
Higher-Order Flexibility for a Bipartite PlanarFrameworkHellmuth StachelInstitute for Geometry, Vienna University of Technologystachel@geometrie.tuwien.ac.atDedicated to Prof. M. Hiller at the occasion of his 60th birthdayAbstractIn�nitesimally 
exible frameworks are well known in kinematics, in particular re-cently as singular postures in robotics. The objective of this paper is to analyzea bipartite planar framework in view of higher-order in�nitesimal 
exibility. Thecharacterization of �rst-order 
exibility of such frameworks has been well knownfor a long time. Now explicit necessary and su�cient conditions are proved for theorders two, three and even for n, provided both classes of vertices are non-collinear.For bipartite frameworks with 2nd-order 
exibility also a geometric characterizationis given.Key Words: In�nitesimal 
exibility, framework, bipartite graphMSC 1994: 53A171 In�nitesimal 
exibility of higher orderLet F be a framework in the Euclidean plane E2 with vertex set V and edge set E, i.e.,V = fx1; : : : ;xvg; xi 2 R2 8i 2 I := f1; : : : ; vg and E � n(i; j) j i < j; (i; j) 2 I2o :For each edge xixj of F the Euclidean length lij obeysfij(xi;xj) := kxi � xjk � lij = 0 8(i; j) 2 E: (1)We suppose lij > 0 for all edges of F.De�nition: The framework F = (V;E) is in�nitesimally 
exible of order n (in the classicalsense1) if and only if for each k 2 I there is a polynomial functionzk(t) := xk + t zk;1 + : : :+ tnzk;n ; n � 1; (2)such that(i) the replacement of xi and xj in (1) by zi(t) and zj(t), resp., gives functions obeyingfij (zi(t); zj(t)) = kzi(t)� zj(t)k � lij = o(tn) 8(i; j) 2 E; (3)i.e., with a zero of multiplicity � n+1 at t = 0 , and1See Sabitov (1992) or note Remark 2 in Stachel (1999).1



(ii) in order to exclude trivial 
exes, the vectors z1;1; : : : ; zv;1 are not the velocity vectors ofthe vertices x1; : : : ;xv , resp., under any motion of F as a rigid body.The v-tupel of functions (z1(t); : : : ; zv(t)) is called a nontrivial n-th-order 
ex of F.Suppose, the framework F is given by its combinatorial structure E and by the lengths lijof its edges. Then (1) de�nes a system of e := #E quadratic equations(xi � xj) � (xi � xj) = l2ij 8(i; j) 2 E (4)for the 2v unknown coordinates of the vertices. After substituting (2) in (4) the comparisonof coe�cients of t; t2; : : : ; tn gives rise to the following systems of linear equations, each for all(i; j) 2 E :(xi � xj) � (zi;1 � zj;1) = 0 ; (5)(xi � xj) � (zi;2 � zj;2) = �12(zi;1 � zj;1) � (zi;1 � zj;1); (6)(xi � xj) � (zi;3 � zj;3) = �(zi;1 � zj;1) � (zi;2 � zj;2); (7)(xi � xj) � (zi;4 � zj;4) = �(zi;1 � zj;1) � (zi;3 � zj;3)� 12(zi;2 � zj;2) � (zi;2 � zj;2); (8)� � � = � � �The matrix M on the left side of each of these systems (see example in (10)) is called rigiditymatrix of F (cf. Graver and Servatius (1993)).In particular, the \velocity vectors" z1;1; : : : ; zv;1 of the vertices have to solve the homo-geneous system (5) of linear equations. Therefore in�nitesimal 
exibility of order 1 can becharacterized by the rank conditionrk(M) < 2v � 3 (9)(see e.g. Stachel (1999), eq. (11)). Any nontrivial solution of (5) de�nes the right side in theinhomogeneous system (6), and then 2nd-order 
exibility of F is equivalent to the solvabilityof this system. This can be repeated step by step for (7), (8), : : : to �gure out the order of
