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Abstract

Infinitesimally flexible frameworks are well known in kinematics, in particular re-
cently as singular postures in robotics. The objective of this paper is to analyze
a bipartite planar framework in view of higher-order infinitesimal flexibility. The
characterization of first-order flexibility of such frameworks has been well known
for a long time. Now explicit necessary and sufficient conditions are proved for the
orders two, three and even for n, provided both classes of vertices are non-collinear.
For bipartite frameworks with 2°%-order flexibility also a geometric characterization
is given.
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1 Infinitesimal flexibility of higher order
Let F be a framework in the Fuclidean plane F? with vertex set V and edge set E. i.e.,
V=1{xi,....x,}, ; ER? Vi c [ :={1,...,0} and EC {(i,j) i < j, (i,j)eﬂ}.
For each edge x;x; of F the Euclidean length /;; obeys
fip(xiox;) =[x — x5l = li; =0 V(i,j) € E. (1)
We suppose [;; > 0 for all edges of F.

Definition: The framework F = (V, F) is infinitesimally flexible of order n (in the classical
sense!) if and only if for each k € I there is a polynomial function

zp(t) =xp+tzga+ ...+ "2k, n>1, (2)
such that
(i) the replacement of x; and x; in (1) by z;(¢) and z;(t), resp., gives functions obeying
[ij (zi(),25(1)) = [|z:(1) — z;()|| = L = o(t") ¥(i,]) € E, (3)

i.e., with a zero of multiplicity > n+1 at ¢t = 0, and

1See Sabitov (1992) or note Remark 2 in Stachel (1999).



(ii) in order to exclude trivial flexes, the vectors zq1,...,2,1 are not the velocity vectors of
the vertices x1,...,%, , resp., under any motion of F as a rigid body.

The v-tupel of functions (z1(%),...,2,(¢)) is called a nontrivial n-th-order flex of F.

Suppose, the framework F is given by its combinatorial structure ¥ and by the lengths I;;
of its edges. Then (1) defines a system of e := # F quadratic equations

(xi =) (xi = x;) =1 V(i,j)€ b (4)
for the 2v unknown coordinates of the vertices. After substituting (2) in (4) the comparison
of coefficients of ¢,12,...,1" gives rise to the following systems of linear equations, each for all
(i,7) € E:

(xi — %) (2in —2j1) = 0, (5)

(% = %j) - (2i2 = 2j2) = —3(zi1 —2j1) (201 — 2j1), (6)

(xi = %;) (zis —23) = —(2i1 —2j1) (202 — 2j2), (7)

(% = %) (zia —2j4) = —(2i1 —21) (23— 2j3) — 3(Zi2 — 2j2) - (22 — 2j2),  (8)

The matrix M on the left side of each of these systems (see example in (10)) is called rigidity
matriz of F (cf. Graver and Servatius (1993)).

In particular, the “velocity vectors” z,i,...,2,1 of the vertices have to solve the homo-
geneous system (5) of linear equations. Therefore infinitesimal flexibility of order 1 can be
characterized by the rank condition

tk(M) < 2v -3 (9)

(see e.g. Stachel (1999), eq. (11)). Any nontrivial solution of (5) defines the right side in the
inhomogeneous system (6), and then 27d_order flexibility of F is equivalent to the solvability
of this system. This can be repeated step by step for (7), (8), ... to figure out the order of
flexibility for any given framework. If (z1,,...,2,,) is any particular solution of the r-th linear
system, r € {1,...,n}, then also

Zhy =2y + €+ CXy CT:—C, for k=1,...,v

with constant ¢ € R? and any skew symmetric 2x 2 matrix C' is a solution of this system.

It has been proved by Alexandrov (1998) that for each framework there is a sufficiently large
n such that any nontrivial n-th-order flex (2) can be extended to a set of analytical functions
which solve (1) identically.

