^{\prime} \rho_{3} \mathbf{e}_{3}^{c}\right)^{2}, \quad \mathbf{p}_{2}^{c}=\left(\rho_{1}^{\prime} \rho_{3} \mathbf{e}_{3}^{c}-\rho_{3}^{\prime} \rho_{1} \mathbf{e}_{1}^{c}\right)^{2}, \quad \mathbf{p}_{3}^{c}=\left(\rho_{1}^{\prime} \rho_{3} \mathbf{e}_{3}^{c}-\rho_{3}^{\prime} \rho_{1} \mathbf{e}_{1}^{c}\right)^{2} \tag{14}
\end{equation*}
$$

and the Gauss equation (3) $\mathbf{p}_{1}^{c 2}+\mathbf{p}_{2}^{c 2}+\mathbf{p}_{3}^{c 2}=0$ coincides with (9).
Conversely, we note that for any central axonometric reference system in \mathbb{E}^{2} the linear map (13) describes the underlying collinear transformation κ defined in (4) because collinear transformations preserve cross ratios on each line which is not mapped onto a single point. And (13) assigns to each collinear triple (O, E_{i}, V_{i}) the required images $\left(O^{c}, E_{i}^{c}, V_{i}^{c}\right)$.

Now, let the given central axonometric reference system $\left(O^{c} ; E_{1}^{c}, \ldots, U_{3}^{3}\right)$ in the plane Π obey (9) and let $P_{1}^{c}, P_{2}^{c}, P_{3}^{c}$ be the eutactic points with coordinates \mathbf{p}_{i}^{c} by (14) with $\rho_{i}, \rho_{i}^{\prime}$ by (8). We embed Π into $\mathbb{E}^{3 *}$ and erect a normal vector \mathbf{p} of length $\|\mathbf{p}\|=\sqrt{\rho_{1}^{\prime 2}+\cdots+\rho_{3}^{\prime 2}}$. Then we reverse the procedure displayed in Fig. 5: We set $O=O^{c}, P_{i}=P_{i}^{c}, i=1,2,3$, and obtain an unique cartesian frame $\left(O ; E_{1}, \ldots, E_{3}\right)$ with $\mathbf{p}_{i}=\overrightarrow{O P_{i}}=\mathbf{p} \times \mathbf{e}_{i}$. There are at least two linearly independent vectors, say $\mathbf{p}_{1}, \mathbf{p}_{2}$. With respect to this particular cartesian frame the plane $\Pi=\Pi_{0}$ has the equation

$$
\rho_{1}^{\prime} x_{1}+\ldots+\rho_{3}^{\prime} x_{3}=0
$$

It remains to prove that the corresponding collinear transformation κ defined in (4) and represented by the linear map $\mathbf{x}^{*} \mapsto \mathbf{x}^{\prime *}=l\left(\mathbf{x}^{*}\right)$ in (13) is a projection:
First we note that besides O and P_{i} all finite points $X \in \Pi$ remain fixed under κ because we can set up the homogeneous coordinate vector of X as $\mathbf{x}^{*}=\left(1, \alpha_{1} \mathbf{p}_{1}+\alpha_{2} \mathbf{p}_{2}\right)$ with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$, and this implies $l\left(\mathbf{x}^{*}\right)=\left(1, \alpha_{1} \mathbf{p}_{1}^{c}+\alpha_{2} \mathbf{p}_{2}^{c}\right)$, hence $\kappa(X)=X$.
κ has rank deficiency 1 . Therefore there is a center Z with coordinate vector \mathbf{z}^{*} in the kernel of l, to say $l\left(\mathbf{z}^{*}\right)=\mathbf{o}^{*} .{ }^{4}$ For any point $Y \neq Z$ let X denote the point of intersection $Y Z \cap \Pi$. We can set up $\mathbf{y}^{*}=\beta_{1} \mathbf{z}^{*}+\beta_{2} \mathbf{x}^{*}$ with $\beta_{2} \neq 0$. Then $l\left(\mathbf{y}^{*}\right)=\beta_{2} l\left(\mathbf{x}^{*}\right)$ means $\kappa(Y)=\kappa(X)=X$. Hence, κ is a projection.