exibility for any given framework. If (ez1;r; : : : ; ezv;r) is any particular solution of the r-th linearsystem, r 2 f1; : : : ; ng, then alsozk;r := ezk;r + c+ Cxk ; CT = �C; for k = 1; : : : ; vwith constant c 2 R2 and any skew symmetric 2�2 matrix C is a solution of this system.It has been proved by Alexandrov (1998) that for each framework there is a su�ciently largen such that any nontrivial n-th-order 
ex (2) can be extended to a set of analytical functionswhich solve (1) identically.2 Flexibility analysis of a particular planar frameworkWe now focus on the planar framework Fb (see Fig. 1) which is based on a bipartite graph.2We change the notation of the vertices such that the edges of Fb can be written as piqj forall i; j 2 f1; 2; 3g. This framework (see also Wunderlich (1983) or Graver and Servatius (1993),2This means that the set V of vertices can be subdivided into two classes such that E consists of all edgesconnecting vertices from di�erent classes.In Stachel (1999) another planar framework is presented and analyzed, which consists of six vertices and nineedges with three edges meeting at each vertex | like Fb .2



Fig. 4.25) is in�nitesimally 
exible if and only if the nine rows in the 9�12 rigidity matrix (eachentry stands here for a 1�2 submatrix)Mb = 0BBBBBBBBBBBBBB@ (p1�q1) o o (q1�p1) o o(p1�q2) o o o (q2�p1) o(p1�q3) o o o o (q3�p1)o (p2�q1) o (q1�p2) o oo (p2�q2) o o (q2�p2) oo (p2�q3) o o o (q3�p2)o o (p3�q1) (q1�p3) o oo o (p3�q2) o (q2�p3) oo o (p3�q3) o o (q3�p3) 1CCCCCCCCCCCCCCA (10)are linearly dependent.
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exing FbIn�nitesimal 
exibility can be seen as the limiting case of adjacent incongruent con�gurationsof a framework with given edge-lengths lij . Due to Stachel (1982a), (1982b) or (1982c) any twoincongruent con�gurations of Fb are associated with a pair of confocal conics passing through thetriples fp1;p2;p3g and fq1;q2;q3g of vertices, respectively (see e.g. particular case in Fig. 4).Hence, one can expect any relation between higher-order 
exibility of Fb and linear systems ofconics.The con�guration problem of Fb, i.e., the problem of determining the vertices p1; : : : ;q3 fromthe nine lengths lij = kpi � qjk, is of degree 8 (Wunderlich (1977)). Therefore one can expectthat any Fb which admits an 8th-order 
ex must be continuously 
exible. According to Dixon(1899) there are two movable versions (see �gures 4 and 6 in Wunderlich (1977)): At Dixon's�rst mechanism each of the classes fp1; : : :g and fq1; : : :g is collinear, and the spanned linesare orthogonal; the mobility holds for any number of vertices. At Dixon's second mechanismthe vertices p1;p2;p3 and q1;q2;q3 are selected respectively from two rectangles with commonaxes of symmetry. Even the fourth vertices p4 and q4 of the rectangles can be added withoutdisturbing the mobility.2.1 First-order 
exibility revisitedThe following geometric characterization of �rst-order 
exibility of Fb is well known. Accordingto Wunderlich (1983) it is almost impossible to �gure out where it stems from. The particularorthogonal choice of the velocity vectors p1;1; : : : ;q3;1 originates from Wunderlich (1983), but it3



can also be deduced by a limiting process from the results given in Stachel (1982a) or (1982b).The eqs. in (23) will reveal that this speci�cation is actually the \simplest" one.Theorem 1: Fb is 
exible of �rst order if and only if the six vertices are located on a curvec of second order. This 
