
In�nitesimal Flexibility of Higher Orderfor a Planar Parallel ManipulatorHellmuth StachelInstitute of Geometry, Vienna University of Technology,Wiedner Hauptstr. 8-10/113, A 1040 Wien, AustriaReceived July 22, 1999MSC 1994: 53A17Keywords: rigidity, in�nitesimal exibility, framework, parallel manipulator, singu-larity analysisAbstract: The problems around rigidity and exibility of geometrical structureshave a long history in mathematics. Recently obtained results like the proof of the\Bellows Conjecture" have brought them back into the center of mathematical inter-est. However, in�nitesimal exibility | usually of order one | has also been studiedin kinematics for a long time. In particular in the �eld of robotics the singularityanalysis of parallel manipulators is of high actuality.The objective of this paper is to bridge the gap between rigidity theory and kinemat-ics. On the one hand the de�nition and basic properties of higher-order in�nitesimalexibility are presented to kinematicians. On the other hand it is shown that fora particular planar parallel manipulator standard results from kinematics enable tocharacterize in a geometric way all cases of higher-order in�nitesimal exibility.1 In�nitesimal exibility of higher orderLet F be a framework in the Euclidean d-space Ed with vertex set V and edge set E. Eachedge (rod) is given as an unordered pair of indices, henceV = fx1; : : : ;xvg; xi 2 Rd 8i 2 I := f1; : : : ; vg and E � n(i; j) j i < j; (i; j) 2 I2o :Let lij denote the Euclidean length of the edge xixj, (i; j) 2 E, of our framework F, i.e.,fij(xi;xj) := kxi � xjk � lij = 0 8(i; j) 2 E: (1)We presuppose lij > 0 for all e := #E edges of F. Then the classical de�nition of in�nitesimalexibility reads as follows: 1



De�nition 1: The framework F = (V;E) is in�nitesimally exible of order n if and only iffor each k 2 I there is a polynomial functionzk(t) := xk + t zk;1 + : : :+ tnzk;n ; n � 1; (2)such that(i) the replacement of xi and xj in (1) by zi(t) and zj(t), resp., gives functions fij (zi(t); zj(t))with a zero of multiplicity � n+1 at t = 0, i.e., for t! 0fij (zi(t); zj(t)) = kzi(t)� zj(t)k � lij = o(tn) 8(i; j) 2 E; (3)and, in order to exclude trivial exes,(ii) the vectors z1;1; : : : ; zv;1 are not the velocity vectors of the vertices x1; : : : ;xv under amotion of F as a rigid body.Remark 1: When among fx1; : : : ;xvg there are d+1 vertices forming a simplex of Ed , thencondition (ii) is equivalent to9 (k; l) 2 I2 with ddtkzk(t)� zl(t)k 6= 0 at t = 0 : (4)However, when the dimension of the a�ne span of fx1; : : : ;xvg is smaller than d, then thedistances between any two vertices can be stationary, though the vectors z1;1; : : : ; zv;1 di�erfrom the velocity vectors under any motion of the whole framework. Note for example inE2 a four-bar linkage in a folded position, i.e., with aligned vertices. Of course, this posi-tion is nontrivially exible, but all mutual distances between vertices remain instantanouslyconstant. Compare also Footnote 2.Because of lij > 0 condition (3) is equivalent to(zi(t)� zj(t)) � (zi(t)� zj(t))� l2ij = o(tn): (5)For the sake of brevity we writeX := (x1; : : : ;xv) 2 Rvd; Zi := (z1;i; : : : ; zv;i); Z(t) := (z1(t); : : : ; zv(t)) :When equ. (3) is true, then we callZ(t) = X + tZ1 + � � �+ tnZn (6)an n-th-order ex of F.The property of being an n-th-order ex of F is invariant under regular parameter trans-formations ' : t ! t of class Cn. It is also invariant under superimposed trivial analyticalexes (motions) of F, since all scalar products remain unchanged.When a framework F admits an analytical nontrivial ex Y (t), then for each k 2 I thereis an analytical function yk(t) parametrizing the trajectory of the vertex xk under Y (t). Thefunctions y1(t); : : : ;yv(t) solve (1) identically with respect to the variable t, i.e.,fij �yi(t);yj(t)� = kyi(t)� yj(t)k � lij � 0 8(i; j) 2 E:2



