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Abstract: The problems around rigidity and flexibility of geometrical structures
have a long history in mathematics. Recently obtained results like the proof of the
“Bellows Conjecture” have brought them back into the center of mathematical inter-
est. However, infinitesimal flexibility — usually of order one — has also been studied
in kinematics for a long time. In particular in the field of robotics the singularity
analysis of parallel manipulators is of high actuality.

The objective of this paper is to bridge the gap between rigidity theory and kinemat-
ics. On the one hand the definition and basic properties of higher-order infinitesimal
flexibility are presented to kinematicians. On the other hand it is shown that for
a particular planar parallel manipulator standard results from kinematics enable to
characterize in a geometric way all cases of higher-order infinitesimal flexibility.

1 Infinitesimal flexibility of higher order

Let F be a framework in the Euclidean d-space E? with vertexr set V and edge set £. Each
edge (rod) is given as an unordered pair of indices, hence

V={x,. ..x} xR Viel:={l,...,v} and BEC{(i.j)|i<j (i,j)€*}.
Let [;; denote the Euclidean length of the edge x;x;, (¢,7) € F, of our framework F, i.e.,
fii(xi,%x5) = |[xi = x5l = li; =0 V(1,5) € E. (1)

We presuppose [;; > 0 for all e := # I edges of F. Then the classical definition of infinitesimal
flexibility reads as follows:



Definition 1: The framework F = (V, E') is infinitesimally flexible of order n if and only if
for each k € I there is a polynomial function

Zk(t) = Xk‘|‘tzk,1‘|‘---‘|‘tnzk,n7 n Z 1, (2)
such that

(i) thereplacement of x; and x; in (1) by z;(¢) and z;(?), resp., gives functions fi; (z:(1),z;(?))
with a zero of multiplicity > n+1 at t =0, i.e., for t — 0

fij (2i(t),2;(1)) = ||zi(t) — z;(D)|| = lij = o(t") V(i,j) € E; (3)
and, in order to exclude trivial flexes,
(ii) the vectors z11,...,2,1 are not the velocity vectors of the vertices xy,...,x, under a

motion of F as a rigid body.

Remark 1: When among {xi,...,%,} there are d + 1 vertices forming a simplex of E?, then
condition (ii) is equivalent to

) d
3 (k,l) € I* with Esz(t) —z(t)]| #£0 at t=0. (4)
However, when the dimension of the affine span of {x;,...,x,} is smaller than d, then the
distances between any two vertices can be stationary, though the vectors zy4,...,z,, differ

from the velocity vectors under any motion of the whole framework. Note for example in
E? a four-bar linkage in a folded position, i.e., with aligned vertices. Of course, this posi-
tion is nontrivially flexible, but all mutual distances between vertices remain instantanously
constant. Compare also Footnote 2.

Because of [;; > 0 condition (3) is equivalent to
(zi(t) = z;(1)) - (2i(1) — 25(1)) — I = o(t"). (5)
For the sake of brevity we write
X = (x1,...,%,) ERY Zii= (214, ...,205), Z(t):=(z1(1),...,2,(1)).
When equ. (3) is true, then we call
Z(t)= X +1Z, + - +1"7Z, (6)

an n-th-order flex of F.

The property of being an n-th-order flex of F is invariant under regular parameter trans-
formations ¢ : ¢ — ¢ of class C™. It is also invariant under superimposed trivial analytical
flexes (motions) of F, since all scalar products remain unchanged.

When a framework F admits an analytical nontrivial flex Y'(¢), then for each k € [ there
is an analytical function y,(¢) parametrizing the trajectory of the vertex x; under Y(¢). The
functions y,(t),...,y,(t) solve (1) identically with respect to the variable ¢, i.e.,

Fi (yi®).y; (1) = Iy (1) — y; (1) = 1y =0 ¥(i.j) € E.
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The TAYLOR expansions at the initial position ¢ = 0,

. t2 t3 " (n) .
reveal that an analytically flexing framework is also infinitesimally flexing of any order n,
provided there is no stillstand at ¢ = 0.! We obtain the flex Z(¢) of order n for the considered

position by setting

1(n)
YO NS =~
() Y n

In this sense, zx in (2) is the velocity vector and zy s the acceleration vector of the vertex
Xk, when F is performing the flex Z(¢).