exibility is preserved when the bipartite framework is extended by anarbitrary number of additional vertices p4; : : : ;pm;q4; : : :qn 2 c.In almost all cases there is a nontrivial �rst order 
ex with velocity vectors orthogonal to c .Proof: For each i = 1; 2; 3 the edge piqi de�nes a system �i . According to the three-pole-theorem by Aaronhold-Kennedy the existence of velocity vectors being compatible with all givenlengths lij is equivalent to aligned poles 21, 31, 32 of the coupler motions �2=�1, �3=�1, �3=�2,resp. (see Fig. 2). However, this characterizes the vertices as points of a curve c of second orderfor the following reason: According to the theorem of Pappus-Pascal p1; : : : ;q3 2 c impliescollinearity of the three relative poles. For the converse we follow Walker (1978), p. 64, andprove it by means of Algebraic Geometry:The triples of lines k1 := fp1q2;p2q3;p3q1g and k2 := fp2q1;p3q2;p1q3g de�ne two re-ducible curves of third order, which span a linear system S of cubics. Each curve of this systemS contains all points of intersection between k1 and k2, i.e., the six vertices and the three poles.Let a denote the line through the relative poles. Through any point x 2 a n f21; 31; 32g therepasses a cubic k 2 S. The line a shares four points with k . Therefore k must break up into aand any curve c of second order passing through the remaining p1; : : : ;q3 .In order to obtain velocity vectors pi;1 and qj;1 , we follow Wunderlich (1983) and parametrizethe curve c according to its type:type of c pi qjellipse (a cosui; b sinui) (a cos vj ; b sin vj)hyperbola (a coshui; b sinhui) (a cosh vj ; b sinh vj)parabola (u2i � a2; 2aui) (v2j � a2; 2avj)intersecting lines (ui; kui) (vj ;�kvj)parallel lines (ui; k) (vj ;�k) (11)with constant a; b; k 6= 0 , where k and �k belong to the same framework.Now we can easily verify that the following choice gives vectors which obey (5) for all i; j 2f1; 2; : : :g. In almost all cases they are orthogonal to c . The only exceptions arise when c splitsinto two lines and both sets fp1; : : :g and fq1; : : :g of vertices are collinear and the spannedlines are di�erent. Then the orthogonal choice would give trivial 
exes only, as it already hasbeen noted in Wunderlich (1983). In the following table these exceptions are called collinearcases. Then only the lower sign of k in the table above is permitted. Note that in the collinearcase with intersecting lines the point of intersection must not be any vertex.type of c pi;1 qj;1ellipse (b cosui; a sinui) �(b cosvj ; a sin vj)hyperbola (b coshui;�a sinh ui) (�b cosh vj ; a sinh vj)parabola (�2a2; 2aui) (2a2;�2avj)intersecting lines (�k2ui; kui) (k2vj ;�kvj){ collinear case (k=ui; 1=ui) (�k=vj ; 1=vj)parallel lines (0; k) (0;�k){ collinear case (�ui; u2i =2k) (vj ; v2j=2k) (12)4



The elliptic and parabolic cases are displayed in Fig. 3. In the twofold singular case with c beinga line, any choice of vectors pi;1 and qj;1 orthogonal to c gives a �rst-order 
ex of Fb .
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exing frameworks with velocity vectors orthogonal to the conic c2.2 Conditions for Fb with n-th-order 
exibilityFrom now on we con�ne ourselves to the case of pairwise di�erent vertices p1; : : : ;q3 . Thecondition pi 6= qj is already guaranteed by the general assumption lij > 0 . In the case p1 = p2the framework Fb admits a continuous 
ex (see Fig. 4a). As a consequence of Ivory's theorem(see Stachel (1982a)) the same framework has a rigid con�guration too (Fig. 4b).