The Taylor expansions at the initial position t = 0,yk(t) = xk + t _yk(0) + t22! �yk(0) + t33! _�yk(0) + � � � + tnn! yk(n) (0) + o(tn); k 2 I;reveal that an analytically exing framework is also in�nitesimally exing of any order n ,provided there is no stillstand at t = 0 .1 We obtain the ex Z(t) of order n for the consideredposition by setting Z1 := _Y (0); Z2 := 12! �Y (0); : : : ; Zn := 1n! Y(n):In this sense, zk;1 in (2) is the velocity vector and zk;2 the acceleration vector of the vertexxk, when F is performing the ex Z(t).Suppose, the framework F is given by its combinatorial structure E and by the lengthslij of its edges. Then (1) represents a system of e quadratic equations(xi � xj) � (xi � xj) = l2ij 8(i; j) 2 E (7)for the vd unknown coordinates of the vertices. With each solution x1; : : : ;xv of this systemalso xk := b+Bxk 8k 2 I; BT = B�1;for any constant b 2 Rd and orthogonal d�d matrix B solves this system.When we substitute (2) in (7), then the coe�cients of t; t2; : : : ; tn give rise to the followingsystems of linear equations, each for all (i; j) 2 E :(xi � xj) � (zi;1 � zj;1) = 0 ; (8)(xi � xj) � (zi;2 � zj;2) = �12(zi;1 � zj;1) � (zi;1 � zj;1); (9)(xi � xj) � (zi;3 � zj;3) = �(zi;1 � zj;1) � (zi;2 � zj;2); (10)(xi � xj) � (zi;4 � zj;4) = �(zi;1 � zj;1) � (zi;3 � zj;3)� 12(zi;2 � zj;2) � (zi;2 � zj;2);� � � = � � �The matrix M on the left side of these systems (see example in (12)) is always the same. Itis called rigidity matrix of the given framework F (cf. [7]).According to [1], the left sides in the systems (7), (8), (9), : : : can be expressed in termsof a symmetric bilinear map � : (Rvd�Rvd)! Re;such that the system to be solved for Zi , i = 1; : : : ; n , reads�(X;Z1) = o and for i > 1 : �(X;Zi) = �12 i�1Xj=1�(Zj; Zi�j)In particular, the velocity vectors zk;1 have to solve the homogeneous system (8) of linearequations. If there is a nontrivial solution ezk;1 of (8), then in order to obtain other solutions,1Note the counter example in [2]. 3



we can superimpose arbitrary in�nitesimal motions. According to standard results fromkinematics this means that zk;1 := ezk;1 + c+ Cxk ; CT = �C;with constant c 2 Rd and any skew symmetric d�d matrix C is a nontrivial solution, too.2This gives a free choice of d + 12d(d� 1) = 12d(d+1)parameters. Therefore, for in�nitesimal exibility of order 1 it is necessary and su�cientthat the rank of the rigidity matrix M obeys the inequalityrk(M) < vd� d(d + 1)2 : (11)In 1920 Liebmann proved (cf. [5], [11]) that in�nitesimal exibility of order 1 is projectivelyinvariant.3The equations (8) are equivalent to the well known Projection Theorem displayed inFig. 1. For any rod AB of F, the velocity vectors vA;vB at the endpoints have equalcomponents in the direction of �!AB.Each nontrivial Z1 de�nes the right side in the inhomogeneous system (9). Standardcriteria from linear algebra can be used to check the solvability of this system. The conditionsfor the acceleration vectors 2 zk;2 expressed in (9) are equivalent to a standard result fromkinematics stating that for each rod AB of length lAB the velocity vectors vA, vB andacceleration vectors aA, aB obey the conditionaB � aA = anBA + atBA with anBA ? atBA ? AB ; kanBAk = kvB � vAk2lAB ;where aBA is pointing from B torwards A (see Fig. 2).
