
Higher Order Flexibility of OctahedraHellmuth StachelInstitute of Geometry, Vienna University of Technologystachel@geometrie.tuwien.ac.atAbstractMore than hundred years ago R. Bricard determined all continuously 
ex-ible octahedra. On the other hand, also the geometric characterization of�rst-order 
exible octahedra has been well known for a long time. The ob-jective of this paper is to analyze the cases between, i.e., octahedra which arein�nitesimally 
exible of order n > 1 but not continuously 
exible. We proveexplicit necessary and su�cient conditions for the orders two, three and evenfor all n < 8, provided the octahedron under consideration is not totally 
at.Any order � 8 implies already continuous 
exibility, as the con�guration prob-lem for octahedra is of degree eight.Key Words: In�nitesimal 
exibility, 
exible polyhedra, octahedraMSC 1994: 52C25, 53A171 IntroductionLet F be a framework in the Euclidean d-space Ed with vertex set V and edge set E, i.e.,V = fp1; : : : ;pvg; pi 2 Rd 8i 2 I := f1; : : : ; vg and E � n(i; j) j i < j; (i; j) 2 I2o :For each edge pipj of F the Euclidean length lij obeysfij(pi;pj) := kpi � pjk � lij = 0 8(i; j) 2 E:(1)We suppose lij > 0 for all edges of F.De�nition: The framework F = (V;E) is in�nitesimally 
exible of order n (in the classicalsense) if and only if for each k 2 I there is a polynomial functionxk(t) := pk + txk;1 + : : :+ tnxk;n ; n � 1;(2)such that� the replacement of pi and pj in (1) by xi(t) and xj(t), resp., gives functions obeyingfij (xi(t);xj(t)) = kxi(t)� xj(t)k � lij = o(tn) 8(i; j) 2 E;(3)i.e., with a zero of multiplicity � n+1 at t = 0 , and1



� in order to exclude trivial 
exes, the vectors x1;1; : : : ;xv;1 are not the velocity vectorsof the vertices p1; : : : ;pv , resp., under any motion of F as a rigid body.The v-tupel of functions (x1(t); : : : ;xv(t)) is called a nontrivial n-th-order 
ex of F.1Suppose, the framework F is given by its combinatorial structure E and by the lengthslij of its edges. Then (1) de�nes a system of e := #E quadratic equations(pi � pj) � (pi � pj) = l2ij 8(i; j) 2 E(4)for the d � v unknown coordinates of the vertices. After substituting (2) in (4) the comparisonof coe�cients of t; t2; : : : ; tn gives rise to the following systems of linear equations, each forall (i; j) 2 E , for the unknown xk;r 2 Rd, k = 1; : : : ; v and r 2 f1; : : : ; ng:(pi � pj) � (xi;1 � xj;1) = 0 ;(5) (pi � pj) � (xi;2 � xj;2) = �12(xi;1 � xj;1) � (xi;1 � xj;1);(6) (pi � pj) � (xi;3 � xj;3) = �(xi;1 � xj;1) � (xi;2 � xj;2);(7) (pi � pj) � (xi;4 � xj;4) = �(xi;1 � xj;1) � (xi;3 � xj;3)� 12(xi;2 � xj;2) � (xi;2 � xj;2);(8)and so on. The e�vd matrix M of coe�cients on the left side of these systems is always thesame. It is called rigidity matrix of F (cf. [10]). If (ex1;r; : : : ; exv;r) is any particular solutionof the r-th linear system, r 2 f1; : : : ; ng, then alsoxk;r := exk;r + c+ Cpk ; CT = �C; for k = 1; : : : ; v(9)with constant c 2 Rd and any skew symmetric d�d matrix C solves this system.In particular, the \velocity vectors" x1;1; : : : ;xv;1 of the vertices of F have to solve thehomogeneous system (5). Therefore in�nitesimal 
exibility of order 1 can be characterizedby the rank condition rk(M) < vd� d(d + 1)2 :(10)Any nontrivial solution of (5) de�nes the right side in the inhomogeneous system (6), andthen 2nd-order 
exibility of F is equivalent to the solvability of this system. This can berepeated step by step for (7), (8), : : : to �gure out the order of 