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Let an n-th-order 
ex of Fb be given byp0i(t) = pi + pi;1t+ � � �+ pi;ntn and q0j(t) = qj + qj;1t + � � �+ qj;ntn (13)for i; j = 1; 2; 3 .From now on we suppose non-collinear fp1;p2;p3g: Then for each t 2 R there is an a�netransformation � : pi 7! p0i(t) for i = 1; 2; 3. When we use matrix notation and write thecoordinate vectors as columns, then we can set up�(t) : pi 7! p0i(t) = a(t) +A(t)pi with a(0) = o; A(0) = I2 ; (14)where I2 denotes the 2�2 unit matrix. The coordinates of a(t) and the entries of A(t) arepolynomials of degree � n . In the new notation equation (3) readshp0i(t)� q0j(t)i2 � (pi � qj)2 = o(tn) for all i; j 2 f1; 2; 3g: (15)We subtract the equation for i = 1 and obtain�p0i(t)� p01(t)�T hp0i(t) + p01(t)� 2q0j(t)i� (pi � p1)T (pi + p1 � 2qj) = o(tn):Subtracting from this the equation for j = 1 gives�2 �p0i(t)� p01(t)�T hq0j(t)� q01(t)i+ 2(pi � p1)T (qj � q1) = o(tn);and due to (14) we get�2(pi � p1)TA(t)T hq0j(t)� q01(t)i+ 2(pi � p1)T (qj � q1) = o(tn) for i; j 2 f2; 3g:The supposed linear independence of the di�erence vectors fp2 � p1;p3 � p1g impliesA(t)T hq0j(t)� q01(t)i� (qj � q1) = o(tn) for j = 2; 3:This means that for each t 2 R there is a second a�ne transformationb�(t) : q0j(t) 7! ba(t) +A(t)Tq0j(t) = qj + o(tn) for j = 1; 2; 3 (16)with ba(0) = o. Thus we have provedLemma 1: An n-th-order 
ex (13) of Fb with non-collinear fp1;p2;p3g can be embedded ina pair of one-parameter a�ne motions �(t) and b�(t) according to (14) and (16). These a�nemotions induce adjoint linear mappings for each t 2 R.For non-collinear fq1;q2;q3g there exists also the inverseb�(t)�1 : qj 7! b(t) +A(t)�1Tqj = q0j + o(tn)for b := �A�1T ba or baT = �bTA: (17)Corollary 1: If the bipartite framework with non-collinear fp1; : : :g or fq1; : : :g is 
exible oforder n , then for each r obeying 1 � r � n there are a�ne transformations�r : pi 7! pi + pi;r ; b�r : qj 7! qj + qj;r for i; j = 1; 2; : : : ;mapping the vertices onto the endpoints of arrows indicating the r-th derivation vectors.6



Proof: According to (14) we havepi + r!pi;r = pi + drp0i(t)dtr ����t=0 = a(r)(0) + "I2 + A(r)(0)#pi :In the same way we deduce from (17)qj + r!qj;r = b(r)(0) + "I2 + drA(t)�1Tdtr �����t=0#qj :Obviously, Corollary 1 makes only sense, if there are more than six vertices. Note that thisstatement is not true in the \collinear" cases listed in (12).We substitute in (15) the matrix representations (14) of � and (16) of b� and obtainaTa + 2aT (Api � q0j) + pTi ATApi � 2pTi ATq0j + q0Tj q0j ��baT ba� 2baT (ATq0j � pi)� q0Tj AATq0j + 2pTi ATq0j � pTi pi = o(tn): (18)Separating the terms with pi from those with q0j(t) leads topTi (ATA � I2)pi + 2(aTA + baT )pi + aTa == q0Tj (AAT � I2)q0j + 2(aT + baTAT )q0j + baT ba + o(tn):As this equation must hold for all i; j 2 f1; 2; 3g, both sides of the equation must be constantfor each t 2 R. This results in two equations which are quadratic in the coordinates of pi andq0j , respectively. With (17) we obtain | after subtracting bTa = aTb from both sides |pTi (ATA� I2)pi + 2(aT � bT )Api + (aT � bT )a = 
(t); i = 1; 2; 3; (19)and q0Tj (t)(AAT � I2)q0j(t) + 2(aT � bTAAT )q0j(t) + bTAATb� aTb = 
(t) + o(tn)with a rational function 
(t). For the sake of brevity we did no longer indicate that the matrixA as well as the vectors a and b are functions of t.Now we apply b��1 to q0j(t) in the second quadratic equation. Due to (17) we get �nallyqTj (I2 � A�1A�1T )qj + 2(aT�bT )A�1Tqj + (aT�bT )b = 