2 Flexibility analysis of a particular planar framework

We now focus on the planar framework Fy, (see Fig. 1) which is based on a bipartite graph.?
We change the notation of the vertices such that the edges of F}, can be written as p;q; for
all 7,7 € {1,2,3}. This framework (see also Wunderlich (1983) or Graver and Servatius (1993),

2This means that the set V of vertices can be subdivided into two classes such that E consists of all edges
connecting vertices from different classes.
In Stachel (1999) another planar framework is presented and analyzed, which consists of six vertices and nine
edges with three edges meeting at each vertex — like Fy, .



Fig. 4.25) is infinitesimally flexible if and only if the nine rows in the 9x12 rigidity matrix (each
entry stands here for a 1x2 submatrix)

(P1—a;) o o (a1 —p1) o o

(P1—4qz) o o o (92—p1) o

(P1—4a3) o o o o (43—p1)
o (P2—ay) o (a1 —p2) o o

My, = o (Pz_(h) o o (qz_Pz) o (10)

o (P2—a3) o o o (43—P2)
o o (P3—q1) (41 —Pp3) o o
o o (P3—d3) o (42—P3) o
o o (P3—as3) o o (43—P3)

Figure 1: Framework Fy, Figure 2: First-order flexing F},

Infinitesimal flexibility can be seen as the limiting case of adjacent incongruent configurations
of a framework with given edge-lengths /;; . Due to Stachel (1982a), (1982b) or (1982¢) any two
incongruent configurations of Fy, are associated with a pair of confocal conics passing through the
triples {p;, P2, P35} and {q;,qy,qs} of vertices, respectively (see e.g. particular case in Fig. 4).
Hence, one can expect any relation between higher-order flexibility of Fy, and linear systems of
conics.

The configuration problem of Fy,, i.e., the problem of determining the vertices pq, ..., qs from
the nine lengths I;; = ||p; — q;||, is of degree 8 (Wunderlich (1977)). Therefore one can expect
that any Fy, which admits an 8" -order flex must be continuously flexible. According to Dixon
(1899) there are two movable versions (see figures 4 and 6 in Wunderlich (1977)): At Dizon’s
first mechanism each of the classes {py,...} and {qy,...} is collinear, and the spanned lines
are orthogonal; the mobility holds for any number of vertices. At Dizon’s second mechanism
the vertices p, P2, P35 and qy, q,, g5 are selected respectively from two rectangles with common
axes of symmetry. Even the fourth vertices p, and q, of the rectangles can be added without
disturbing the mobility.

2.1 First-order flexibility revisited

The following geometric characterization of first-order flexibility of Fy, is well known. According
to Wunderlich (1983) it is almost impossible to figure out where it stems from. The particular
orthogonal choice of the velocity vectors py q,...,qs, originates from Wunderlich (1983), but it



can also be deduced by a limiting process from the results given in Stachel (1982a) or (1982b).
The egs. in (23) will reveal that this specification is actually the “simplest” one.

Theorem 1: Fy, is flexible of first order if and only if the sixz vertices are located on a curve
¢ of second order. This flexibility is preserved when the bipartite framework is extended by an
arbitrary number of additional vertices py,..., Py, d4s-- -4y € C.

In almost all cases there is a nontrivial first order flex with velocity vectors orthogonal to c.

Proof: For each ¢ = 1,2,3 the edge p;q; defines a system ;. According to the three-pole-
theorem by Aaronhold-Kennedy the existence of velocity vectors being compatible with all given
lengths [;; is equivalent to aligned poles 21, 31, 32 of the coupler motions ¥y /%4, ¥5/%;, ¥3/X,,
resp. (see Fig. 2). However, this characterizes the vertices as points of a curve ¢ of second order
for the following reason: According to the theorem of Pappus-Pascal pq,...,q3 € ¢ implies
collinearity of the three relative poles. For the converse we follow Walker (1978), p. 64, and
prove it by means of Algebraic Geometry:

The triples of lines k1 := {p193, P2qs3, P34y} and k2 := {p,qy, P34y, P19} define two re-
ducible curves of third order, which span a linear system & of cubics. Fach curve of this system
S contains all points of intersection between ky and ko, i.e., the six vertices and the three poles.
Let a denote the line through the relative poles. Through any point x € a \ {21, 31,32} there
passes a cubic k£ € §. The line a shares four points with k. Therefore & must break up into a
and any curve ¢ of second order passing through the remaining p;,...,qs.