3. Analoga of Dür's equation

We now concentrate on two-dimensional central-axonometric views of $\mathbb{E}^{n *}, n \geq 3$, i.e., on collinear transformations $\kappa: \mathbb{E}^{n *} \rightarrow \mathbb{E}^{2 *}$. We still use the ratios ρ_{i} and ρ_{i}^{\prime} from (8); their interpretations (10), (11) as cross ratios are still valid. We obtain the linear map l describing κ when we replace the subscript 3 by n in (13). The image of U_{i} under (13) has the complex coordinate

$$
\begin{equation*}
\mathbf{u}_{i}^{c}=-\frac{\rho_{i}}{\rho_{i}^{\prime}} \mathbf{e}_{i}^{c}, \quad i=1, \ldots, n \tag{15}
\end{equation*}
$$

This is in accordance with $\rho_{i}=\left(O^{c} E_{i}^{c} U_{i}^{c}\right)$ in (8).
Replacing 3 by n converts (12) into the equation of the vanishing hyperplane of κ. Its normal vector $\mathbf{p}:=\left(\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right)$ defines a point at infinity $(0, \mathbf{p}) \mathbb{R}$ which is mapped under κ onto the principal point H with the complex coordinate

$$
\begin{equation*}
\mathbf{h}=\frac{-1}{\|\mathbf{p}\|^{2}}\left(\rho_{1} \rho_{1}^{\prime} \mathbf{e}_{1}^{c}+\ldots+\rho_{n} \rho_{n}^{\prime} \mathbf{e}_{n}^{c}\right)=\frac{1}{\rho_{1}^{\prime 2}+\ldots+\rho_{n}^{\prime 2}}\left(\rho_{1}^{\prime 2} \mathbf{u}_{1}^{c}+\ldots+\rho_{n}^{\prime 2} \mathbf{u}_{n}^{c}\right) . \tag{16}
\end{equation*}
$$

This expresses \mathbf{h} as a weighted mean of $\mathbf{u}_{1}^{c}, \ldots, \mathbf{u}_{n}^{c}$ - with nonnegative weights.

[^3]
3.1. Case $n=3$:

Corollary 4. SzABÓ's condition (7) is equivalent to the statement that the principal point H given by (16) coincides with the orthocentre of $U_{1}^{c} U_{2}^{c} U_{3}^{c}$.

Proof. A straightforward computation reveals that for a non-rectangular triangle the orthocentre is the weighted mean of the vertices with weights $\tan \alpha_{i}$. The ratios on the left hand side of (7) obey $e_{i} / f_{i}=-\rho_{i}^{\prime}$. Hence (7) states proportional weights for H and the orthocentre.

Remark 2: For central projections this coincidence is obvious. Conversely, if for a central axonometry in Π the principal point H coincides with the orthocentre of $U_{1}^{c} U_{2}^{c} U_{3}^{c}$, then by standard methods of Descriptive Geometry a center Z relative to Π can be reconstructed. Now there are four points in the plane at infinity for which the axonometric view coincides with their projection via Z into Π. This turns out to be sufficient for the identity between κ and this projection.

Theorem 5. The characterization (9) of central projections among central axonometries due to A. DÜR is equivalent to

$$
\begin{equation*}
\left(\rho_{1}^{\prime} \mathbf{h}+\rho_{1} \mathbf{e}_{1}^{c}\right)^{2}+\left(\rho_{2}^{\prime} \mathbf{h}+\rho_{2} \mathbf{e}_{2}^{c}\right)^{2}+\left(\rho_{3}^{\prime} \mathbf{h}+\rho_{3} \mathbf{e}_{3}^{c}\right)^{2}=0 \tag{17}
\end{equation*}
$$