exibility for any givenframework.2 Flexible OctahedraIn 1898 Raoul Bricard [4] proved that there are exactly three types of 
exible octahedra2 Oin the Euclidean 3-space E3 , the octahedra with line symmetry, those with planar symmetryand �nally a particular third type which admits also two 
at positions.1In this \classical" de�nition the cases with trivial velocity vectors x1;1 = � � � = xv;1 = o are excluded.This is a proper restriction since R. Connelly and H. Servatius [6] presented 1994 a framework whichadmits an analytical 
ex, but only under the assumption of vanishing initial velocities. Already a few yearsearlier I. Sabitov [9] proposed to denote the order of an in�nitesimal 
ex by a pair (m;n) of numbers, thesmallest and the highest exponent of t showing up in (2). Note also Remark 2 in [13].2An octahedron is called 
exible when its 1-skeleton can be 
exibly embedded in E3 . During the inducedanalytical self-motion edges are allowed to pass through one another.2



Let (p1;p2), (q1;q2) and (r1; r2) denote the pairs of opposite vertices of O. We sup-pose that for all i; j; k 2 f1; 2g the vertices piqjrk are non-collinear. Then for the �rst ofBricard's types all pairs of opposite vertices are symmetric with respect to a line. In thesecond case two pairs are symmetric with respect to a plane which passes through the tworemaining vertices. The 
at con�gurations of the third type have edges which are tangentto three concentric circles (see [5], Fig. 297) or which form three parallelograms (see [5], Fig.298 or [12], Fig. 4). For further references see [12] where a new proof for the uniqueness ofBricard's octahedra was given.Actually there are two additional but degenerate cases 3: One consists of a two-fold cov-ered four-sided pyramid (p1=p2), which trivially 
exes like a spherical four-bar mechanism.At the �fth type two pairs of opposite vertices, e.g. q1;q2; r1; r2, are located on a line l.Hence this octahedron consists of two 
at four-sided pyramides which can rotate indepen-dently about the common \basis line" l.Both degenerate cases have also non-degenerate con�gurations which in general are rigid:In the �rst case this con�guration consists of a double pyramidwith a planar equator q1r1q2r2and the remaining vertices p1;p2 being symmetric with respect to the equator plane (cf. [12],footnote 1 and case 1.2.1). The octahedra treated in [16] are of this type. In the second casethe equator q1r1q2r2 is located on a one-sheet hyperboloid of revolution while p1 and p2 lieon the hyperboloid's axis (cf. [12], case 1.2.2). There are octahedra which at the same timebelong to all three Bricard types and whose 
exions can also continuously blend into thetrivial motions listed above as degenerate cases ([12], p. 53).Octahedra made from cardboard can also look 
exible when they are in�nitesimally 
ex-ible or when they admit two isometric and su�ciently adjacent con�gurations. Suggestionsfor producing such '
exible' models can be found inW. Wunderlich's paper [15]. Here healso proves by kinematic means a geometric characterization of octahedra with �rst-orderin�nitesimal 
exibility (German: \Wackeloktaeder"). This is the equivalence \(i), (ii)" inthe followingTheorem 1: For an octahedron O with four non-coplanar q1; r1;q2; r2 and p1 6= p2 anytwo of the following four statements are equivalent:(i) O is in�nitesimally 