(t) + o(tn) (20)for j = 1; 2; 3 .Conversely, the two equations (19) and (20) imply (18) and hence (15). We summarize:Theorem 2: The framework Fb with non-collinear fp1;p2;p3g and fq1;q2;q3g is 
exible oforder n if and only if in a neighborhood of t = 0 there are functions a(t), b(t), A(t), and 
(t)of class Cn such that the vertices p1; : : : ;q3 obey the equations (19) and (20).From (19) and (20) we can deduce two functionsf(t;x) := xT (ATA� I2)x+ 2(aT � bT )Ax+ (aT � bT )a� 
(t);g(t;x) := xT (I2 � A�1A�1T )x+ 2(aT � bT )A�1Tx+ (aT � bT )b� 
(t): (21)Lemma 2: For each t0 su�ciently near to 0 the equations f(t0;x) = 0 and g(t0;x) = 0 representtwo confocal curves of second order. 7



Sketch of the proof: We specify the coordinate systems for p1; : : : and p01(t0); : : : according tothe singular-value decomposition of the regular matrix A(t0). Then A(t0) becomes a diagonalmatrix and the curve f(t0;x) = 0 gets one of the following normal forms:f(t0;x) = ( (�2 � 1)x2 + (�2 � 1)y2 � 
(t0) for (�2 � 1)(�2 � 1) 6= 02�x+ (�2 � 1)y2 � � for �2 6= 1with certain constants �; � and �; � denoting the singular values of A(t0). For the correspondingsecond curve we obtaing(t0;x) = 8>><>>: �2 � 1�2 x2 + �2 � 1�2 y2 � 
(t0) or2�x+ �2 � 1�2 y2 � �� �2Now we can see: If these curves are conics, then both are of the same type and they share thefocal points. In the singular case (
(t0) = 0 or � = 0) both are pairs of lines sharing their axesof symmetry.If for any t0 the equations f(t0;pi) = 0 and g(t0;qj) = 0 hold for all i; j = 1; 2; 3 , then wehave found a second order curve passing through p1;p2;p3 for which there is a confocal conicpassing through q1;q2;q3 (compare Stachel (1982c)). The conditions (19) and (20) show thatin the case of higher-order 
exibility there is a multiple zero at t0 = 0 .2.3 Characterizing 2nd- and 3rd-order 
exibilityAccording to Theorem 2 the equations (19) and (20) give necessary conditions for the frameworkFb being in�nitesmally 
exible of order n. In order to obtain geometric characterizations forn = 1; 2; : : : we must compare the coe�cients of ti, i = 1; 2; : : : . For this purpose we set up theTaylor expansions as follows:A(t) = I2 +A1t +A2 t2 + : : : a(t) = a1t+ a2 t2 + : : :
(t) = 
1t + 
2 t2 + : : : b(t) = b1t+ b2 t2 + : : :The inverse matrix A�1(t) can be expanded in the formA�1(t) = I2 + B1t+ B2 t2 + : : :with B1 = �A1 B2 = �A2 + A21B3 = �A3 +A2A1 +A1A2 �A31 Bk = �Ak � Ak�1B1 � : : : �A1Bk�1 :The coe�cients of t in (19) and (20) give f1(pi) = f1(qj) = 0 , i; j = 1; 2; 3 , withf1(x) := xT (A1 +AT1 )x+ 2(aT1 � bT1 )x� 
1 : (22)This gives the curve c of second order mentioned in Theorem 1. For the velocity vectorspi;1 = a1 + A1pi and qj;1 = b1 � AT1 qjwe can suppose a symmetric matrix A1 and b1 = �a1 . This is possible since otherwise we couldsuperimpose a motion which appoints to each point r the instantaneous velocity vectorv(r) := �12(a1 + b1)� 12(A1 �AT1 )r 8



with the skew symmetric matrix (A1 �AT1 ). Then we would obtain the vectorspi;1 = 12(a1 � b1) + 12(A1 + AT1 )pi ; qj;1 = �12(a1 � b1)� 12(A1 + AT1 )qj ; (23)which still solve (5). These vectors indeed are orthogonal to c (see Fig. 3), as according to (22)the equation of the polar line of point r with respect to c readsxT (A1 + AT1 )r+ xT (a1 � b1) + (aT1 � bT1 )r� 