Suppose, the framework F is given by its combinatorial structure £ and by the lengths
l;; of its edges. Then (1) represents a system of e quadratic equations

(xi =) (xi —x;) =1l Y(i,j)e E (7)

for the vd unknown coordinates of the vertices. With each solution x4,...,x, of this system
also

X, :=b + Bx, \V/kEI, BT:B_I,

for any constant b € R? and orthogonal d x d matrix B solves this system.
When we substitute (2) in (7), then the coefficients of ¢,¢2, ... 1" give rise to the following
systems of linear equations, each for all (¢,7) € E:

(xi —%;) - (zig —2j1) = 0, (8)
(xi = %) (Zi2 — 2j2) = —i(zi1—2j1) (201 —2Zj1), (9)
(xi = x;) (2zig — 2j3) = —(2ig —2Zj1) (Zi2 — Zj2), (10)
(i = %) (24— 2ja) = —(Zi1 —2j1)(Zis — 2j3) — 5(Zi2 — 2j2) - (Zi2 — Z;2),;

The matrix M on the left side of these systems (see example in (12)) is always the same. It
is called rigidity matriz of the given framework F (cf. [7]).

According to [1], the left sides in the systems (7), (8), (9), ... can be expressed in terms
of a symmetric bilinear map

B: (RY x R") — R,
such that the system to be solved for Z;, 1 =1,...,n, reads

i1
B(X,Z1)=0 andfori>1: pB(X,7Z;)= —%Zﬂ(Zj,Zi_j)
i=1
In particular, the velocity vectors zj; have to solve the homogeneous system (8) of linear
equations. If there is a nontrivial solution Zy of (8), then in order to obtain other solutions,

!Note the counter example in [2].



we can superimpose arbitrary infinitesimal motions. According to standard results from
kinematics this means that

Zpy =7y FCc+Ox, CT=-C,

with constant ¢ € R? and any skew symmetric d x d matrix C' is a nontrivial solution, too.?
This gives a free choice of

d+ 3d(d—1) = Ld(d+1)
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parameters. Therefore, for infinitesimal flexibility of order 1 it is necessary and sufficient
that the rank of the rigidity matrix M obeys the inequality

rk(M) < vd — @ (11)

In 1920 LIEBMANN proved (cf. [5], [11]) that infinitesimal flexibility of order 1 is projectively
invariant.®

The equations (8) are equivalent to the well known Projection Theorem displayed in
Fig. 1. For any rod AB of F, the velocity vectors v4,vp at the endpoints have equal
components in the direction of AB.

Each nontrivial Z; defines the right side in the inhomogeneous system (9). Standard
criteria from linear algebra can be used to check the solvability of this system. The conditions
for the acceleration vectors 2z 5 expressed in (9) are equivalent to a standard result from
kinematics stating that for each rod AB of length [45 the velocity vectors v4, vg and
acceleration vectors ay, ag obey the condition

[ve — vall?

’
ZAB

aB—aA:a%A—I-atBA with a%AJ—atBAJ—ABv Ha%AH:

where ap4 is pointing from B torwards A (see Fig. 2).

Vs
Figure 1: Projection Theorem con- Figure 2: Relation between the
cerning the velocity vectors v4,vp acceleration vectors a4 and ag

?In this sense we can formulate condition (ii) in Definition 1 more precisely: There is no ¢ € R% and no
skew symmetric d xd matrix C' such that z; ; = c+ Cxy, forall k € 1.