exible of �rst order.(ii) There are two points s1; s2 such that p1q1r1s1 and p2q2r2s2 are two tetrahedra ofM�obius type which at the same time are mutually inscribed and circumscribed.(iii) There are four pairwise edge-disjoint faces of O, which span concurrent planes.(iv) There is a second-order surface � passing through the vertices p1;p2 and through thesides of the skew quadrangle q1r1q2r2.The quadruples of edge-disjoint faces mentioned in (iii) are fp1q1r1, p2q2r1, p1q2r2,p2q1r2g as well as fp2q2r2, p1q1r2, p2q1r1, p1q2r1g. The concurrence of the planes spannedby one of these quadruples implies already the concurrence of the other four. The commonpoints are exactly s1 and s2 showing up in statement (ii).3The author expresses his thanks to I. Sabitov for the valuable discussion held recently in this concern.3
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ΦΦFigure 1: First-order 
exible octahedron O with velocity vectors orthogonal to �The statement (iv) (see Fig. 1) can be found in [1], p. 316, and in [12], p. 44. The equiv-alence \(i), (iv)" shows that one can build a �rst-order 
exible octahedron from any given�ve vertices (compare Corollary 1 in Section 4). This is since the sides of the skew quad-rangle q1r1q2r2 together with the vertex p1 de�ne the second-order surface � of statement(iv) uniquely. The surface � is the geometric locus for the sixth vertex p2. For a planarquadrangle q1r1q2r2 it is su�cient to choose p2 in the a�ne span of this quadrangle. Wewill prove later with equation (23) that in the skew case the velocity vectors of the verticescan be speci�ed orthogonally to the surface �.3 Conditions for n-th-order 
exibilityWe change the notation used in the previous sections. We see the octahedron O as asuspension with the equator p0; : : : ;p3 and the two poles q1;q2. Now we subdivide the edgeset E of O into the equator fp0p1; : : : ;p3p0g and the set of edges piqj , i 2 f0; : : : ; 3g andj 2 f1; 2g. The latter form a bipartite sub-framework O0 of O. This is the reason why4



we can take over some of the arguments used in [14] for the analysis of a planar bipartiteframework.Let an n-th-order 
ex of O be given byp0i(t) = pi + pi;1t+ � � �+ pi;ntn and q0j(t) = qj + qj;1t+ � � �+ qj;ntn(11)for i = 0; : : : ; 3 and j = 1; 2.From now on we suppose non-coplanar fp0; : : : ;p3g: Then for each t 2 R there is ana�ne transformation � : pi 7! p0i(t) for i = 0; : : : ; 3. When we use matrix notation andwrite the coordinate vectors as columns, then we can set up�(t) : pi 7! p0i(t) = a(t) +A(t)pi with a(0) = o; A(0) = I3 ;(12)where I3 denotes the 3�3 unit matrix. The coordinates of a(t) and the entries of A(t) arepolynomials of degree � n . In the new notation equation (3) readshp0i(t)� q0j(t)i2 � (pi � qj)2 = o(tn) for all i 2 f0; : : : ; 3g and j 2 f1; 2g:(13)We subtract the equation for i = 0 and obtain[p0i(t)� p00(t)]T hp0i(t) + p00(t)� 2q0j(t)i� (pi � p0)T (pi + p0 � 2qj) = o(tn):The di�erence of these equation for j = 1; 2 gives�2 [p0i(t)� p00(t)]T [q02(t)� q01(t)] + 2(pi � p0)T (q2 � q1) = o(tn);and due to (12) we get�2(pi � p0)TA(t)T [q02(t)� q01(t)] + 2(pi � p0)T (q2 � q1) = o(tn) for i 2 f1; 2; 3g:The supposed linear independence of the di�erence vectors fp1�p0;p2�p0;p3�p0g impliesA(t)T [q02(t)� q01(t)]� (q2 � q1) = o(tn):This means that for each t 2 R there is a second a�ne transformationb�(t) : q0j(t) 7! ba(t) +A(t)Tq0j(t) = qj + o(tn) for j = 1; 2(14)with ba(0) = o.For t su�ciently near to 0 the image points fp00(t); : : : ;p03(t)g are non-coplanar, too.Hence there exists the inverseb�(t)�1 : qj 7! b(t) +A(t)�1Tqj = q0j + o(tn) with b := �A�1T ba(15)We substitute in (13) the matrix representations (12) of � and (14) of b� and obtainaTa+ 2aT (Api � q0j) + pTi ATApi � 2pTi ATq0j + q0Tj q0j ��baT ba� 2baT (ATq0j � pi)� q0Tj AATq0j + 2pTi ATq0j � pTi pi = o(tn):(16) 5