1 = 0 :The coe�cients of t2 in (19) and (20) give two equations: f2(pi) = 0 , i = 1; 2; 3 , withf2(x) := xT (AT2 + AT1A1 +A2)x++2 h(aT1 � bT1 )A1 + (aT2 � bT2 )ix+ (aT1 � bT1 )a1 � 
2 ; (24)and g2(qj) = 0 , j = 1; 2; 3 , withg2(x) := xT (A2 �A1AT1 +AT2 �A21 � AT21 )x++2 h�(aT1 � bT1 )AT1 + (aT2 � bT2 )ix+ (aT1 � bT1 )b1 � 
2 : (25)f2(x) = 0 and g2(x) = 0 represent two curves of second order, one passing through p1;p2;p3 ,the other through q1;q2;q3 . The di�erence of these equationsh2(x) := xT (A1 +AT1 )2 x+ 2(aT1 � bT1 )(A1 + AT1 )x+ (aT1 � bT1 )(a1 � b1) = 0 (26)depends only on the �rst derivatives a1, b1, A1, but not 
1. This di�erence equation representsa curve d in the pencil [pq] spanned by p and q . For a nontrivial 
ex the polynomial h2(x)cannot vanish and it is neither proportional to f1(x), nor to f2(x) or g2(x) (note (27) and (28)).In order to �gure out the geometric relation between the curves d and c, we specify thecoordinate system such that the equation (22) of c gets one of the forms listed in (11) and thevelocity vectors pi;1 and qj;1 according to (23) equal those given in (12). This implies:type of c reduced equation of c A1 = AT1 a1 = �b1 
1ellipse x2=a2 + y2=b2 = 1  b=a 00 a=b !  00 ! 2abhyperbola x2=a2 � y2=b2 = 1  b=a 00 �a=b !  00 ! 2abparabola y2 � 4a2x = 4a4  0 00 1 !  �2a20 ! 8a4intersecting lines �k2x2 + y2 = 0  �k2 00 1 !  00 ! 0parallel lines y2 = k2  0 00 1 !  00 ! 2k2 (27)Then the equations of d and of a particular curve d0 selected from the pencil [cd] aretype of c d : h2(x) = 0 curve d0ellipse 4b2x2=a2 + 4a2y2=b2 = 0 x2 + y2 = a2 + b2 : : : director circle of chyperbola 4b2x2=a2 � 4a2y2=b2 = 0 (a2 + b2)x2 = a4 : : : parallel linesparabola 4y2 + 16a4 = 0 x = �2a2 : : : director line & line at inf.inters. lines 4k4x2 + 4y2 = 0 y2 = 0 : : : symmetry axis as double lineparallel lines 4y2 = 0 y2 = 0 : : : symmetry axis as double line (28)9



For a 2nd-order 
ex of Fb obeying (22) it is nec-essary that there are curves p, q, passing throughp1;p2;p3 or q1;q2;q3, resp., such that the pen-cil [pq] spanned by p and q contains d .In the projective 5-space formed by all curvesof second order those through fp1;p2;p3g orfq1;q2;q3g give two planes �p; �q, resp., whichshare the \point" c. The \line" (=pencil) [pq]with p; q 6= c passes through d if and only if d liesin the plane spanned by c, p and q (see Fig. 5).Hence, for a 2nd-order 
exing Fb each pair ofsecond-order curves (p0; q0) with p0 2 [cp] n fcg,q0 2 [cq] n fcg, spans a pencil [p0q0] which sharesa curve d0 with the pencil [cd]. cc
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πππqqπqFigure 5: Looking at the projectivespace of second-order curvesConversely, if such a pair (p0; q0) with p0; q0 6= c is given with p0 passing through p1;p2;p3and q0 passing through q1;q2;q3 (see examples in Fig. 6), then we can �nd any p 2 [cp0] andq 2 [cq0] such that the di�erence of their equations gives h2(x) = 0 in (26). Then from theequations of c, p and q one gets A2 + AT2 and (aT2 � bT2 ).Again, for the acceleration vectors 2pi;2 and 2qj;2 we can suppose a symmetric matrix A2and a2 = �b2 inpi;2 = a2 + A2pi and qj;2 = b2 � (AT2 � AT21 )qj ;because otherwise | after superimposing a suitable motion | we would obtainpi;2 = 12(a2 � b2) + 12(A2 + AT2 )pi ; qj;2 = �12(a2 � b2)� 12(A2 +AT2 � 2AT21 )qjas another solution of (6).