In order to obtain velocity vectors p; ; and q; ; , we follow Wunderlich (1983) and parametrize
the curve ¢ according to its type:

type of ¢ Pi qa;
ellipse (acosu;,bsinu;) (acosv;,bsinv;)
hyperbola (acoshu;,bsinhu;) | (acoshv;,bsinhv;)
parabola (u? — a2, 2au;) (v? — a*,2av;) (1)
intersecting lines (ui, ku;) (v;, £kv;)
parallel lines (ug, k) (v, £k)

with constant a,b,k # 0, where k and —k belong to the same framework.

Now we can easily verify that the following choice gives vectors which obey (5) for all 4,5 €
{1,2,...}. In almost all cases they are orthogonal to ¢. The only exceptions arise when ¢ splits
into two lines and both sets {py,...} and {qy,...} of vertices are collinear and the spanned
lines are different. Then the orthogonal choice would give trivial flexes only, as it already has
been noted in Wunderlich (1983). In the following table these exceptions are called collinear
cases. Then only the lower sign of k in the table above is permitted. Note that in the collinear
case with intersecting lines the point of intersection must not be any vertex.

— collinear case

(—ui,uf/2k)

(v7, v2/2k)

type of c Pi1 9,1
ellipse (bcosu;,asinu,;) —(bcosv;,asinv;)
hyperbola (bcoshu;, —asinh u;) | (—=bcoshv;, asinhv;)
parabola (—2a?, 2au;) (24, —2av;) (12)
intersecting lines (=K%, ku;) (k?v;, Fhkv;)
— collinear case (k/ui, 1/u;) (—=k/v;,1/v;)
parallel lines (0,k) (0, Fk)



The elliptic and parabolic cases are displayed in Fig. 3. In the twofold singular case with ¢ being
a line, any choice of vectors p;; and q;, orthogonal to ¢ gives a first-order flex of Fy,. O

Figure 3: Two first-order flexing frameworks with velocity vectors orthogonal to the conic ¢

2.2 Conditions for F;, with n-th-order flexibility

From now on we confine ourselves to the case of pairwise different vertices py,...,q5. The
condition p; # q; is already guaranteed by the general assumption /;; > 0. In the case p; = p,
the framework Fy, admits a continuous flex (see Fig. 4a). As a consequence of Ivory’s theorem
(see Stachel (1982a)) the same framework has a rigid configuration too (Fig. 4b).

a) continuously flexible configuration b) rigid configuration

Figure 4: Exceptional framework Fy, with p; = p,



Let an n-th-order flex of Fy, be given by
Pi(l) =P +Piut+ - +pit" and qi(l) =q;+q;t 4+ q;,l" (13)
fori,7=1,2,3.

From now on we suppose non-collinear {p;,p,,ps}: Then for each t € R there is an affine
transformation « : p; — pi(t) for i = 1,2,3. When we use matrix notation and write the
coordinate vectors as columns, then we can set up

a(t): p; — pi(t) =a(t)+ A(t)p; with a(0)=o, A(0)=1,, (14)

where [ denotes the 2 x 2 unit matrix. The coordinates of a(t) and the entries of A(t) are
polynomials of degree < n. In the new notation equation (3) reads

[pl(1) (0]~ (pi — @;)? = o(t") forall i,j € {1,2,3}. (15)
We subtract the equation for 7 = 1 and obtain

[pi(1) = P (O] [PHD) +PA(1) = 2d(1)] — (pi = P1)" (Pi + P1 — 24;) = oft").
Subtracting from this the equation for j = 1 gives

=2 [pi(1) ~ P50 [af(0) — ah(1)] +2(p; — P)"(q; — 1) = o),
and due to (14) we get

~2(p; = p) AT [aj(1) = o4 (1)] +2(p; — P () — @) = o(1") for i,j € {2,3}.
The supposed linear independence of the difference vectors {p, — p;, p;5 — p;} implies

AT [df(t) - df(1)] — (@ — ay) = o(t") for j=2.3.
This means that for each ¢ € R there is a second affine transformation

a(1): q(t) — a(0)+ AW Q) = q; +o(t") for j=1,2,3 (16)
with a(0) = o. Thus we have proved

Lemma 1: An n-th-order flex (13) of Fy, with non-collinear {py,ps,p3} can be embedded in
a pair of one-parameter affine motions a(t) and a(t) according to (14) and (16). These affine
motions induce adjoint linear mappings for each t € R.