Separating the terms with pi from those with q0j(t) leads topTi (ATA� I3)pi + 2(aTA+ baT )pi + aTa == q0Tj (AAT � I3)q0j + 2(aT + baTAT )q0j + baT ba+ o(tn):As this equation must hold for all i 2 f0; : : : ; 3g and j 2 f1; 2g, both sides of the equationmust be constant for each t 2 R. This results in two equations which are quadratic in thecoordinates of pi and q0j , respectively. With (15) we obtain { after subtracting bTa = aTbfrom both sides {pTi (ATA� I3)pi + 2(aT � bT )Api + (aT � bT )a = 
(t); i = 0; : : : ; 3;(17)and for j = 1; 2q0Tj (t)(AAT � I3)q0j(t) + 2(aT � bTAAT )q0j(t) + bTAATb� aTb = 
(t) + o(tn)with a rational function 
(t). For the sake of brevity we have ceased to indicate that thematrix A as well as the vectors a and b are functions of t.Now we apply b��1 to q0j(t) in the second quadratic equation. Due to (15) we get �nallyqTj (I3 �A�1A�1T )qj + 2(aT�bT )A�1Tqj + (aT�bT )b = 
(t) + o(tn)(18)for j = 1; 2 . Conversely, the two equations (17) and (18) imply (16) and hence (13).Until now we have only dealt with the bipartite sub-framework O0 of the octahedron.The edges pipi+1 of the equator (subscripts modulo 4) impose the additional conditionhp0i(t)� p0i+1(t)i2 � (pi � pi+1)2 = o(tn) for i = 0; : : : ; 3:We substitute the representation (12) of � and obtain(pi � pi+1)T (ATA� I3)(pi � pi+1) = o(tn):Due to (17) this is equivalent topTi (ATA� I3)pi+1 + (aT � bT )A(pi + pi+1) + (aT � bT )a� 
(t) = o(tn):(19)Due to (17) and (18) we de�ne two bilinear functionsf(t;x;y) := xT (ATA� I3)y+ (aT � bT )A(x+ y) + (aT � bT )a� 
(t);g(t;x;y) := xT (I3 �A�1A�1T )y+ (aT � bT )A�1T (x+ y) + (aT � bT )b� 
(t):(20)Then we can combine the equations (17), (18) and (19) inTheorem 2: The octahedron O with non-coplanar fp0; : : : ;p3g is 
exible of order n if andonly if in a neighborhood of t = 0 there are functions a(t), b(t), A(t), and 
(t) of class Cnsuch that the vertices p0; : : : ;p3;q1;q2 obey the equationsf(t;pi;pi) = 0; f(t;pi;pi+1) = o(tn); g(t;qj;qj) = o(tn)for all i 2 f0; : : : ; 3g and j 2 f1; 2g with f and g according to (20).6



Similar to the proof of Lemma 2 in [14] we could show that for each t0 su�ciently near to0 the equations f(t0;x;x) = 0 and g(t0;x;x) = 0 represent two confocal surfaces of secondorder. The condition f(t0;pi;pi+1) = 0 expresses conjugate position of two points pi andpi+1 on the �rst of these two surfaces. This is equivalent to the fact that the connecting lineis a generator of this surface.Hence, if for any t0 the equations f(t0;pi;pi) = f(t0;pi;pi+1) = g(t0;qj;qj) = 0 hold forall i = 0; : : : ; 3 and j = 1; 2 , then we have found a second-order surface passing through thesides of the skew quadrangle p0; : : : ;p3 such that there is a confocal surface passing throughq1 and q2 (compare [11] or [12], p. 42, Satz 1). Whenever such a pair of surfaces is found,the theorem of Ivory gives a new octahedron (p0(t0); : : : ;q2(t0)) which is incongruent butisometric to the initial octahedron (p0(0); : : : ;q2(0)).The conditions (17), (19) and (18) show that in the case of higher-order 