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exing bipartite frameworksWe demonstrate this method at the followingExample: Let c be a pair of intersecting lines with k = 1 according to (27), i.e.,c : �x2 + y2 = 0 =) d : 4(x2 + y2) = 0 :10
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exible bipartite framework showing the velocityvectors pi;1, qj;1 with �lled arrows (scaling factor 0:5) and the acceleration vectors 2pi;2, 2qj;2with white arrows (scaling factor 0:25)The circle p0 and the pair q0 of parallel lines (see Fig. 7) with equationsp0 : x2 � 2x+ y2 � 24 = 0 and q0 : x2 � 2x� 24 = 0span a pencil which contains the double line d0 : y2 = 0 . Now we replace p0 by p 2 [cp0] and q0by q 2 [cq0] (we may choose q0 = q) such that the di�erence of the equations gives exactly theequation (26) of d . We specifyp : 12x2 � 16x+ 4y2 � 192 = 0 and q = q0 : 8x2 � 16x� 192 = 0 :The comparison of these equations with (24) and (25) together with (27) givesA1 = AT1 =  �1 00 1 ! ; a1 = �b1 =  00 ! ; 
1 = 0 ;A2 + AT2 =  11 00 3 ! ; a2 � b1 =  �80 ! ; 
2 = 192 :For the eight points pi and qj of intersection between c and p0 or q0, resp., we get the followingvelocity and acceleration vectors obeying the linear systems (5) and (6) of 16 equations, each:vertex velocity vector half acceleration vectorpT1 = (4; 4) pT1;1 = (�4; 4) pT1;2 = (18; 6)pT2 = (4;�4) pT2;1 = (�4;�4) pT2;2 = (18;�6)pT3 = (�3; 3) pT3;1 = (3; 3) pT3;2 = (�20:5; 4:5)pT4 = (�3;�3) pT4;1 = (3;�3) pT4;2 = (�20:5;�4:5)qT1 = (6; 6) qT1;1 = (6;�6) qT1;2 = (�23;�3)qT2 = (6;�6) qT2;1 = (6; 6) qT2;2 = (�23; 3)qT3 = (�4; 4) qT3;1 = (�4;�4) qT3;2 = (22;�2)qT4 = (�4;�4) qT4;1 = (�4; 4) qT4;2 = (22; 2)11



We summarize:Theorem 3: A 1st-order 
exible framework Fb with non-collinear triples fp1;p2;p3g andfq1;q2;q3g of vertices and p1; : : : ;q3 2 c is in�nitesimally 
exible of order two if and only ifthere are second-order curves p0 through p1;p2;p3 and q0 through q1;q2;q3 such that the pencilspanned by p0 and q0 shares a curve d0 with the pencil spanned by c and the associated d whichis listed in (28) together with a possible curve d0.As a consequence, a second-order 
exible framework Fb can in general be extended by two addi-tional vertices p4;q4 without restricting the in�nitesimal 
exibility.Remark: Second-order 
exibility is related to curvatures (cf. Stachel (1999)). In the sense ofFig. 2 there is also a more kinematic characterization of 2nd-order 
exibility of Fb : A 1st-order
exing framework Fb is 
exible of order two if and only if the curvature transformation inducedby the coupler motion �3=�1 is among the curvature transformations of one-parameter motionsincluded in the two-parametric motion B composed from the coupler motions �2=�1 and �3=�2.According to the results of Stachel (1979) one has to pay attention to the parabolic projectivities�ij induced by the curvature transformations of �i=�j on the instantaneous pole-axis a of B.On this axis a, which is the line through the relative poles 21, 31, 32 (see Fig. 2), there isa projectivity � : 32 7! 21 obeying �2 = �21 � �32 . Now the exact, but not very practicablecharacterization reads:The 1st-order 