For non-collinear {q;,qy,q5} there exists also the inverse

a(t): q; — b(t)+ A1) q; = o +o(1")

17
for b:= —A_lTﬁ or al = —bTA. (17)

Corollary 1: If the bipartite framework with non-collinear {py,...} or {qy,...} is flexible of
order n , then for each r obeying 1 < r < n there are affine transformations

(S pini—I_pi,rv a”/’: q]Hq]—l_q],T for ivj:1727"'7

mapping the vertices onto the endpoints of arrows indicating the r-th derivation vectors.



Proof: According to (14) we have

d"pj(t)
dir

(r) (r)
= a(0)+ [IQ‘I‘ A(O)] p;-

p; t7ip;, =p;+
t=0

In the same way we deduce from (17)

(r)

AT
q; +rlq;, = b(0)+ [fﬁ TAWT

dtr

‘| q] ‘
t=0

Obviously, Corollary 1 makes only sense, if there are more than six vertices. Note that this
statement is not true in the “collinear” cases listed in (12). O

We substitute in (15) the matrix representations (14) of o and (16) of @ and obtain

T

ala+2a’(Ap; —dq)) + p/ ATAp;, — 2p] AT +d'; q -

~Ta 2T AT T T T AT T _ n
—a'a—2a (A'q; —p;) —d; AA ) +2p] A q; — p} p; = o(1").
Separating the terms with p; from those with q(¢) leads to
pl(ATA - I)p; +2(a”A +a")p; + aTa =
=g (AAT — L)q, + 2(a” + 87 AT)q! +aTa + o(1").

As this equation must hold for all 4,5 € {1,2,3}, both sides of the equation must be constant
for each ¢t € R. This results in two equations which are quadratic in the coordinates of p; and
q’; , respectively. With (17) we obtain — after subtracting bTa = a’b from both sides —

pl(ATA-L)p; +2(@" —b")Ap, + (@’ —=ba=7(1), =123, (19)
and
a7 ()(AAT - L)gi(1) + 2(aT — bTAAT ) (1) + bTAATD — aTb = y(1) + o(t")

with a rational function (¢). For the sake of brevity we did no longer indicate that the matrix
A as well as the vectors a and b are functions of ¢.
Now we apply a~! to q’;(t) in the second quadratic equation. Due to (17) we get finally

14T T n
) (I — A7T AT )g; + 2(a” =bT)A™ g, + (& =T )b = y(1) + o(1") (20)

for j=1,2,3.
Conversely, the two equations (19) and (20) imply (18) and hence (15). We summarize:

Theorem 2: The framework Fy, with non-collinear {p;,p,, Ps} and {q,q5, 95} is flexible of
order n if and only if in a neighborhood of t = 0 there are functions a(t), b(t), A(t), and (1)
of class C™ such that the vertices py,...,qs obey the equations (19) and (20).

From (19) and (20) we can deduce two functions

f(t,x) :=xT(ATA - I)x + 2(a” = bT)Ax + (aT — bT)a — y(1), 91
g(t,x) = xL (I — A7 A x + 2(af = bT)A T x + (al — bT)b — ~(1). (21)

Lemma 2: For each ty sufficiently near to 0 the equations f(tg,x) = 0 and g(tg,x) = 0 represent
two confocal curves of second order.