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Figure 2: Relation between theacceleration vectors aA and aB2In this sense we can formulate condition (ii) in De�nition 1 more precisely: There is no c 2 Rd and noskew symmetric d�d matrix C such that zk;1 = c+ Cxk for all k 2 I.3This is not generally true for exibility of order > 1 (see e.g. the geometric characterization of 2nd-orderexibility of the framework Fpm in Fig. 6, case 1). 4



If also (9) is solvable, then the system (10) with the right side depending from the previoussolutions is decisive whether the second-order ex of F can be extended to a third-order ex.Due to [1], for each framework F there is a su�ciently large n such that any nontrivial n-th-order ex can be extended to an analytical ex of F. The example presented in Section 2 willdemonstrate how n can vary even for frameworks with the same combinatorial structure.Remark 2: In [2] a framework is presented which is in�nitesimally exible of �rst order. Butonly a polynomial function of type (6) starting with Z2 is extendible to an analytical ex.Therefore I. Sabitov proposed in [6], p. 189, to denote the order of exes Z(t) by a pair(m;n) of indices, the smallest and the highest exponent of t showing up in (6).In order to minimize m, one must require that this representation of Z(t) is not redundant.This means that Z(t) doesn't result from a ex Z 0(� ) with smaller indices (m0; n0) under anon-regular parameter transformation � := t�, � 2 N, � > 1, i.e., Z(t) � Z 0(t�).In order to maximize n, one should prove that there is no parameter transformation t := ��,� 2 N, � > 1, such that the new ex Z 00(� ) := Z(��) is further extendible in a nontrivial way.\Trivial" in this sense means that e.g. the nontrivial ex Z(t) = X + tZ1 + t2Z2 gives riseto Z 00(� ) := Z(� 2) = X + � 2Z1 + � 4Z2 which immediately can be extended to the 5th-orderex Z 000(� ) := Z 00(� ) + � 5Z1.In this more general sense, the classical de�nition given above covers only the exibilities oforder (1; n).2 Flexibility analysis of a particular planar frameworkIn the sequel a planar framework Fpm (see Fig. 3) is presented which consist of two trianglesconnected by three rods.4 For this framework Fpm it is more convenient to change thepreviously used notation x1; : : : ;x6 of the vertices in such a way that p1p2p3 and q1q2q3denote the two triangles �p and �q, resp., which are joined by bars piqi , i = 1; 2; 3 . Dueto (11) in the case d = 2 this framework is in�nitesimally exible if and only if the rows inthe 9�12 rigidity matrixMpm = 0BBBBBBBBBBBBBBB@ (p1�p2) (p2�p1) o o o o(p1�p3) o (p3�p1) o o oo (p2�p3) (p3�p2) o o oo o o (q1�q2) (q2�q1) oo o o (q1�q3) (q3�q1) oo o o o (q2�q3) (q3�q2)(p1�q1) o o (q1�p1) o oo (p2�q2) o o (q2�p2) oo o (p3�q3) o o (q3�p3)
1CCCCCCCCCCCCCCCA (12)are linearly dependent. Note that in this shorthand notation each entry stands for a 1�2submatrix, so that Mpm actually has 12 columns.For Fpm necessary and su�cient conditions for all levels of higher-order exibility will begiven. Also in robotics there is an interest on such "singularities" (compare e.g. [8]) sinceFpm represents any posture of a planar parallel manipulator with three legs.4Another planar framework with six vertices and nine edges such that at each vertex three edges aremeeting is presented and analyzed in [10]. 5
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∆∆∆qq∆qFigure 4: Four-bar linkage q1q2p2p1From the standpoint of kinematics it is quite natural to analyze the framework Fpm as afour-bar linkage with moving points p1;p2 and �xed points q1;q2 where the one-parametermobility of the moving triangle �p against the �xed triangle �q is restricted by the addi-tional bar p3q3 (see Fig. 4). Due to the following Lemma 1 we can apply standard resultsfrom kinematics in order to characterize frameworks Fpm with higher-order exibility.Lemma 1: Let F = (V;E) be a framework in Ed , and let F0 = (V;E0) be the subframeworkwhere just one edge | say x1x2 | is missing. Suppose, F0 admits a nontrivial analyticalex Y 0(t) which keeps x1 �xed, but has no stillstand at the beginning. Let S in Ed denotethe hypersphere centered at x1 with radius l12 = kx1 � x2k. Then the