exing framework Fb is 
exible of order two if and only if the product ��131 � �is involutory. And this is equivalent to the statement that the parabolic projectivity �31 with�xed point 31 maps the preimage ��1(31) of 31 under � onto the image �(31).The coe�cients of t3 in (19) and (20) give rise to the equations f3(pi) = 0 and g3(qj) = 0for all i; j = 1; 2; 3 , with quadratic functionsf3(x) := xT (AT3 + AT2A1 +AT1A2 +A3)x + 2 h(aT1 � bT1 )A2 + (aT2 � bT2 )A1++(aT3 � bT3 )ix + h(aT1 � bT1 )a2 + (aT2 � bT2 )a1i� 
3 (29)g3(x) := xT (A3 �A2A1 �A1A2 +A31 � A2AT1 + A21AT1 � A1AT2 + A1AT21 ++AT3 � AT1AT2 �AT2AT1 +AT31 )x + 2 h(aT1 � bT1 )(�AT2 +AT21 )��(aT2 � bT2 )AT1 + (aT3 � bT3 )ix + h(aT1 � bT1 )b2 + (aT2 � bT2 )b1i� 
3 (30)Theorem 4: A bipartite framework Fb with non-collinear triples fp1;p2;p3g and fq1;q2;q3gof vertices is in�nitesimally 
exible of order three if and only if there are vectors a1; : : : ;b3and matrices A1; A2; A3 and real numbers 
1; 
2; 
3 such that the vertices pi obey the equationsf1(x) = f2(x) = f3(x) = 0 and qj obey f1(x) = g2(x) = g3(x) = 0 according to (22), (24), (29),(25), and (30).A geometric interpretation of this condition is still open. This together with the investigationof orders � 4 and the discussion of the remaining cases with collinear fp1;p2;p3g or fq1;q2;q3gis left for future publications.AcknowledgementThe author wants to express his gratitude to Idjad Sabitov and Victor Alexandrov for theirinspiring comments and fruitful discussions in spring 1999 in Vienna.12



ReferencesAlexandrov, V. (1998): Su�cient Conditions for the Extendibility of an n-th Order Flex ofPolyhedra. Beitr. Algebra Geom. 39, no. 2, pp. 367{378.Dixon, A.C. (1899/1900): On certain deformable frameworks. Mess. Math. 29, pp. 1{21.Sabitov, I.Kh. (1992): Local Theory of Bendings of Surfaces. In Burago, Yu.D. and Zalgaller,V.A. (eds.): Geometry III, Theory of Surfaces. Encycl. of Math. Sciences, vol. 48, New York:Springer-Verlag, pp. 179{250.Graver, J.; Servatius, B., and Servatius H. (1993): Combinatorial rigidity. Graduate Studies inMathematics, vol. 2, Providence: American Mathematical Society.Stachel, H. (1979): �Uber zweiparametrige ebene Bewegungsvorg�ange. Monatsh. Math. 88, pp.45{54.Stachel, H. (1982a): Eine Ortsaufgabe und der Satz von Ivory. Elem. Math. 37, pp. 97{103.Stachel, H. (1982b): Eine Anwendung der kinematischen Abbildung. Anz. �osterr. Akad. Wiss.,Math.-Naturwiss. Kl. 1981, pp. 108{111.Stachel, H. (1982c): Bemerkungen �uber zwei r�aumliche Trilaterationsprobleme. Z. Angew. Math.Mech. 62, pp. 329{341.Stachel, H. (1999): In�nitesimal Flexibility of Higher Order for a Planar Parallel Manipulator.Institut f�ur Geometrie, TU Wien, Technical Report 64.Walker, R.J. (1978): Algebraic Curves. New York: Springer-Verlag.Wunderlich, W. (1977): Gef�ahrliche Annahmen der Trilateration und bewegliche Fachwerke I.Z. Angew. Math. Mech. 57, pp. 297{304.Wunderlich, W. (1983): �Uber Ausnahmefachwerke, deren Knoten auf einem Kegelschnitt liegen.Acta Mechanica 47, pp. 291{300.

13