For finite U_{i}^{c} it is also equivalent to

$$
\begin{equation*}
\frac{1}{\rho_{1}^{\prime 2}}\left(\mathbf{u}_{2}^{c}-\mathbf{u}_{3}^{c}\right)^{2}+\frac{1}{\rho_{2}^{\prime 2}}\left(\mathbf{u}_{3}^{c}-\mathbf{u}_{1}^{c}\right)^{2}+\frac{1}{\rho_{3}^{\prime 2}}\left(\mathbf{u}_{1}^{c}-\mathbf{u}_{2}^{c}\right)^{2}=0 . \tag{18}
\end{equation*}
$$

Proof. For $\rho_{1}^{\prime} \rho_{2}^{\prime} \rho_{3}^{\prime} \neq 0$ we substitute in (9) \mathbf{e}_{i}^{c} by \mathbf{u}_{i}^{c} according to (15) and obtain (18).
Eq. (17) is related to Remark 1: For any point E_{i} in $\mathbb{E}^{3 *}$ the central view E_{i}^{c} and its associated parallel view E_{i}^{p} (which is an orthogonal view here) are alined with the principal point H. The dilation with center H mapping E_{i}^{c} onto E_{i}^{p} has the scaling factor $f=\overline{E_{i} \Pi_{v}} / \overline{H \Pi_{v}}$. Without loss of generality we can replace the image plane by the parallel plane Π_{0} through point O as the translation of Π in direction of the principal ray $p=Z H$ acts on the central view like a dilation from H. Then the scaling factor reads

$$
f=\overline{E_{i} V_{i}} / \overline{O V_{i}}=\left(E_{i} O V_{i} U_{i}\right)=\rho_{i}
$$

according to (10). Hence

$$
\begin{equation*}
\mathbf{e}_{i}^{p}=\mathbf{h}+\rho_{i}\left(\mathbf{e}_{i}^{c}-\mathbf{h}\right)=\rho_{i}^{\prime} \mathbf{h}+\rho_{i} \mathbf{e}_{i}^{c} \tag{19}
\end{equation*}
$$

is the complex coordinate of an orthogonal view of E_{i}. So, $E_{1}^{p}, E_{2}^{p}, E_{3}^{p}$ are eutactic with respect to $O^{p}=O^{c}$, and (18) results from the Gauss equation (3). ${ }^{5}$ The equivalence between (9) and (18) will be demonstrated for each $n \geq 3$ in the proof of Theorem 6 , and this ends a second new proof for DÜR's equation.

3.2. Case $n \geq 4$:

From Theorem 2 we learn that for $n \geq 4$ any central axonometric image is congruent to a central view. So, there is no restriction on central axonometric reference systems. However, we will confine ourselves to orthogonal central views, i.e., the center of the projection is supposed to be totally orthogonal to the image plane. Then there are higher-dimensional analoga to A. DÜr's equation (9):

[^4]Theorem 6. For any central axonometric reference system $\left(O^{c} ; E_{1}^{c}, \ldots, U_{n}^{c}\right)$ of $\mathbb{E}^{n *}$ in the plane $\mathbb{E}^{2 *}$ the collinear transformation κ defined by (4) is the product of a surjective orthogonal central projection and an isometry if and only if

$$
\left(\rho_{1}^{\prime} \mathbf{h}+\rho_{1} \mathbf{e}_{1}^{c}\right)^{2}+\ldots+\left(\rho_{n}^{\prime} \mathbf{h}+\rho_{n} \mathbf{e}_{n}^{c}\right)^{2}=0
$$

with the complex number \mathbf{h} being defined by (16). This equation is equivalent to

$$
\sum_{\substack{i, j=1 \\ i<j}}^{n}\left(\rho_{i} \rho_{j}^{\prime} \mathbf{e}_{i}^{c}-\rho_{j} \rho_{i}^{\prime} \mathbf{e}_{j}^{c}\right)^{2}=0 \text { and under } \rho_{1}^{\prime} \ldots \rho_{n}^{\prime} \neq 0 \text { also to } \sum_{\substack{i, j=1 \\ i<j}}^{n} \rho_{i}^{\prime 2} \rho_{j}^{\prime 2}\left(\mathbf{u}_{i}^{c}-\mathbf{u}_{j}^{c}\right)^{2}=0 .
$$