3This is not generally true for flexibility of order > 1 (see e.g. the geometric characterization of ond_order
flexibility of the framework Fpp in Fig. 6, case 1).



If also (9) is solvable, then the system (10) with the right side depending from the previous
solutions is decisive whether the second-order flex of F' can be extended to a third-order flex.
Due to [1], for each framework F there is a sufficiently large n such that any nontrivial n-th-
order flex can be extended to an analytical flex of F. The example presented in Section 2 will
demonstrate how n can vary even for frameworks with the same combinatorial structure.

Remark 2: In [2] a framework is presented which is infinitesimally flexible of first order. But
only a polynomial function of type (6) starting with Z; is extendible to an analytical flex.
Therefore I. SABITOV proposed in [6], p. 189, to denote the order of flexes Z() by a pair
(m,n) of indices, the smallest and the highest exponent of ¢ showing up in (6).

In order to minimize m, one must require that this representation of Z(¢) is not redundant.
This means that Z(t) doesn’t result from a flex Z'(7) with smaller indices (m/,n’) under a
non-regular parameter transformation 7 :=t*, A € N, A > 1, i.e., Z(t) = Z'(1").

In order to maximize n, one should prove that there is no parameter transformation ¢ := 7%,
€ N, g > 1, such that the new flex Z"(7) := Z(7#) is further extendible in a nontrivial way.
“Trivial” in this sense means that e.g. the nontrivial flex Z(t) = X +t7; + 127, gives rise
to Z"(7):= Z(7*) = X + 727y + 7*Z; which immediately can be extended to the 5t order
flex Z2"(7) := Z"(7) + 7°Z;.

In this more general sense, the classical definition given above covers only the flexibilities of
order (1,n).

2 Flexibility analysis of a particular planar framework

In the sequel a planar framework F,, (see Fig. 3) is presented which consist of two triangles
connected by three rods.? For this framework F,, it is more convenient to change the
previously used notation Xxi,...,Xg of the vertices in such a way that p,;p,p; and q;q,q94
denote the two triangles Ap and Aq, resp., which are joined by bars p,q,;, ¢ =1,2,3. Due
to (11) in the case d = 2 this framework is infinitesimally flexible if and only if the rows in
the 9x12 rigidity matrix

(P1—P2) (P2—P1) 0 0 0 0

(P1—P3) 0 (Ps—P1) 0 0 0
o (pz_P:a) (p3_P2) o o o
0 0 0 (A=) (dy—a) 0

My = o o o (ai—a3) (ds—a) o (12)

0 0 0 0 (d2—a3) (ds—ap)

(p1—ay) o o (4, —p1) 0 0
o (pz_OIz) o o (Q2_p2) o
o o (p3—q3) o o (Q3_p3)

are linearly dependent. Note that in this shorthand notation each entry stands for a 1 x2
submatrix, so that M, actually has 12 columns.

For Fp, necessary and sufficient conditions for all levels of higher-order flexibility will be
given. Also in robotics there is an interest on such ”singularities” (compare e.g. [8]) since
F,m represents any posture of a planar parallel manipulator with three legs.

*Another planar framework with six vertices and nine edges such that at each vertex three edges are
meeting is presented and analyzed in [10].
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Figure 3: Framework F, Figure 4: Four-bar linkage q,q,p,pP;

From the standpoint of kinematics it is quite natural to analyze the framework F, as a
four-bar linkage with moving points p;, p, and fixed points q,,q, where the one-parameter
mobility of the moving triangle Ap against the fixed triangle A is restricted by the addi-
tional bar p;q; (see Fig. 4). Due to the following Lemma 1 we can apply standard results
from kinematics in order to characterize frameworks F,,, with higher-order flexibility.

