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Abstract. Spatial kinematics is a challenging field because of its real world appli-
cations at serial and parallel manipulators. However, it is not easy to teach as on
the one hand the students’ spatial abilities need to be well developed. And on the
other hand familiarity with calculus and vector algebra is substantial. After several
years of experience I learned that one can expect from students to work with dual
vectors. Students soon estimate that due to this tool they can handle directed lines
in space (like axes of rotations) as well as screws, i.e., instantaneous motions.

1 Dual unit vectors representing directed lines in 3-space

There is a tight connection between spatial kinematics and the geometry of lines in
the Euclidean 3-space. Therefore we start with recalling the use of appropriate line
coordinates (cf. [2], [7] or [8, p. 155]). Any directed line (spear) g with direction vector
g and passing through point A with position vector a, i.e., g = a + Rg, can be uniquely
represented by the pair of vectors (g, ĝ), the direction vector g and the momentum vector
ĝ according to the definitions

g·g = 1 and ĝ := a× g, which imply g·ĝ = 0.

Conversely, any pair (g, ĝ) of vectors obeying g ·g = 1 and g · ĝ = 0 defines a unique
spear g because p := g× ĝ is a point of this line, the pedal point of g with respect to
the origin. It makes sense to replace the pair (g, ĝ) by the dual vector

g := g + εĝ (1)

where the dual unit ε obeys the rule ε2 = 0.
We extend the usual dot product of vectors to dual vectors and notice

g·g = (g + εĝ)·(g + εĝ) = g·g + 2εg·ĝ = 1 + ε0 = 1. (2)

Hence we call g a dual unit vector. In this sense the set of directed lines in the Euclidean
3-space E

3 can be seen as the dual extension of the unit sphere.

The representation of directed lines g in E
3 by dual unit vectors g brings about

several advantages, and from now on we do not distinguish between directed lines g and
their representing dual vector g as well as between points X and their position vector x.

Theorem 1 For two given directed lines g, h in E
3 let n denote the common normal

endowed with an arbitrary orientation. If the helical motion along n which transforms
g into h (see Fig. 1) has the angle ϕ of rotation and the length ϕ̂ of translation and we
combine them in the dual angle ϕ := ϕ + εϕ̂, then the following equations hold true:

g·h = cos ϕ = cos ϕ − εϕ̂ sin ϕ and

g× h = sin ϕn = sin ϕn + ε [sin ϕ n̂ + ϕ̂ cos ϕn] .
(3)
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Figure 1: Dual angle ϕ = ϕ + εϕ̂
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Figure 2: k = cos ϕg + sin ϕh

Remarks: 1) The dual extension of differentiable functions is defined by

f(x) = f(x + εx̂) = f(x) + ε x̂f ′(x).

This is the beginning of a Taylor series where due to ε2 = 0 all higher powers are
vanishing. This guarantees that identities like cos2 x + sin2 x = 1 are preserved under
the dual extension as they are valid for the power series, too.

The notation ε originates from the fact that the dual unit can be seen as such a small
number that its square is neglectable. Note that only dual numbers x = x + εx̂ with
non-vanishing real part, i.e., x 6= 0, have an inverse x−1 = 1

x
(x − εx̂); all others are zero

divisors. Dual numbers have first been introduced 1873 by W. K. Clifford [4].

2) On the other hand we use in Theorem 1 the dual extension of the vector product
according to

g× h = (g + εĝ)× (h + εĥ) = (g× h) + ε
[
(ĝ× h) + (g× ĥ)

]
. (4)

Proof of Theorem 1: Suppose ĝ = a× g and ĥ = b× h. Then the shortest distance
between g and h reads

ϕ̂ = (b − a)·n = (b − a)·
1

sin ϕ
(g× h) =

1

sin ϕ
[det(b,g,h) − det(a,g,h)] =

=
1

sin ϕ
[−(b× h)·g − (a× g)·h] =

−1

sin ϕ
(ĝ·h + g·ĥ).

If a and b are supposed to be the intersection points of g and h with the common normal
n (see Fig. 1), then

sin ϕ n̂ = a× sin ϕn = a× (g× h) = (a·h)g− (a·g)h + [(a − b)·g]h = (a·h)g− (b·g)h.

