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Abstract

In this paper the dependencies between the instantaneous invariants of a spatial
motion and the local invariants of the axodes are studied in a way that includes all
types of ruled surfaces. New proofs for mostly wellknown formulas are given
which should meet the main target of this note, namely to demonstrate anew the
elegance and effectiveness that E. STUDY’s dual line coordinates bring about in
spatial kinematics.
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Introduction

The results of this paper1 are not really new: The spatial version of the EULER-SAVARY

theorem dates back to DISTELI [6] and has since then been discussed in various papers,
e.g. in [5], [18], [7], [19] (cf. the comprehensive bibliography on kinematics in [13])
and in a recent thesis [15].

A remark in O. BOTTEMA’s and B. ROTH’s monography [5] (page 161) says: “The
relationships between the local properties of the axodes and the higher order instanta-
neous invariants do not seem to have been developed”. This paper is intended to close
this gap. In [18] J. TÖLKE presented also formulas that express local motion invariants

1This paper is an extended version of the Technical Report [16].
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in terms of invariants of the axodes. A formula for the screw parameter (Corollary 5)
can be found in J. GRILL’s thesis [8], eq. (5.29), too. However, the spatial EULER-
SAVARY formula given in [8], eq. (7.20), deals with curvatures of enveloping surfaces.
It differs from DISTELI’s line-geometric version which will be discussed in the sequel.

In many of the cited papers the results are not of general validity as the axodes are
restricted to skew ruled surfaces. We try to present all results in full generality including
the spherical case as well as the case of cylindrical roll-slidings. As a consequence, no
common natural parameter is available for all one-parameter spatial motions. However,
most effective is the consequent use of dual numbers and dual vectors. In this sense this
paper can also be seen as a tiny addendum to W. BLASCHKE’s book “Kinematik und
Quaternionen” [3], which ends with the touching remark: “Es ist mir durchaus bewußt,
daß dieses vorliegende Büchlein, das wohl mein letztes sein wird, manche Mängel und
Lücken aufweist. Möge dieser Umstand dazu beitragen, daß junge Geometer sich dieses
klassischen Gegenstandes erneut annehmen!”.

1 Dual vectors

Let D denote the ring of dual numbers2

λ = λ + εbλ ; λ ;
bλ 2 R ;

where the dual unit ε obeys the rule ε2
= 0. Only for dual numbers with the real part

λ 6= 0 the inverse

λ�1
=

1
λ 2 (λ � εbλ )

exists. Pure dual numbers λ = 0+ εbλ 6= 0 are the zero divisors in D .
For the analytic function f (x) the “dual extension” f (x) is defined as

f (x+ εbx) := f (x)+ ε bx f 0(x): (1)

This can be seen as the beginning of a TAYLOR series; due to ε2
= ε3

= :::= 0 all terms
of higher order vanish.

The dual vectors 2

v := v+ εbv with v;bv 2 R
3

2The underbar indicates dual numbers as well as dual vectors. We have of course 0 = 0, 1 = 1 and
for the zero vector o= o.
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constitute the module D
3 over the ring D . Beside the addition and multiplication with

scalars λ 2 D also the following products of dual vectors are defined:

� : (D
3
)

2 ! D ; (u;v) 7! u�v := u�v+ ε(bu�v+u�bv)
� : (D

3
)

2 ! D
3
; (u;v) 7! u�v := u�v+ ε [(bu�v)+(u�bv)]

det : (D
3
)

3 ! D ; (u;v;w) 7! det(u;v;w) := u�(v�w) = det(u;v;w)+

+ ε [det(bu;v;w)+det(u;bv;w)+det(u;v; bw)] :

Each dual vector v = v+ εbv is a multiple of a dual unit vector g, i.e.

v = λ g with g�g = g�g+2εg�bg = 1 : (2)

For v 6= o the dual unit vector g is unique – up to the factor �1. For v = εbv 6= o eq. (2)

holds for any bg 2 R
3, provided λ = εbλ with bλ =�kbvk and g =

1
bλ
bv.