exibility there isa multiple zero at t0 = 0 for the determination of pairs of confocal second-order surfaces withthe above mentioned property. Since this problem is algebraic of degree 8, a multiple zeroof order > 8 at t = 0 implies already a one-parametric set of solutions, i.e., a continuously
exible octahedron.4 Characterizing 2nd- and 3rd-order 
exibilityThe equations in Theorem 2 are necessary and su�cient for an octahedron O being in�nites-mally 
exible of order n. In order to obtain geometric characterizations for n = 1; 2; : : : wecompare the coe�cients of ti, i = 1; 2; : : : , in these equations. For this purpose we set upthe Taylor expansions asA(t) = I3 +A1t+A2 t2 + : : : ; a(t) = a1t+ a2 t2 + : : : ;
(t) = 
1t+ 
2 t2 + : : : ; b(t) = b1t+ b2 t2 + : : : :The inverse matrix A�1(t) can be expanded in the formA�1(t) = I3 +B1t+B2 t2 + : : :with B1 = �A1 B3 = �A3 +A2A1 +A1A2 �A31B2 = �A2 +A21 Bk = �Ak �Ak�1B1 � : : : �A1Bk�1 :This implies for the 
exion (11) according to (12) and (15)pi;r = ai +Ai pi; qj;r = bj +BTj qj for r = 1; : : : ; n :(21)The coe�cients of t in (17), (19) and (18) yieldf1(pi;pi) = f1(pi;pi+1) = f1(qj;qj) = 0 for i = 0; : : : ; 3 and j = 1; 2with f1(x;y) := xT (A1 +AT1 )y+ (aT1 � bT1 )(x+ y)� 
1 :(22)� : f1(x;x) = 0 is the second-order surface mentioned in statement (iv) of Theorem 1(Fig. 1). 7



For the velocity vectors pi;1 = a1 + A1pi and qj;1 = b1 � AT1qj according to (21) wecan suppose a symmetric matrix A1 and b1 = �a1 . This is possible since otherwise wesuperimpose a motion which appoints to each point x the instantaneous velocity vectorv(x) := �12(a1 + b1)� 12(A1 �AT1 )xwith the skew symmetric matrix (A1 �AT1 ). Then we obtain the vectorspi;1 = 12(a1 � b1) + 12(A1 +AT1 )pi ; qj;1 = �12(a1 � b1)� 12(A1 +AT1 )qj ;(23)which still solve (5). These vectors are orthogonal to � (see Fig. 1) as according to (22) theequation of the polar plane of point r with respect to � readsf1(x; r) = xT h(A1 +AT1 )r+ (a1 � b1)i+ (aT1 � bT1 )r� 
1 = 0 :(24)The coe�cients of t2 in (17), (19) and (18) lead to the following equations: f2(pi;pi) =f2(pi;pi+1) = 0 for i = 0; : : : ; 3 withf2(x;y) := xT (AT2 +AT1A1 +A2)y++ h(aT1 � bT1 )A1 + (aT2 � bT2 )i (x+ y) + (aT1 � bT1 )a1 � 
2 ;(25)and g2(qj;qj) = 0 , j = 1; 2 , withg2(x;y) := xT (A2 �A1AT1 +AT2 �A21 �AT21 )y++ h�(aT1 � bT1 )AT1 + (aT2 � bT2 )i (x+ y) + (aT1 � bT1 )b1 � 
2 :(26)The di�erenceh2(x;y) := f2(x;y)� g2(x;y) == xT (A1+AT1 )2 y+ (aT1 �bT1 )(A1+AT1 )(x+y) + (aT1 �bT1 )(a1�b1) == hxT (A1+AT1 ) + (aT1 � bT1 )i h(A1+AT1 )y+ (a1 � b1)i(27)depends only on the �rst derivatives a1, b1, A1, but not 
1.	p : f2(x;x) = 0 and 	q : g2(x;x) = 0 are two surfaces of second order, one passingthrough the sides of p0 : : :p3 , the other through q1 and q2 . The surface 	 : h2(x;x) = 0belongs to the pencil [	p	q] spanned by 	p and 	q . According to the last line in (27) theequation h2(x;y) = 0 is equivalent to the statement that the points x and y have orthogonalpolar planes with respect to � (note (24)). Hence 	 : h2(x;x) = 0 is polar to the absoluteconic with respect to �, provided � is regular.In Table 1 all possible cases for � are listed. Here the equations (22) of � are givenin standard form. The corresponding equations (27) of 	 and of one particular surface 	0selected from the pencil [�	] can be found in Table 2.These speci�cations prove, that for a nontrivial 