Lemma 1: Let F = (V, E) be a framework in £, and let F' = (V, E') be the subframework

where just one edge — say X1Xq — is missing. Suppose, F' admits a nontrivial analytical
flex Y'(t) which keeps x; fized, but has no stillstand at the beginning. Let S in E* denote
the hypersphere centered at x; with radius li2 = ||x1 — X2||. Then the following implications
hold:

a) If the trajectory y5(t) of xo under Y'(t) has an n-th-order contact with S at the initial
position y5(0) = Xq, then ¥ is infinitesimally flexible of order n.

b) If F admits a flex Z(t) of order n which — with regard to F' — can be extended to Y'(t),
then the trajectory y4(t) of x2 has an n-th-order contact with S.

Proof: Due to our assumption, the flex Y'(#) is regularly parametrized, i.e., Y’(O) is nontrivial
in the sense of (4). Then n-th-order contact between the hyersphere S = (x; ;/12)® and the
parametrized trajectory y5(¢) at £ = 0 means that the substitution of y,(¢) in the equation

G(x)i=(x—x1)- (x—%1) — [}, =0
of S gives a function G (y5(?)) with a zero of multiplicity n + 1 at t =0, i.e.,

(¥3(t) =x1) - (¥a(t) = x1) = Iy = o(t").
This holds also true for singular points with y5(0) = o.

Ad a) The analytical functions y/(¢),...,y,(¢) given by Y'(¢) with y,(0) = xi, y1(?) = x1,
obey the equations

lyi(t) =y; (@)l = li; =0 ¥(i,j) € &

and p
3 (k,l) € I* with Euy;(t) v #£0 at t=0.

>This notation indicates the center x; and the radius {15 of the hypersphere S in E?.



If there is an n-th-order contact between the trajectory y,(¢) and the sphere S at ¢t = 0, then
. (n)
Z)y=X+tY'+...+1"Y (13)
is a nontrivial n-th-order flex of F since (3) holds also for the edge (¢,7) = (1,2) which was
missing at F’.

Ad b) Conversely, we suppose that the given flex Z(7) is extendible to Y'(¢). This means
that there is a regular C™ parameter transformation ¢ — 7 and a superimposed trivial flex
such that the initial terms of the transformed Z(7) equal that of Y'(¢) as given on the right
side of (13). Then equation (5) for (¢,5) = (1,2) expresses exactly the n-th-order contact
between S and y5(t) at t =0. O

After omitting the bar psqs, the framework Fpy, reduces to a four-bar linkage F | (see
Fig. 4). Then in almost every position of F;m the moving triangle Ap performs a uniquely
defined coupler motion Y(’3)(t) against the frame link Aq. The only exceptions appear at
folded positions with the four bars q;p;, P;1P2; P29z, 929; being aligned. Here the space of
nontrivial velocity vectors Z] of F is two-dimensional.

At any folded position there are two cases to distinguish: When p,p, represents the
minimal or the maximal distance between the possible path circles (q;;||p; — q;l|), ¢ = 1,2,
of p;, then the four-bar linkage is only infinitesimally flexible of first order. Otherwise there
are two analytical flexes passing through the folded position.

When in the following we address the nontrivial analytical flex Y(’:,))(t) of Ap against Aq,
then we tacitly exclude the exceptional case of second-order rigidity. At all other folded
positions we assume that one of the two analytical flexes passing through has already been
specified. In this sense we can state:

Lemma 2: The framework Fp, ts infinitesimally flexible of order n if and only if the
trajectory of psy under the analytical flex Y(’S)(t) of Ap against Aq has an n-th-order contact
with the circle S(s) 1= (qs;||Ps — dsl|) at the initial position t = 0.

Remark 3: n-th-order flexibility of F,, is independent from the choice of the bar p;q; to be
omitted. So, n-th-order contact between the circle S(3) = (q3; ||ps — as]|) and the path of p,
under Y(’3 is equivalent to a contact of n-th order between the circle Sy := (qy ;[[p; — q||)
and the path of p; under Y(’l), when Y(’l) denotes the coupler motion Ap/Aq with coupler

poPs and frame q,qs.