Two dual vectors u;v are linearly dependent over the ring D of dual numbers if and
only if their real parts are linearly dependent over R , i.e.

λ u+µ v = o and (λ ;µ) 6= (0;0) () u�v = o : (3)

Proof: Due to u�u = v�v = o the left side implies λ (u�v) = µ (v�u) = o . This
means for w := u�v

λ w = µ w =
bλ w+λ bw = bµ w+µ bw = o :

w = u�v 6= o implies λ = µ =
bλ = bµ = 0.

Conversely, the dependency of the real parts can be written as

λu+µv = o or (0+ ελ )u+(0+ εµ)v = o with (λ ;µ) 6= (0;0) :

More details on linear dependencies of dual vectors can be found in [17].

2 Directed lines and dual unit vectors

We continue with a brief summary3 of STUDY’s representation of directed lines
(spears) in the Euclidean 3-space E3 :

Let a be any point of the line g with given direction vector g obeying kgk= 1. Then
the corresponding momentum vector (2nd PLÜCKERvector) bg := a�g is independent
from the choice of point a at line g and it obeys g�bg = 0. Conversely, a pair (g;bg) of

3For more detailed information the reader is referred to [2].
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vectors with kgk= 1 and g�bg = 0 determines a unique directed line since p := g�bg is
the coordinate vector of the pedal point of this line with respect to the origin. Hence
there is a bijection between the set of directed lines in E3 and the set of dual unit vectors

g 7! g with g�g = 1: (4)

In the following we identify directed lines with their dual unit vector.
For two directed lines g;h the dual angle ϕ := ϕ + ε bϕ combines the angle ϕ and

the shortest distance bϕ . This gives rise to geometric interpretations of the following
products of the dual unit vectors g;h (note the definition (1)):

g�h = cosϕ = cosϕ� ε bϕ sinϕ ;

g�h = sinϕ n = (sinϕ + ε bϕ cosϕ)(n+ εbn) : (5)

Here n represents a directed common perpendicular of the given lines g;h , and the
signs of ϕ and bϕ are related to the orientation of n .

Vanishing products of dual unit vectors characterize the following situations:

g�h = 0 () g and h intersect perpendicularly;

g�h = o () g and h are located on the same line, i.e. g =�h;

det(g;h;k) = 0 ()
�

g, h and k are located on parallel lines or
they intersect a common line perpendicularly.

Let two directed lines g;h be given obeying g�h = 0: Then

k := cosϕ g+ sinϕ h (6)

defines a spear which is the image of g under a helical displacement about the axis
(g�h) with the dual screw angle ϕ .

Proof: We conclude from (g�h)�(g�h) = (g�g)(h�h)� (g�h)2
= 1 and

k�k = cos2ϕ + sin2ϕ +2cosϕ sinϕ (g�h) = 1

that (g�h) and k are directed lines. The equation

g�k = sinϕ (g�h)

reveals the stated property.
This proof could also be carried out using the dual unit quaternion

Q = cos
ϕ
2

+ sin
ϕ
2

(g�h) and k = Q�1 ÆgÆQ

which represents the helical displacement mentioned above.
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3 Instantaneous motion

At each moment of a spatial motion Σ1=Σ0 the velocity vector of any point x attached
to the moving space Σ1 is given by ẋ = bq+(q�x) . We write the instantaneous screw
(q;bq) introduced by R.S. BALL [1] as the dual vector

q := q+ εbq = ω p with p�p = 1 (7)

according to (2). Then q combines the dual unit vector p of the instantaneous screw axis
(pole axis) with the dual screw velocity ω = ω + ε bω where ω is the angular velocity
and bω the translation velocity.

Proof: Let s denote any point of the screw axis p . Then for bp = s�p we obtain

ẋ = bω p+ω bp+ω (p�x) = bω p+ω (s�p)+ω (p�x) = bω p+ω [p� (x� s)]

which exactly expresses the stated instantaneous helical motion.