The expression in brackets vanishes and could therefore be added without changing the
value. On the other hand, due to standard formulas from vector algebra we see

(ĝ× h) + (g× ĥ) = [(a× g)× h] + [g× (b× h)] =

= (a·h)g − (g·h)a + (g·h)b − (g·b)h =

= (a·h)g − (b·g)h + (g·h)(b − a) = sin ϕ n̂ + ϕ̂ cos ϕn.
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The dual extension makes it possible to convert formulas and theorems from spherical
geometry onto the geometry of spears (cf. [9]). The following examples should illustrate
this so called ’principle of transference’ (German: Übertragungsprinzip) which dates
back to E. Study.

Theorem 2 Let g and h be two orthogonally intersecting spears with the common per-
pendicular n. Then

k = cos ϕg + sin ϕh (5)

is the image of g under the helical motion along n through the dual angle ϕ (see Fig. 2).

Proof: From the orthogonal intersection of g and h we conclude g·h = 0 and n = g×h,

hence k·k = cos2ϕ(g·g)+sin2ϕ(h·h) = 1. Then Theorem 1 implies g×k = sin ϕ (g×h) =
sin ϕn as stated.

We iterate this procedure: Let e
1
, e

2
, e

3
be three pairwise orthogonally intersecting

spears (Fig. 3). Each line g has a common perpendicular n with e
3
, and using the dual

angle β between e
3

and g as well as λ between e
2

and n we obtain by Theorem 2

g = cos β e
3
+ sin β k and k = cos λ e

1
+ sin λ e

2
.

Thus we get dual sphere coordinates (λ, β) to coordinatize directed lines (see Fig. 3) by

g = cos λ sin β e
1
+ sin λ sin β e

2
+ cos β e

3
. (6)

In the sequel we need

Theorem 3 Any dual vector v = v + εv̂ is a dual multiple of a dual unit vector, i.e.,
v = λg with g ·g = 1. In the case v 6= o the dual unit vector g is uniquely determined
up to its sign.

Proof: We have to fulfill the equation v + εv̂ = (λ + ελ̂)(g + εĝ). First we note that

v ·v = λ2 g ·g implies v ·v + 2ε(v · v̂) = λ2 + 2ελλ̂, hence v = λg, v̂ = λ̂g + λĝ and

v·v̂ = λλ̂. For λ = ±‖v‖ 6= 0 we get the solution

g =
1

λ
v and ĝ =

1

λ

(
v̂ −

λλ̂

λ2
v

)
. (7)

In the case λ = 0, i.e., v = εv̂, we set λ̂ = ‖v̂‖, λ̂g = v̂ and choose an arbitrary ĝ under

λ̂ 6= 0, otherwise the unit vector g can be chosen arbitrarily, too.

2 Dual vectors representing screws

In this section we demonstrate the use of dual vectors for describing instantaneous mo-
tions (for an introduction see also [3, 5, 7, 11, 6]). Let a rigid body, which represents the
moving system Σ1, perform a one-parameter motion against the frame, the fixed system
Σ0. We assume that cartesian coordinate frames are attached to each system Σi, i = 0, 1,
and we use the subscript i to indicate related coordinate vectors. Then the movement of
Σ1 against Σ0 can analytically be described by the coordinate transformation which at
each instant t gives the Σ0-coordinate vector x0 of any point which with respect to the
moving system Σ1 has the coordinate vector x1. This coordinate transformation reads

Σ1/Σ0 : x0 = u0(t) + A(t)·x1 with A(t)·A(t)T = I3 and det A(t) = +1. (8)
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Figure 3: Dual sphere coordinates (λ, β)
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Here I3 denotes the unit matrix, u0(t) is the Σ0-coordinate vector of the origin of Σ1, and
A(t) is an orthogonal matrix, i.e., its transposed A(t)T is at the same time its inverse
A(t)−1. In order to figure out the distribution of velocity vectors Xv10 of points X
attached to the moving system Σ1, we differentiate and replace x1 by x0 due to (8). We
thus obtain — after dropping the parameter t —

Xv10 = ẋ0 = u̇0 + Ȧ·x1 = (u̇0 − Ȧ·AT ·u0) + Ȧ·AT ·x0 (9)

because of ẋ1 = o. The matrix Ȧ ·AT is skew symmetric because differentiation of
A·AT = I3 gives

Ȧ·AT + A·ȦT = Ȧ·AT + (Ȧ·AT )T = O = zero matrix.