Now we make use of the following standard results concerning instantaneous kinematics
of one-parameter Euclidean motions (cf. e.g. [12]):

(i) In each moment of an analytical flex Y(3(t) : Ap/Aq the lines orthogonal to the
trajectories of the moving points A (attached to Ap) pass through a common point.
This point P is called instantaneous pole; it can be finite (case 1 in Fig. 5) or a point
at infinity (case 2).

i1) Each moving point A has an uniquely defined curvature center A* of its trajectory. The
gp quely ] y
curvature transformation A — A* is either quadratic (cases 1 and 2.1) or a translation
(case 2.2). The quadratic transformation is ruled by BOBILLIER’s construction (see
Fig. 6).
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Figure 5: Infinitesimal flexibility of order 1

(iii) All moving points A with trajectories of stationary curvature are located on the cirele-
point curve ¢, which is either a cubic (case 1) or an orthogonal hyperbola (case 2.1).
In case 2.2 this pointset is either a line or empty or the whole plane.

(iv) There are — in the algebraic sense — four points whose trajectories have a 4"-order
contact with their curvature circle. For a four-bar linkage, two of these BURMESTER
points terminate the coupler. The other two need not be real points. It can happen
(see [4]) that there is even a 5™-order contact with the curvature circle.

(v) Coupler curves are algebraic of order six® with triple points at the absolute cyclic
points. Therefore due to BEZOUT’s theorem, a 6"-order contact between a coupler
curve and a circle implies that the circle is a component of the coupler curve.

Theorem 1:

1. The framework Fpp, in Fig. 3 s infinitesimally flexible of order 1 if and only if the lines
P19y, P2y, and psqs are concurrent (case 1) or parallel (case 2) (see Fig. 5).

2. Fom ts flexible of order 2 if and only if p; — q;, ¢ = 1,2,3, are corresponding under the
curvature transformation OfY(/:a)(O)' This s equivalent in case 1 to congruent directed angles,
in case 2.1 to equal directed distances, as indicated in Fig. 6. In case 2.2 the second-order
flex can already be extended to an analytical flex.

3. A second-order flexible framework Fpy, s even flexible of order 3 if and only if p, is located
on the circle-point curve ¢ of Y(’3)(0) (Fig. 7)."

5See e.g. [12], p. 68. The only exceptional moving points — beside p; and p, — are the two finite
imaginary points of intersection between the zero circles (p;;0) and (p,;0) in the moving plane attached
to Ap. The trajectories of these points are of order 4 with nodes at the absolute cyclic points.

"According to [3], the human knee is an example of a third-order infinitesimally flexible structure.



Qwn d2 of}

case 2.1
Ps
P1 p2
ds
01 o p}
case 2.2

Figure 6: Infinitesimal flexibility of order 2, curvature transformation p, — q;

4. A third-order flexible framework Fpp, is even flexible of order 4 if and only if ps is one of
the remaining two BURMESTER points of Y(’S)(O) In particular cases (see [4]) a fourth-order
flezible framework Fpy can even be flexible of order 5.

5. A framework Fp, which is infinitesimally flexible of order 6 must permit an analylical
flex. However, beside the parallelogram linkage mentioned in item 2, case 2.2, there is
no real analytically flexible framework Fpn.® The only non-real example comes from the
antiparallelogram linkage, where the real focal points as well as the two imaginary focal points
of the moving ellipse trace circles (cf. [12], p. 199).

These geometric characterizations together with Lemma 2 reveal that infinitesimally
flexible frameworks F,,, can preserve their flexibility, even when additional bars p;q;, ¢+ =
4,..., are added with p; attached to Ap and q; attached to Aq. In particular,

(i) flexibility of order 1 is preserved as long as the line spanned by each additional bar
p;q; passes through the instantaneous pole P.

(ii) Flexibility of order 2 is preserved for all pairs p;, — q; of the curvature transformation,
provided q; is finite.