For q 6= o (, ω 6= 0) the line p is unique — up to its orientation — as

ω =�kqk; bω =
q�bq
ω

; p =
1
ω

q ; bp =
1
ω

�bq� bω
ω

q
�

: (8)

Let the directed line g be attached to the moving space Σ1. Then the dual “velocity
vector” of g under the motion Σ1=Σ0 reads

ġ := ġ+ εḃg = q�g : (9)

Proof: The real part ġ = q�g is obvious. For obtaining the dual part we use any point
x of this line with bg = x�g :

ḃg = (ẋ�g)+(x� ġ) = [bq+(q�x)]�g + x� (q�g) =

= (bq�g)+(q�g)x� (x�g)q� (x�q)g+(x�g)q=

= (bq�g)+ [q� (x�g)] = (bq�g)+(q�bg):
This reveals the principle of transference: The dual extensions of formulas from

spherical kinematics are valid for the directed lines in spatial kinematics (compare The-
orem 6).
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4 FRENET motion for a ruled surface Φ

Let a parametrized ruled surface Φ be given by the C2-function

t 2 I � R 7! g(t) := g(t)+ εbg(t):
Then there is a FRENET frame of three pairwise perpendicularly intersecting directed
lines g, n, z such that the FRENET equations read in the notation of [3], (9.11) and
(41.8),

ġ = λ n = q�g
ṅ = �λ g +µ z = q�n
ż = �µ n = q� z

(10)

for
q := µ g+λ z = ω g� with g� �g� = 1 : (11)

Again q denotes the instantaneous screw of the FRENET motion along Φ. The dual
screw velocity ω obeys

q�q = ω2
= λ 2

+µ2
; hence ω2

= λ 2
+µ2 and ω bω = λbλ +µbµ :

The axis g� of this instantaneous screw is called DISTELI-axis (striction axis or curva-
ture axis). It is unique under ω 6= 0.

The following theorems summarize some geometric interpretations of the dual in-
variants4 λ = λ + εbλ and µ = µ + εbµ according to the type of Φ as well as properties
of the DISTELI-axis:

Theorem 1: For λ (t) 6= 0 the common perpendicular p(h) between adjacent genera-

tors g(t) and g(t+h) converges for h! 0 towards z(t) = 1
λ (g� ġ), the central tangent.

Hence the origin of our FRENET frame is the striction point s, and n(t) = z�g =
1
λ ġ

is the central normal. The distribution parameter of g(t) reads

δ =
ġ�ḃg
ġ�ġ =

bλ
λ

:

Proof: From the Taylor expansion g(t + h) = g(h)+ h ġ(t)+ o(h) we obtain for the
dual angle ϕ(h) made by the two adjacent lines

sinϕ(h)p(h) = g(t)�g(t +h) = h [g(t)� ġ(t)]+ [g(t)�o(h)] :
4In [11] integral invariants of closed ruled surfaces have been represented in terms of dual unit vec-

tors.
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This leads to

lim
h!0

1
h

sinϕ(h)p(h) = lim
h!0

sinϕ + ε bϕ cosϕ
h

p(h) = g(t)� ġ(t) = λ g�n = λ z ;

and we deduce

δ = lim
h!0

bϕ(h)
ϕ(h)

= lim
h!0

bϕ(h)cosϕ(h)
sinϕ(h)

=

bλ
λ

:

Generators with λ = 0 are cylindric. Here the FRENET equations (10) do not deter-
mine the canonical frame uniquely. Therefore at a cylindrical surface Φ (λ = 0 for all
t 2 I) we proceed the other way round: We specify any transverse C2-curve s : t ! R

3

on Φ as “striction curve”, e.g. the orthogonal section given by s(t) = g(t)�bg(t) . Then
the pair (z;�n) of vectors represents a canonical frame for the orthogonal section. This
two-dimensional frame is right-handed, if seen against g .

Theorem 2: 1. For λ 6= 0 the dual invariants λ and µ of the parametrized ruled
surface Φ obey

λ = vg + εvs sinσ ; µ = vgκg + εvs cosσ :

vg = λ is the velocity, κg = cot γ =
µ
λ

the geodesic curvature and γ the spherical

curvature radius of the spherical image t 2 I 7! g(t) 2 S2 of Φ . The angle σ is
the striction and vs the velocity of the striction point s.