Sketch of the proof: We specify the coordinate systems for py,... and pi(to),... according to
the singular-value decomposition of the regular matrix A(#p). Then A(f#p) becomes a diagonal
matrix and the curve f({p,x) = 0 gets one of the following normal forms:

(A2 = D)a? + (4® = )y® —y(to)  for (M =1)(p?-1)#0
flto,x) = 2 2 2

e + (p* — Dy* —p for p* #1
with certain constants v, p and A, u denoting the singular values of A(#g). For the corresponding
second curve we obtain

A -1 21
12 2?4 a 5 y? —v(to) or

g(to, X) = 2 K

-1
21/96—|—'ulu2 3/2—,0—1/2

Now we can see: If these curves are conics, then both are of the same type and they share the
focal points. In the singular case (y(Zp) = 0 or v = 0) both are pairs of lines sharing their axes
of symmetry. O

If for any to the equations f(to,p;) = 0 and g(t9,q;) = 0 hold for all i, j = 1,2,3, then we
have found a second order curve passing through pq, ps, ps for which there is a confocal conic
passing through q;,q,, qs (compare Stachel (1982c¢)). The conditions (19) and (20) show that
in the case of higher-order flexibility there is a multiple zero at tg = 0.

2.3 Characterizing 2" and 3"¢-order flexibility

According to Theorem 2 the equations (19) and (20) give necessary conditions for the framework
Fy, being infinitesmally flexible of order n. In order to obtain geometric characterizations for
n=1,2,... we must compare the coefficients of ¢, i = 1,2,.... For this purpose we set up the
Taylor expansions as follows:

Aty =L+ At + Ay > + ... a(t)=at +axt®+...
() =nt+ vt + ... b(t) = byt + byt? 4 ...

The inverse matrix A=1(¢) can be expanded in the form
ANty = I, + Byt + Bot* + ...
with

By = —Al By = _A2 + A%
By = —As+ A A + A1 Ay —A:l)’ B,=-A,—-A,_1Bi— ... —A1By_1.

The coefficients of ¢ in (19) and (20) give fi(p;) = fi(q;) =0,4,5 = 1,2,3, with
fix) 1= X7 (A + AT)x 4 2(aT — BT x— 71 (22)
This gives the curve ¢ of second order mentioned in Theorem 1. For the velocity vectors
pP;ip=a1+ Aip; and q;; = by — Airq]'

we can suppose a symmetric matrix Ay and by = —ay . This is possible since otherwise we could
superimpose a motion which appoints to each point r the instantaneous velocity vector

v(r):= —3(a; + b1) = I(4 — A])r



with the skew symmetric matrix (4; — AT). Then we would obtain the vectors
Pip=3(a—b)+ (A + AT, qjy = —3(ar—bi) - 3(A1+ Al , (23)

which still solve (5). These vectors indeed are orthogonal to ¢ (see Fig. 3), as according to (22)
the equation of the polar line of point r with respect to ¢ reads

xT(Ay + ADr+xT(ay — b))+ (al = bIHr -4, = 0.

The coefficients of ¢* in (19) and (20) give two equations: fy(p;) =0,¢=1,2,3, with
fo(x) = xT(AT + AT A + Ay)x +

24
12 [(@f = b+ (] ~bE)]x+ (af bl )ay 72 (24)

and gy(q;) =0, =1,2,3, with
ga(x) = xT(Ay — Ay AT + AT — A7 - A?)x + (25)

+2 [~(@al = b)AT + (af = b)) x+ (af = bl )b — 7.

f2(x) = 0 and g2(x) = 0 represent two curves of second order, one passing through py, p,, ps,
the other through q4,q,,q5. The difference of these equations

ha(x) := XT(A1 + Aip)2 X+ 2(aip — bip)(Al + Aip)x + (aip — bip)(al —by1)=0 (26)

depends only on the first derivatives a;, by, Ay, but not ;. This difference equation represents
a curve d in the pencil [pq] spanned by p and ¢. For a nontrivial flex the polynomial hy(x)
cannot vanish and it is neither proportional to fi(x), nor to f5(x) or g2(x) (note (27) and (28)).