Proof. We follow exactly the arguments in the proof of Theorem 5, eq. (17), (see also [13]) and obtain the first equation as Gauss equation for the associated (and now again orthogonal) views $E_{1}^{p}, \ldots, E_{n}^{p}$ with the complex coordinates (19).
The equivalence to the second and the third equation is proved straightforward:

$$
\begin{aligned}
& \sum_{i}\left(\rho_{i}^{\prime} \mathbf{h}+\rho_{i} \mathbf{e}_{i}^{c}\right)^{2}=\mathbf{h}^{2}\|\mathbf{p}\|^{2}-2 \mathbf{h}^{2}\|\mathbf{p}\|^{2}+\sum_{i} \rho_{i}^{2} \mathbf{e}_{i}^{c 2}= \\
& =\frac{1}{\|\mathbf{p}\|^{2}}\left[-\left(\sum_{i} \rho_{i} \rho_{i}^{\prime} \mathbf{e}_{i}^{c}\right)^{2}+\|\mathbf{p}\|^{2} \sum_{i} \rho_{i}^{2} \mathbf{e}_{i}^{c 2}\right]=\frac{1}{\|\mathbf{p}\|^{2}}\left[-\sum_{i} \rho_{i}^{2} \rho_{i}^{\prime 2} \mathbf{e}_{i}^{c 2}-\right. \\
& \left.-2 \sum_{i<j} \rho_{i} \rho_{i}^{\prime} \rho_{j} \rho_{j}^{\prime} \mathbf{e}_{i}^{c} \mathbf{e}_{j}^{c}+\sum_{i} \rho_{i}^{2} \rho_{i}^{\prime 2} \mathbf{e}_{i}^{c 2}+\sum_{i<j}\left(\rho_{i}^{2} \rho_{j}^{\prime 2} \mathbf{e}_{i}^{c 2}+\rho_{j}^{2} \rho_{i}^{\prime 2} \mathbf{e}_{j}^{c 2}\right)\right]= \\
& =\frac{1}{\|\mathbf{p}\|^{2}}\left[\sum_{i<j}\left(\rho_{i} \rho_{j}^{\prime} \mathbf{e}_{i}^{c}-\rho_{j} \rho_{i}^{\prime} \mathbf{e}_{j}^{c}\right)^{2}\right]=\frac{1}{\|\mathbf{p}\|^{2}}\left[\sum_{i<j} \rho_{i}^{\prime 2} \rho_{j}^{\prime 2}\left(\mathbf{u}_{i}^{c}-\mathbf{u}_{j}^{c}\right)^{2}\right]
\end{aligned}
$$

by (15) and (16).
The following version is valid also for a higher-dimensional image space $\mathbb{E}^{m *}$, provided \mathbf{e}_{i}^{c} and \mathbf{h} denote cartesian coordinate vectors of E_{i}^{c} and the principal point H.

Corollary 7. The central axonometric reference system $\left(O^{c} ; E_{1}^{c}, \ldots, U_{n}^{c}\right)$ in $\mathbb{E}^{m *}, 2 \leq m<n$, defines an orthogonal central view of $\mathbb{E}^{n *}$ if and only if the points E_{i}^{p} with cartesian coordinate vectors $\mathbf{e}_{i}^{p}=\rho_{i}^{\prime} \mathbf{h}+\rho_{i} \mathbf{e}_{i}^{c}$ by (8) and (16) are eutactic with respect to O^{c}.

As already mentioned in Footnote 5, the affine combinations $\mathbf{e}_{i}^{p}=\rho_{i}^{\prime} \mathbf{h}+\rho_{i} \mathbf{e}_{i}^{c}$ are the columns of the 'reduced' matrix \widetilde{A} according to (6).

Remark 3: We finally recall that due to [13, Satz 3] for $m<n / 2$ the orthogonal central views of $\mathbb{E}^{n *}$ in $\mathbb{E}^{m *}$ cannot be distinguished from isocline central views, where the center is supposed to be isocline to the image space. This is an analogue to the fact that for $m \leq n / 2$ orthogonal views are similar to oblique views with fibres being isocline to the image space (cf. [12, p. 164]).