2. For λvs 6= 0 KRUPPA’s curvature κ and torsion τ (cf. [12]) can be expressed as

κ =
vg

vs
=

λqbλ 2 + bµ2
; τ =

vgκg

vs
=

µqbλ 2 + bµ2
:

3. At a parametrized cylindrical surface Φ, i.e. λ = 0 8t 2 I, with an arbitrary “striction
curve” s(t) we obtain

λ = εvn ; µ = vnκn + εvt :

Here vn = vs sinσ and vt = vs cosσ are the components of the velocity vector ṡ in
direction of z and g respectively. κn denotes the curvature of the orthogonal section
of Φ .

Proof: The striction point is the origin of the canonical frame, i.e. s = o. Its velocity
vector under the FRENET motion is ṡ = bq+(q� s) = bq . With respect to this frame
g;n;z we obtain from q = µ g+λ z and bg = bn =bz = o

q = (µ + εbµ)
0@ 1

0
0

1A+(λ + εbλ )

0@ 0
0
1

1A= q+ ε

0@ vt
0
vn

1A= q+ ε

0@ vs cosσ
0

vs sinσ

1A
:
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Theorem 3: 1. The DISTELI-axis g� intersects the central normal n perpendicularly
at the point

c := s+
λ bµ�bλ µ
λ 2 +µ2 n :

2. The DISTELI-axis obeys the equations

ω g� = n� ṅ and λ 2 ω g� = ġ� g̈ :

Therefore g� is the central tangent of the ruled surface Ψ built by the central normals
of Φ .

3. For λ 6= 0 the dual angle γ made by the generator g and its DISTELI-axis g� matches

cotγ := cotγ + εbγ(1+ cot2 γ) =
µ
λ

:

This quotient could be called the “dual curvature” of Φ . For each generator of a cylin-
drical surface the DISTELI-axis coincides with the curvature axis of the orthogonal
sections.

4. The dual angle ρ(t) made by the generator g(t) and the fixed DISTELI-axis g�(t0) is

stationary of 2nd order at t = t0, i.e. ρ̇(t0) = ρ̈(t0) = 0 .

Proof: Ad 1.: Eq. (11) implies q�n = (µ g+λ z)�n = ω g� �n = 0 which proves the
stated perpendicularity. Therefore the point c of intersection is at the same time the
pedal point of the DISTELI-axis with respect to the striction point s of Φ, which serves
as the origin of our canonical frame. From (8) we get

g��bg� = 1
ω2 q�

�bq� bω
ω

q
�
=

1
ω2 (λ z+µ g)� (

bλ z+ bµ g) =
(λ bµ�bλ µ)(z�g)

λ 2 +µ2 :

At cylindrical surfaces we have g� = g and bg� = bg+ 1
κn

z .

Ad 2.: From (10) and (11) we get by straight-forward computation

n� ṅ = n� (�λ g+µ z) = λ z+µ g = q = ω g�;

ġ = λ n ; g̈ = λ̇ n+λ ṅ ; ġ� g̈ = λ 2
(n� ṅ) = λ 2 ω g� :

From g� ġ = λ g�n = λ z we conclude that (n� ṅ) gives the central tangent of Ψ .

Ad 3.: (5) implies cosγ = g� �g and sinγ n = g��g . Due to (11) this results in

tanγ n =

sinγ n

cosγ
=

g��g

g� �g =

q�g

q �g =
λ n
µ

:
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Ad 4.: cosρ(t) = g�(t0) �g(t) implies

�ρ̇(t)sinρ(t) = g�(t0) � ġ(t) = λ (t)g�(t0) �n(t) ;

hence ρ̇(t0) = 0. The second derivation reads

�ρ̈ sinρ� ρ̇2cosρ = λ̇ (t)g�(t0) �n(t)+λ (t)g�(t0) � ṅ(t) =
= λ̇ (t)g�(t0) �n(t)+λ (t)ω(t)det[g�(t0);g

�

(t);n(t)] ;

and this results in ρ̈(t0) = 0.