In order to figure out the geometric relation between the curves d and ¢, we specify the
coordinate system such that the equation (22) of ¢ gets one of the forms listed in (11) and the
velocity vectors p; ; and q;; according to (23) equal those given in (12). This implies:

type of ¢ reduced equation of ¢ Ay = AT ag=-by | 1
. b/a 0 0
27,2 2/p2 _
ellipse z?fa”+y*/b* =1 ( 0 a/b) (0) 2ab
b/a 0 0
27,2 _ 212 _
hyperbola z*fa* —y? /bt =1 ( 0 —a/b) ( 0 ) 2ab
—9q2 27
parabola y? — 4a’x = 4a* 00 2a Sat (27)
0 1 0
—k? 0 0
: e T ) 2 _
intersecting lines kfx+y* =0 ( 0 1 ) ( 0 ) 0
0 0 0
: 2 _ 1.2 2
parallel lines y =k ( 01 ) ( 0 ) 2k
Then the equations of d and of a particular curve d’ selected from the pencil [cd] are
type of ¢ d: ha(x)=0 curve d’
ellipse 4()2362/(12 + 4(123/2/132 =0|224+y?=a?>+b* ... director circle of ¢
hyperbola 4b%2x% a? — 4a%y?/b* = 0 (a? + b?)2? = a* ... parallel lines
parabola 4y* 4 16a* = 0 x = —2a* ... director line & line at inf. (28)
inters. lines 4kt2? + 49?2 =0 y?> =0 ... symmetry axis as double line
parallel lines 4y? =0 y? =0 ... symmetry axis as double line




For a 2°dorder flex of Fy, obeying (22) it is nec-
essary that there are curves p, ¢, passing through
P1, P2, P3 OT 43,4y, 43, Tesp., such that the pen-
cil [pq] spanned by p and ¢ contains d .

In the projective 5-space formed by all curves
of second order those through {p,,p,,p3} or
{q,,4,,q3} give two planes m,, 7,, resp., which
share the “point” ¢. The “line” (=pencil) [pq]
with p, ¢ # ¢ passes through d if and only if d lies
in the plane spanned by ¢, p and ¢ (see Fig. 5).

Hence, for a 2"-order flexing Fy, each pair of
second-order curves (p/,¢’') with p’ € [ep]\ {¢},
q € [eq] \ {c}, spans a pencil [p'q’] which shares
a curve d’ with the pencil [ed].

Figure 5: Looking at the projective
space of second-order curves

Conversely, if such a pair (p/,¢") with p’,¢" # ¢ is given with p’ passing through p;,ps,ps
and ¢ passing through q;,q,,qs; (see examples in Fig. 6), then we can find any p € [¢p] and
q € [cq'] such that the difference of their equations gives hy(x) = 0 in (26). Then from the
equations of ¢, p and ¢ one gets Ay + AL and (af — bg)

Again, for the acceleration vectors 2p, , and 2q;, we can suppose a symmetric matrix A

and a; = —by in

Pi2=az+ Agp; and Q2 = b, — (A%“ _ Asz)qj :

because otherwise — after superimposing a suitable motion — we would obtain

Pi2 = %(32 — b,

)
as another solution of (6).

+ 2(A2 + ADp; s q;2 = —3(az —by) - F(Az + ALY 2A1T2)q]'

Figure 6: Two second-order flexing bipartite frameworks

We demonstrate this method at the following

Fzample: Let ¢ be a pair of intersecting lines with £ = 1 according to (27), i.e.,

c: —x2+y2:0 = d: 4(362—|—y2):0.
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Figure 7: Computed example of a 2"-order flexible bipartite framework showing the velocity
vectors p; 1, q;; with filled arrows (scaling factor 0.5) and the acceleration vectors 2p;, 5, 2q; ,
with white arrows (scaling factor 0.25)

The circle p" and the pair ¢’ of parallel lines (see Fig. 7) with equations
pliat -2 +y?—24=0 and ¢: 22 —22-24=0

span a pencil which contains the double line d’: y?> = 0. Now we replace p’ by p € [¢p/] and ¢
by ¢ € [¢q'] (we may choose ¢’ = ¢) such that the difference of the equations gives exactly the
equation (26) of d. We specify

p: 1222 — 162+ 4y? =192 =0 and ¢=¢': 82% — 162 —192=0.