ex the polynomial h2(x;x) is neverproportional to f1(x;x), f2(x;x) or g2(x;x). Since for regular � the (imaginary) surface 	is polar to the absolute conic, the pencil [�	] must be polar to the linear system of surfacesconfocal to �. The cylinder 	0 in the �rst two cases of Table 2 is polar to one focal conic of� with respect to �. 8



type of � reduced equ. of � A1 = AT1 a1=�b1 
1one-sheet hyperb. x2a2 + y2b2 � z2c2 = 1 0B@ 1=a2 0 00 1=b2 00 0 �1=c2 1CA 0B@ 000 1CA 2hyp. paraboloid x2a2 � y2b2 � z = 0 0B@ 1=a2 0 00 �1=b2 00 0 0 1CA 0B@ 00�12 1CA 0intersecting planes k2x2 � z2 = 0 0B@ k2 0 00 0 00 0 �1 1CA 0B@ 000 1CA 0Table 1: Di�erent cases of �type of � h2(x;x) surface 	0hyperboloid 4x2a4 + 4y2b4 + 4z2c4 a2+c2a4 x2 + b2+c2b4 y2 = 1 : : : ell. cylinderhyp. paraboloid 4x2a4 + 4y2b4 + 1 a2+b2a4 x2 � z + b24 = 0 : : : parab. cylinderinters. planes 4k4x2 + 4z2 z2 = 0 : : : two-fold plane of symmetryTable 2: Di�erent cases of 	 and 	0For a 2nd-order 
ex of O obeying (22) it isnecessary that there is a surface 	p pass-ing through the sides of the skew quadranglep0 : : :p3 and a surface 	q through q1 andq2 such that the pencil [	p	q] spanned by	p and 	q contains 	 . With � and 	p eachsurface 	0p in the pencil [�	p] passes throughthe equator p0 : : :p3. In the same way each	0q 2 [�	q] contains q1 and q2. And any	0p 2 [�	p]nf�g and 	0q 2 [�	q]nf�g spana pencil which contains any 	0 2 [�	] sinceall these surfaces are contained in the two-dimensional linear system spanned by �, 	and 	p (see Fig. 4 where the linear system isrepresented as a projective plane). Φ Ψ
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ΨΨΨqqΨq’Figure 2: The linear system of second-order surfaces spanned by �, 	 and 	pConversely, if a pair (	0p;	0q) of second-order surfaces with 	0p passing through the equatorand q1;q2 2 	0q is given such that the pencil [	0p	0q] contains any 	0 2 [�;	]nf�g, then theoctahedron is in�nitesimally 
exible of order 2 . This results from the following arguments:We can determine 	p 2 [�	0p] and 	q 2 [�	0q] such that the di�erence of their equationsgives h2(x;x) = 0 in (27). Then from the equations of �, 	p and 	q one gets A2 + AT2 and9



a2 � b2.Also for the acceleration vectors 2pi;2 and 2qj;2 of the vertices we can assume a symmetricmatrix A2 and a2 = �b2 in (21)pi;2 = a2 +A2 pi and qj;2 = b2 +BT2 qj = b2 � (AT2 �AT21 )qj ;because otherwise according to (9) we could add at each vertex x the vectora(x) := �12(a2 + b2)� 12(A2 �AT2 )xand obtain the new solution of the system (6)pi;2 = 12(a2�b2) + 12(A2+AT2 )pi ; qj;2 = �12(a2�b2)� 12(A2+AT2 �2AT21 )qj :(28)We demonstrate this method at the followingExample: Let � be a one-sheet hyperboloid according to Table 1, i.e.,� : f1(x;x) = x2 + y22 � z2 � 1 = 0 =) 	: h2(x;x) = x2 + y24 + z2 = 0 :We specify 	0p as a pair of tangent planes of � and 	0q as a hyperboloid:	0p : y2 � (z + 1)2 = 0 and 	0q : 2x2 + 27y24 � 6(z + 1)2 � 1 = 0 :Then the pencil [	0p	0q] contains the associated elliptic cylinder 	0 : 2x2 + 34 y2 � 1 = 0 fromTable 2. Now we replace 	0p by 	p 2 [�	0p] and set 	q = 	0q such that the di�erence of theequations f2(x;x) = 0 of 	p and g2(x;x) = 0 of 	q gives exactly the equation h2(x;x) = 0of 	 according to (27). This yieldsf2(x;x) = �4x2 � 26y2 + 28z2 + 48z + 28 and g2(x;x) = �8x2 � 27y2 + 24z2 + 48z + 28 :The comparison with (22), (25) and (26) givesA1 = AT1 = 0B@ 1 0 00 12 00 0 �1 1CA ; A2 +AT2 = 0B@ �5 0 00 �1054 00 0 27 1CA ;aT1 = �bT1 = (0; 0; 0); aT2 � bT2 = (0; 0; 24); 
1 = 2 ; 