There is a dual vector q
10

= q10 + εq̂10 such that

Ȧ·AT ·x0 = q10× x0 for all x0 ∈ R
3 and q̂10 := u̇0 − Ȧ·AT ·u0 . (10)

We call this dual vector the instantanous screw [1] as according to (9) this vector rules
the distribution of velocity vectors which the given motion Σ1/Σ0 assigns instantaneously
to each point X attached to the system Σ1. We have

Xv10 = q̂10 + (q10× x0). (11)

Due to Theorem 3 the dual vector q
10

is a dual multiple of a dual unit vector, i.e.,
q

10
= ω

10
p

10
, or explicitely,

q10 + εq̂10 = (ω10 + εω̂10)(p10 + εp̂10) = ω10 p10 + ε(ω̂10 p10 + ω10 p̂10) (12)

with p
10
·p

10
= 1. In order to figure out the meaning of the dual scalar ω

10
and the

directed line p
10

we use a point s0 of this line and set p̂10 = s0× p10. Then according to
(11) and (12) we get

Xv10 = (ω̂10 p10 + ω10 p̂10) + (ω10 p10× x0) = ω̂10 p10 + ω10 [p10× (x0 − s0)] (13)

4



PSfrag replacements

p

n

α

α̂

β

β̂

X

νX

Y

Z

Xv

Y v

Zv

Figure 5: Linear complex of
path normals

PSfrag replacements
p

n

α
α̂
β
β̂

X
νX

Y
Z

Xv

Y v

Zv

x

s
p

10

ω̂10

ω10

x
v10

p
10

p
20

n

α̂

α

Figure 6: Portion of Plücker’s cylindroid

This reveals (see Fig. 4) that Xv10 is the velocity vector of x0 under a helical motion
about the instantaneous axis (ISA) p

10
with angular velocity ω10 and translatory velocity

ω
10

. We call ω
10

the dual angular velocity of the instantaneous motion. In this sense the
dual unit vectors are at the same time the screws for instantaneous rotations with the
angular velocity 1.

Now it is clear why due to Theorem 2 the axis p
10

is uniquely determined only under
ω10 6= 0: Otherwise the instantaneous motion is a translation, and in this case only the
direction of the axis is determined, but not the axis itself.

Theorem 4 When the instantaneous screw q
10

is expressed as a multiple ω
10

p
10

of a
dual unit vector, then p

10
is the instantaneous axis and ω

10
the dual angular velocity of

the instantaneous helical motion.

Theorem 5 For any instantaneous motion with the screw q
10

the ‘path-normals’, i.e.,
the lines n perpendicular to Xv10 and passing through X, constitute a linear line complex
as n = n + εn̂ obeys the linear homogeneous equation

q̂10 ·n + q10 ·n̂ = 0 ( ⇐⇒ q
10
·n ∈ R). (14)

This equation is independent of X. Hence any line ±n, which is a path-normal at one
of its points, is a path-normal at each point (see Fig. 5).

Proof: Due to (11) and n̂ = x0× n we have

0 = Xv10 ·n = [q̂10 + (q10× x0)]·n = q̂10 ·n + q10 ·(x0× n) = q̂10 ·n + q10 ·n̂.

By (3) and (12) our Equation (14) is equivalent to ω
10

p
10
·n = ω

10
cos α ∈ R or

ω̂10 cos α − ω10α̂ sin α = 0, when α denotes the dual angle between p
10

and n (Fig. 5).
Hence the path normals n of the instantaneous motion are characterized by

α̂ tan α =
ω̂10

ω10

. (15)
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The quotient on the right hand side is the pitch of the helical motion.

Finally, we need the spatial Three-Pole-Theorem

Theorem 6 If for three given systems Σ0, Σ1, Σ2 the dual vectors q
10

and q
20

are the
instantaneous screws of the motions Σ1/Σ0 and Σ2/Σ0, respectively, then

q
21

:= q
20
− q

10
, i.e., ω

21
p

21
= ω

20
p

20
− ω

10
p

10
, (16)

is the instantaneous screw of the relative motion Σ2/Σ1. The three corresponding linear
line complexes are included in a pencil of line complexes.

Proof: According to (11) we have

Xv21 = Xv20 − Xv10 = (q̂20 − q̂10) + [(q20 − q10)× x0] = q̂21 + (q21× x)

for each point X.

Let a line n intersect the ISAs p
10

of Σ1/Σ0 and p
20

of Σ2/Σ0 orthogonally, i.e.,
p

10
·n = p

10
·n = 0. Then we obtain ω

21
p

21
·n = 0, which means that the line n does also

intersect the axis p
21

of Σ2/Σ1 orthogonally, provided ω21 6= 0.