The comparison of these equations with (24) and (25) together with (27) gives

-1 0 0
AIIA?:(O 1)7 al:_blz(o)v 71:07

11 0 -8
Az-I-AT:(O 3)7 aZ_blz(O)v v2 = 192.

For the eight points p; and q; of intersection between ¢ and p’ or ¢', resp., we get the following
velocity and acceleration vectors obeying the linear systems (5) and (6) of 16 equations, each:

vertex velocity vector | half acceleration vector
pl =(44) |p{;=(-44) |p{,=(18,6)
p; =(4,-4) |p3,=(-4,-4)|p], = (18,-6)
pi =(-3,3) |pi;=(3,3) |pi,=(-20.5,45)
pi =(-3.-3) | pi, =(3,-3) |pi,=(-20.5,-45)
af =(6,6) |aj,=(6,-6) |af,=(-23,-3)
aj =(6,-6) |aj,=(6.6) |aj;=(-233)
af =(-4,4) |af,=(-4,-1) | ai, = (22,-2)
ai = (=4,-4) |af; = (-4,4) |ai,=(22,2)




We summarize:

Theorem 3: A 1%t-order flexible framework Fy, with non-collinear triples {p;,py,P3} and
{q1,45,95} of vertices and py,...,qs € ¢ is infinitesimally flexible of order two if and only if
there are second-order curves p' through py, py, ps and ¢’ through qq,4qy,qs such that the pencil
spanned by p' and ¢' shares a curve d' with the pencil spanned by ¢ and the associated d which
is listed in (28) together with a possible curve d'.

As a consequence, a second-order flexible framework Fy, can in general be extended by two addi-
tional vertices py, q4 without restricting the infinitesimal flexibility.

Remark: Second-order flexibility is related to curvatures (cf. Stachel (1999)). In the sense of
Fig. 2 there is also a more kinematic characterization of 2"%-order flexibility of F,: A 1%-order
flexing framework F}, is flexible of order two if and only if the curvature transformation induced
by the coupler motion ¥3/%y is among the curvature transformations of one-parameter motions
included in the two-parametric motion B composed from the coupler motions Yo /Y1 and Yz /Y.
According to the results of Stachel (1979) one has to pay attention to the parabolic projectivities
7i; induced by the curvature transformations of ¥;/¥; on the instantaneous pole-axis a of B.
On this axis a, which is the line through the relative poles 21, 31, 32 (see Fig. 2), there is
a projectivity o : 32 — 21 obeying ¢? = my; o T32. Now the exact, but not very practicable
characterization reads:

The 1%t-order flexing framework Fy, is flexible of order two if and only if the product 7r3_11 o0
s tnvolutory. And this is equivalent to the statement that the parabolic projectivity w3; with
fixed point 31 maps the preimage o~1(31) of 31 under o onto the image o(31).

The coefficients of ¢* in (19) and (20) give rise to the equations f3(p;) = 0 and g3(q;) = 0
for all 7,5 = 1,2,3, with quadratic functions

fo(x) = xT(AT + AT Ay + AT A3 + Ag)x +2 |(a] — b])A; + (al = b) A+

+(al — b3T)] x + [(af —bTay + (al — bg)al] — 3 (29)

gg(X) = XT(Ag — AzAl — A1A2 + A:f — AQA{ + A%A{ — AlAg + A1A¥12—|-
+4% - afaf - AT AT + AP)x + 2 |(af - bI)(-4] + AT2)-
—(af —b])AT + (a - bY)|x + [(al = b )by + (a] = bI)by| — 75 (30)

Theorem 4: A bipartite framework Fy, with non-collinear triples {p,,ps, P3} and {q;,92,93}
of vertices is infinitesimally flexible of order three if and only if there are vectors ay,...,bs
and matrices Ay, Ay, As and real numbers v1,v2,7v3 such that the vertices p; obey the equations
fi(x) = fa(x) = f3(x) = 0 and q; obey f1(x) = g2(x) = g3(x) = 0 according to (22), (24), (29),
(25), and (30).

A geometric interpretation of this condition is still open. This together with the investigation
of orders > 4 and the discussion of the remaining cases with collinear {p,,py, P3} or {q;, 92,93}
is left for future publications.
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