8For a four-bar linkage with a moving kite, obeying e.g. |[|[p; — ;|| = ||as — ;|| and ||ps — P4 || = [IP2 — .||,
the motion Ap/Agq isreducible. Through the folded position with p; = q, there passes also the pure rotation
of Ap about q,. Under this component of the coupler motion all points p; attached to Ap trace circles
centered at q3 = q,. However, this case is excluded because of our general assumption ||qs — q4|| # 0.



case 1 case 2.1

Figure 7: Flexibility of order 3, circle-point curve ¢

(iii) Any additional pair p; — q,; with p, on the circle-point curve ¢ of Y(’S)(O) preserves
3'%order flexibility. This reveals with Remark 3 that the circle-point curve of Y(’:,))(O)
(four-bar q;q;p,p;) must coincide with that of Y{},(0) (four-bar q,q3psp,) and Y, (0)

(four-bar q;q,p,P3) 2

(iv) In the cases 1 and 2.1 there is at most one additional bar p,q, which still preserves
flexibility of 4'® order. Again due to Remark 3, the initial positions of the analytical
flexes Y(’l)(t), Y(’z)(t) and Y(’S)(t) must share their BURMESTER points.

Acknowledgement

The author wants to express his gratitude to Idjad SABITOV and Victor ALEXANDROV for
their inspiring comments and fruitful discussions in spring 1999 in Vienna.

References

[1] V. ALEXANDROV: Sufficient Conditions for the Extendibility of an n-th Order Flex of
Polyhedra. Beitr. Algebra Geom. 39, no. 2, 367-378 (1998).

[2] R. CONNELLY, H. SERVATIUS: Higher-order rigidity — What is the proper definition?
Discrete Comput. Geom. 11, no. 2, 193-200 (1994).

[3] W. JANK: Das menschliche Knie als Gelenkviereck. Anz. osterr. Akad. Wiss., Math.-
Naturwiss. K1. 1974, 157-162 (1974).

Since the circle-point curve defines the curvature of the polodes (see e.g. [9]), the fixed polodes of the

flexes Y(’l)(t), Y(’z)(t) and Y(’B)(t) must osculate each other at ¢t = 0. The same holds for the moving polodes.

10



[4]

[10]

[11]

[12]

W. JANK: Symmetrische Koppelkurven mit sechspunktig berihrendem Scheitelkrim-
mungskreis. 7. Angew. Math. Mech. 58, 37-43 (1978).

H. LIEBMANN: Ausnahmefachwerke und ihre Determinante. Sitzungsber. Bayer. Akad.
Wiss. 1920, 197-227.

[.LKh. SABITOV: Local Theory of Bendings of Surfaces. In Yu.D. BURAGO, V.A. ZAL-
GALLER (eds.): Geometry III, Theory of Surfaces. Encycl. of Math. Sciences, vol. 48,
Springer-Verlag 1992, pp. 179-250.

J. GRAVER, B. SERVATIUS, H. SERVATIUS: Combinatorial rigidity. Graduate Studies
in Mathematics, vol. 2, American Mathematical Society, Providence 1993.

J. SEFRrRIOUI, C.M. GOSSELIN: Singularity analysis and representation of planar par-
allel manipulators. J. Robotics Autonomous Systems 10, 209-224 (1992).

H. STACHEL: Bemerkungen zur spharischen Kreispunktkurve. Berichte der mathem.-
statist. Sektion im Forschungszentrum Graz, Nr. 222, 6 S., (1984).

H. StacHEL: Higher-Order Flexibility of a Bipartite Planar Framework. Institut fir
Geometrie, TU Wien, Technical Report 66 (1999).

B. WEGNER: On the projective invariance of shaky structures in Fuclidean space. Acta
Mechanica 53 (1984), 163-171.

W. WUNDERLICH: FEbene Kinematik. Bl-Hochschultaschenbiicher, Bd. 447, Bibli-
ographisches Institut, Mannheim 1970.

11