References

[1] H. Brauner: Lehrbuch der konstruktiven Geometrie. Springer, Wien 1986.
[2] H. Brauner: Lineare Abbildungen aus euklidischen Räumen. Beitr. Algebra Geom. 21, 5-26 (1986).
[3] H.S.M. Coxeter: Regular Polytopes. $2^{\text {nd }}$ ed., Macmillan, New York 1963, or $3^{\text {rd }}$ ed., Dover Publ., New York 1973.
[4] A. Dür: An Algebraic Equation for the Central Projection. J. Geometry Graphics 7, 137-143 (2003).
[5] D. Haase, H. Stachel: Almost-orthonormal Vector Systems. Beitr. Algebra Geom. 37, 367-381 (1996).
[6] H. Hadwiger: Über ausgezeichnete Vektorsterne und reguläre Polytope. Comm. Math. Helv. 13 (1940), 90-107.
[7] V. Havel: O rozkladu singulárních lineárních transformací. Časopis Pést. Mat. 85, 439-447 (1960).
[8] H. Havlicek: On the Matrices of Central Linear Mappings. Math. Bohem. 121, 151156 (1996).
[9] M. Hoffmann: On the Theorems of Central Axonometry. J. Geometry Graphics 2, 151-155 (1997).
[10] E. Kruppa: Zur achsonometrischen Methode der darstellenden Geometrie. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 119, 487-506 (1910).
[11] L. Schläfli: Theorie der vielfachen Kontinuität. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 38 (1901) (ed. J.H. Graf), 1-237 = Gesammelte Mathematische Abhandlungen, Band 1, 167-387, Verlag Birkhäuser, Basel 1950.
[12] H. Stachel: Mehrdimensionale Axonometrie. Proceedings of the Congress of Geometry, Thessaloniki 1987, 159-168.
[13] H. Stachel: Zur Kennzeichnung der Zentralprojektionen nach H. Havlicek. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 204, 33-46 (1995).
[14] E. Stiefel: Zum Satz von Pohlke. Comment. Math. Helv. 10, 208-225 (1938).
[15] E. Stiefel: Lehrbuch der darstellenden Geometrie. 3. Aufl., Basel, Stuttgart 1971.
[16] J. Szabó, H. Stachel, H. Vogel: Ein Satz über die Zentralaxonometrie. Sitzungsber., Abt. II, österr. Akad. Wiss., Math.-Naturw. Kl. 203, 3-11 (1994).
[17] K. Vala: A propos du théorèm de Pohlke. Ann. Acad. scient. Fennicae 270, 3-5 (1959).

Received October 30, 2004

[^0]: ${ }^{1}$ This is equivalent to the statement that for $E_{1}^{p}, \ldots, E_{n}^{p}$ the ellipsoid of inertia centered at O^{p} is a sphere. In $[12$, Satz 6$]$ an iterative procedure is given for obtaining eutactic points in \mathbb{E}^{m}. Eutactic points define 'almost orthonormal' vector systems with various properties (see [5]).

[^1]: ${ }^{2}$ In any case the points with complex coordinates $\pm \mathbf{f}$ obeying $\mathbf{f}^{2}=\mathbf{e}_{1}^{p 2}+\ldots+\mathbf{e}_{n}^{p 2}$ are the focal points of the visual contour of the unit sphere of \mathbb{E}^{n}.

[^2]: ${ }^{3}$ The ratio ($X_{1} X_{2} X_{3}$) is equal to the cross ratio ($X_{1} X_{2} X_{3} U$) with the aligned point U at infinity.

[^3]: ${ }^{4} Z$ is the point of intersection between Π_{v} and the line p through the principal point H by (16) orthogonal to Π.

[^4]: ${ }^{5}$ When we apply the procedure (6) to the matrix in (13) then we get \widetilde{A} with column vectors $\left(\mathbf{e}_{1}^{p}, \mathbf{e}_{2}^{p}, \mathbf{e}_{3}^{p}\right)$.