Let two skew axes p
10

and p
10

be given. When the corresponding dual velocities ω
10

and ω
20

vary such that the pitches ω̂10/ω10 and ω̂20/ω20 remain constant, the axes p
21

of the relative motions Σ2/Σ1 constitute a cylindroid or Plücker conoid. Fig. 6 gives an
impression of the cylindroid by showing some generators ‘between’ p

10
and p

20
.

Now the principle of transference can be used to convert theorems from spherical
kinematics into those of spatial kinematics (see e.g. [10].

3 Applications

Example 1: Infinitesimal forward and inverse kinematics of 6R robots:
A serial robot is an open kinematic chain of links Σ0, Σ1, . . . , Σ6 (Fig. 7). Any two
consecutive links are connected by a revolute joint with the axis p

10
,p

21
, . . . ,p

65
, re-

spectively.

Given: Any posture of a 6R robot together with instantaneous angular velocites ω10, ω21,
. . . , ω65 ∈ R of the relative motions about each axis. All axes are given in the same
coordinate system.

Wanted: What is the instantaneous motion of the endeffector Σ6 ?

This instantaneous motion is defined by the screw q
60

. From the Three-Pole-Theorem
(Theorem 6) we learned that

q
60

= ω10 p
10

+ ω21 p
21

+ . . . + ω65 p
65

.

This can also be written in matrix form: We combine the coordinates of the axes
p

10
, . . . ,p

65
in the columns of a (6× 6)-matrix J . Then the resulting screw reads

q
60

=
∑

i=1,...,6

ωi i−1 p
i i−1

= J ·Ω
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Figure 7: Serial robot
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with Ω as the column vector of given angular velocities. J is called Jacobi matrix. In the
regular case (det J 6= 0) we can also solve the inverse problem: For given q

60
we get the

corresponding angular velocities ω10, . . . , ω65 by solving a system of linear equations.
If there is a rank deficiency of J , then the instantaneous degree of freedom of Σ6/Σ1

is less than six. Just in this case the columns of J are linearly dependent. This is
equivalent to the statement that the six axes are included in a linear line complex.

Example 2: Calibration of Stewart-Gough-Platforms:

Given: Any posture of a Stewart-Gough-Platform, i.e., a parallel manipulator where
the platform Σ1 is connected with the frame Σ0 by six telescopic legs (Fig. 8). The
anchor points in Σ0 are denoted by a0, . . . , a6, those in the platform Σ1 by b0, . . . ,b6.
We assume that for all these points the instantaneous coordinates are given in the same
coordinate system.

Wanted: Suppose that by precise measurements a mislocation of the platform against
the frame has been detected. How to figure out which leg is mainly responsible for this
deviation.

There is a (small) helical motion which transports the actual posture into the target
posture. After solving this registration problem, we get the corresponding axis p

10
,

the angle ϕ10 of rotation and the length ϕ̂10 of translation. Let us assume that this
movement is performed within — say — one second. This defines a screw q

10
, and

the instantaneous helical motion of Σ1 assigns to each of its anchor points b0, . . . ,b6 a
velocity vector according to (11). The component of this vector in direction of the leg
aibi gives the corresponding variation in length which has to be carried out within 1
second. So, the leg with the largest velocity component should be most responsible for
the mislocation. Of course, the reliability on this result needs to be fostered by iterated
measurements in different postures.

How to compute these variations? Let di denote the distance ‖bi − ai‖. Then the
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carrier line of this leg, oriented in the direction aibi, has the coordinate components

li =
1

di

(bi − ai) and l̂i = bi× li .

From d2

i = (bi − ai)
2 we obtain bei differentiation diḋi = (bi − ai)·ḃi, hence

ḋi = li ·ḃi = li ·[q̂10 + (q10× bi)] = li ·q̂10 + (bi× li)·q10 = li ·q̂10 + l̂i ·q10 .

We form a (6× 6)-matrix J with rows consisting of the coordinates of (̂li, li), written in
this order. Then we get

Ḋ = J ·q
10

with Ḋ denoting the column of ḋi. So we obtain the variation of leg lengths by multiplying
this Jacobi matrix J with the screw. In singular postures, which are characterized by
det J = 0, there are infinitesimal self motions of the platform while the lengths of all
telescopic legs remain fixed. Just in singular postures the rows in J are linearly dependent
and therefore the six lines aibi included in a linear line complex.
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