5 Product of FRENET motions along the axodes

It is well known that under any (non-translatory) one-parameter motion Σ1=Σ0 the mov-
ing axode and the fixed axode are always in contact at each point of the instantaneous
screw axis (cf. [5], p. 161). Therefore the corresponding FRENET frames are coincid-
ing; the motion Σ1=Σ0 is the composition of the FRENET motion Σ2=Σ0 along the fixed
axode Φ0 and the inverse Σ1=Σ2 of the FRENET motion Σ2=Σ1 along the moving axode
Φ1

5. This holds also for cylindrical axodes, provided the “striction curves” are spec-
ified such that in each moment these curves meet at a point of the pole axis. We call
them a “mating pair” of striction curves.

In the following we denote for i = 0;1 the directed lines of the FRENET frame, the
screw and the time-dependent invariants of the FRENET-motion Σ2=Σi along Φi by g

i
,

n i, z i, q
i
, λ i, µ

i
, respectively. Let

p := g
0
= g

1
; n := n0 = n1 ; z := z0 = z1

denote the axes of the coinciding canonical frames of Φ0 and Φ1 . Then due to the
spatial three-pole-theorem we obtain the instantaneous screw of Σ1=Σ0 (compare [8],
eq. (5.21) and [18], eq. (6)) as

q = ω p = q
0
�q

1
= (µ

0
�µ

1
)p+(λ 0�λ 1)z : (12)

The comparison of coefficients according to (3) results in

Theorem 4: Let Φ0;Φ1 be the axodes of the motion Σ1=Σ0. Then the dual invariants
λ 0;µ

0
of Φ0 and λ 1;µ

1
of Φ1 and the dual screw velocity ω obey

λ := λ 0 = λ 1 and ω = µ
0
�µ

1
:

5In the sense of A. KARGER (see e.g. [9]) the moving frames in Σ1 and Σ2 represent a lift for the
given motion Σ1=Σ0 .
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According to Theorem 2 the equation λ 0 = λ 1 expresses the roll-sliding of the axodes.

Corollary 5: 1. For a non-vanishing distribution parameter δ := δ0 = δ1 of the axodes
the pitch of the instantaneous helical motion can be expressed asbω

ω
= δ

cotσ0� cotσ1

cotγ0� cotγ1

with σi as striction and γi as apex angle of the osculating cone of revolution of the
axode Φi , i = 0;1 .

2. In the cylindrical case we obtain in the notation of Theorem 2 for a pair of mating
striction curves on Φ0 and Φ1bω

ω
=

cotσ0� cotσ1

κn0�κn1
=

vt0� vt1

vn(κn0�κn1)
:

With respect to the canonical frame p;n;z all higher derivations for the trajectories
can be expressed in terms of λ and ω . We demonstrate this only for the acceleration
vectors:6 Derivation of ẋ = bq+(q�x) with q = ω p gives

ẍ = ḃq+(q̇�x)+(q� ẋ) = ḃq+(q�bq)+(q̇�x)+ [q� (q�x)]:

We substitute according to (10)

q̇ = ω̇ p+ω ṗ = ω̇ p+ω λ n

an obtain with respect to the canonical frame

q =

0@ ω
0
0

1A
; bq =

0@ bω
0
0

1A
; q̇ =

0@ ω̇
λω
0

1A
; ḃq =

0@ ḃω
λ bω +

bλω
0

1A
;

hence (compare [5], eq. (12.1))

ẍ =

0@ ḃω
λ bω +

bλω
0

1A+

0@ 0 0 λω
0 �ω2 �ω̇

�λω ω̇ �ω2

1A0@ x1
x2
x3

1A
: (13)

For λω 6= 0 there is an unique acceleration pole with vanishing acceleration

Pa =

 
ω̇β bβ +ω4 ḃω

λ 2ω4 ;

β bβ
λω3 ; � ḃω

λω

!
6Another approach — without dual vectors — can be found in [4, 14] or in [10].