following implicationshold:a) If the trajectory y02(t) of x2 under Y 0(t) has an n-th-order contact with S at the initialposition y02(0) = x2 , then F is in�nitesimally exible of order n.b) If F admits a ex Z(t) of order n which | with regard to F0 | can be extended to Y 0(t),then the trajectory y02(t) of x2 has an n-th-order contact with S.Proof: Due to our assumption, the ex Y 0(t) is regularly parametrized, i.e., _Y 0(0) is nontrivialin the sense of (4). Then n-th-order contact between the hyersphere S = (x1 ; l12)5 and theparametrized trajectory y02(t) at t = 0 means that the substitution of y02(t) in the equationG(x) := (x� x1) � (x� x1) � l212 = 0of S gives a function G (y02(t)) with a zero of multiplicity n + 1 at t = 0, i.e.,(y02(t)� x1) � (y02(t)� x1)� l212 = o(tn):This holds also true for singular points with _y02(0) = o.Ad a) The analytical functions y01(t); : : : ;y0v(t) given by Y 0(t) with y0k(0) = xk, y01(t) � x1,obey the equations ky0i(t)� y0j(t)k � lij � 0 8(i; j) 2 E0and 9 (k; l) 2 I2 with ddtky0k(t)� y0l(t)k 6= 0 at t = 0 :5This notation indicates the center x1 and the radius l12 of the hypersphere S in Ed .6



If there is an n-th-order contact between the trajectory y02(t) and the sphere S at t = 0, thenZ(t) = X + t _Y 0 + : : :+ tn Y 0(n) (13)is a nontrivial n-th-order ex of F since (3) holds also for the edge (i; j) = (1; 2) which wasmissing at F0.Ad b) Conversely, we suppose that the given ex Z(� ) is extendible to Y 0(t). This meansthat there is a regular Cn parameter transformation t ! � and a superimposed trivial exsuch that the initial terms of the transformed Z(� ) equal that of Y 0(t) as given on the rightside of (13). Then equation (5) for (i; j) = (1; 2) expresses exactly the n-th-order contactbetween S and y02(t) at t = 0.After omitting the bar p3q3, the framework Fpm reduces to a four-bar linkage F0pm (seeFig. 4). Then in almost every position of F0pm the moving triangle �p performs a uniquelyde�ned coupler motion Y 0(3)(t) against the frame link �q. The only exceptions appear atfolded positions with the four bars q1p1, p1p2, p2q2, q2q1 being aligned. Here the space ofnontrivial velocity vectors Z 01 of F0pm is two-dimensional.At any folded position there are two cases to distinguish: When p1p2 represents theminimal or the maximal distance between the possible path circles (qi ; kpi � qik), i = 1; 2,of pi , then the four-bar linkage is only in�nitesimally exible of �rst order. Otherwise thereare two analytical exes passing through the folded position.When in the following we address the nontrivial analytical ex Y 0(3)(t) of �p against �q ,then we tacitly exclude the exceptional case of second-order rigidity. At all other foldedpositions we assume that one of the two analytical exes passing through has already beenspeci�ed. In this sense we can state:Lemma 2: The framework Fpm is in�nitesimally exible of order n if and only if thetrajectory of p3 under the analytical ex Y 0(3)(t) of �p against �q has an n-th-order contactwith the circle S(3) := (q3 ; kp3 � q3k) at the initial position t = 0.Remark 3: n-th-order exibility of Fpm is independent from the choice of the bar piqi to beomitted. So, n-th-order contact between the circle S(3) = (q3 ; kp3�q3k) and the path of p3under Y 0(3) is equivalent to a contact of n-th order between the circle S(1) := (q1 ; kp1 � q1k)and the path of p1 under Y 0(1), when Y 0(1) denotes the coupler motion �p=�q with couplerp2p3 and frame q2q3.Now we make use of the following standard results concerning instantaneous kinematicsof one-parameter Euclidean motions (cf. e.g. [12]):(i) In each moment of an analytical ex Y 0(3)(t) : �p=�q the lines orthogonal to thetrajectories of the moving points A (attached to �p) pass through a common point.This point P is called instantaneous pole; it can be �nite (case 1 in Fig. 5) or a pointat in�nity (case 2).(ii) Each moving point A has an uniquely de�ned curvature centerA� of its trajectory. Thecurvature transformation A 7! A� is either quadratic (cases 1 and 2.1) or a translation(case 2.2). The quadratic transformation is ruled by Bobillier's construction (seeFig. 6). 7
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