10



for β :=
p

λ 2ω2 + ω̇2 and β bβ := λω(λ bω +bλω)+ ω̇ ḃω . Points with vanishing tangen-
tial acceleration constitute the BRESSE hyperboloid obeying

ẋ�ẍ = ωω̇(x2
2 + x2

3)�λω2x1x2�bλω2x3 + bω ḃω = 0 :

The condition ẋ� ẍ = o characterizes inflection points which under λω bω 6= 0 form a
twisted cubic. After some computations the following parameter representation of the
spatial inflection curve can be obtained (compare [4], eq. (29)):

x1(τ) = � αγ bω +(αλω2 bω + γ2
+ω4 bω2

)τ +2γλω2τ2
+λ 2ω4τ3

λω3 bω2

x2(τ) =
α bω + γτ +λω2τ2

ω2 bω
x3(τ) = τ for α := λ bω +

bλω and γ := ω ḃω� ω̇ bω :

(14)

6 Spatial version of the EULER-SAVARY formula

In the following we compute the DISTELI-axis g� for the ruled surface Γ traced by the
directed line g under the motion Σ1=Σ0.

Let k denote a common perpendicular between g and the instantaneous pole axis p .
Then there exists a common perpendicular h of p and k such that k = p�h (see Figure
1). According to (6) we obtain a representation

g = cosα p+ sinα h (15)

based on the dual angle α between p and g . On the other hand the dual angle ψ made
by the central normal n and the spear h leads to

h := cosψ n+ sinψ z (16)

(Figure 1) and
g = cosα p+ sinα cosψ n+ sinα sinψ z : (17)

From (9) and (15) we get

ġ = q�g = ω (p�g) = ω sinα (p�h) = ω sinα k

which proves with Theorem 1 that the central normal of Γ coincides with the common
perpendicular k7. The second derivation reads

g̈ = ω̇ (p�g)+ω (ṗ�g)+ω2 �p� (p�g)
�
=

= ω̇ (p�g)+ω (ṗ�g)+ω2
(�g+ cosα p)

7Under α = 0 the moved line g is parallel p and a cylindrical generator of its trajectory Γ . In this
case the common perpendicular k is not unique.
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because of (15). In view of Theorem 3,2 we compute

ġ� g̈ = ω (p�g)�
�

ω̇ (p�g)+ω (ṗ�g)+ω2
(�g+ cosα p)

�
=

= ω2 �det(p; ṗ;g)g�det(g; ṗ;g)p
�
+

+ ω3 ��cosα g+p+ cosα g� cos2α p
�
:

s

p

n

z

k

h

g

g�

ψ

ψ

bψ

α

bα
α�

bα�

Figure 1: The moved line g and its DISTELI-axis g�

The FRENET equations (10) for the fixed axode Φ0 and eqs. (15) and (17) give rise to

ġ� g̈ = ω2 �λ det(p;n;g)g+ω(1� cos2α)p
�
=

= ω2 �λ (z�g)g+ω sin2α p
�
=
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= ω2
[λ sinα sinψ g+ω sin2α p ] =

= ω2
h
(λ sinα cosα sinψ +ω sin2α)p+λ sin2α sinψ h

i
and this equals g�, up to a dual factor χ , i.e.

ġ� g̈ = χ g� = χ (cosα�p+ sinα�h) :

Suppose ω sinα 6= 0. Then the comparison of coefficients due to (3) results in

λ sinψ(cosα sinα�� sinα cosα�

)+ω sinα sinα�

= 0 :

Under the additional condition λ sinα� 6= 0 we may divide the last equation by
λ sinα sinα�. Thus we obtain with Theorem 4

Theorem 6: Spatial EULER-SAVARY formula:

(cotα�� cotα)sinψ =
ω
λ

=

µ
0

λ 0
�

µ
1

λ 1
= cotγ

0
� cotγ

1
:

This is exactly the dual extension of the spherical version.
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