2 = �28 :The coordinates of the four vertices p0; : : : ;p3 de�ning the quadrangle �\	0p = �\	p andthose of the poles q1;q2 selected from � \ 	0q = � \ 	q are listed in Table 3 as well as thecorresponding velocity vectors (23) and acceleration vectors (28) obeying the linear systems(5) and (6).We summarize: 10



vertex velocity vector half acceleration vectorpT0 = (0; 2; 1) pT0;1 = (0; 1;�1) pT0;2 = (0;�1054 ; 512 )pT1 = (p2; 0;�1) pT1;1 = (p2; 0; 1) pT1;2 = (�52p2; 0;�32)pT2 = (0;�2; 1) pT2;1 = (0;�1;�1) pT2;2 = (0; 1054 ; 512 )pT3 = (�p2; 0;�1) pT3;1 = (�p2; 0; 1) pT3;2 = (52p2; 0;�32)qT1 = (12p5; 0;�12) qT1;1 = (�12p5; 0;�12) qT1;2 = (74p5; 0;�234 )qT2 = (c;p2;�c) qT2;1 = (�c;�12p2;�c) qT2;2 = (72c; 1078 p2;�12 + 252 c)c := 3 + 12p62 obeying 8c2 � 24c � 13 = 0 :Table 3: Example of a 2nd-order 
exible octahedronTheorem 3: A �rst-order in�nitesimally 
exible octahedron O with vertices p0; : : : ;q2 2 �and a non-coplanar equator p0 : : :p3 is in�nitesimally 
exible of order two if and only if thereare second-order surfaces 	0p 6= � through the sides of the equator and 	0q 6= � through thepoles q1;q2 such that the pencil spanned by 	0p and 	0q shares a surface 	0 with the pencilspanned by � and the associated 	: h2(x;x) = 0 as listed in Table 2.Corollary 1: A second-order 
exible octahedron O can be built from �ve arbitrary verticesp0; : : : ;q1, provided fp0; : : : ;p3g are not coplanar. There is a free choice for the last vertexq2 on a space-curve of order four passing through q1.Proof: The equator p0 : : :p3 and the pole q1 de�ne the surface � uniquely. Then we specifyany other second-order surface 	0p through the equator. There is one surface 	0q 2 [	0p	]passing through q1. In order to meet the conditions of Theorem 3, it is su�cient to specifypole q2 on the curve of intersection between � and 	0q.Remark: Second-order 
exibility of any framework means that to each vertex we can assigna curvature center in a way which is compatible with the given edges (see [13]). In this sensethere is also a more kinematic characterization for 2nd-order 
exibility of octahedra basedon the relative motion between opposite faces4 as displayed in Fig. 4: An octahedron Ois 
exible of order two if and only if there is a spatial motion such that the coplanar linesq1r1; r1p1;p1q1 can serve as curvature axes for the trajectories of the moving points p2,q2, r2, respectively. The relation between movings points and their instantaneous curvatureaxes under a spatial motion is e.g. treated in [3], p. 169 �.The coe�cients of t3 in (17) and (18) give rise to the equations f3(pi;pi) = 0 , i = 0; : : : ; 3 ,4These motions play also a role in robotics: They are unexpected in�nitesimal or even �nite self-motionsat \singular postures" of particular parallel manipulators (see [7] or [8]).11
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Figure 4: The relative motion between opposite faces p1q1r1 and p2q2r2 of a 2nd-order
exible octahedron O: The curvature circles of the moving vertices p2;q2; r2 have coplanaraxes q1r1, r1p1, p1q1, respectively.and g3(qj ;qj) = 0 , j = 1; 2 , with bilinear functionsf3(x;y) := xT (AT3 +AT2A1 +AT1A2 +A3)y + h(aT1 �bT1 )A2 + (aT2 �bT2 )A1++(aT3 �bT3 )i (x+y) + h(aT1 �bT1 )a2 + (aT2 �bT2 )a1i� 
3(29) g3(x;y) := xT (A3 �A2A1 �A1A2 +A31 �A2AT1 +A21AT1 �A1AT2++A1AT21 +AT3 �AT1AT2 �AT2AT1 +AT31 )y + h(aT1 �bT1 )(�AT2 +AT21 )��(aT2 �bT2 )AT1 + (aT3 �bT3 )i (x+y) + h(aT1 �bT1 )b2 + (aT2 �bT2 )b1i� 
3(30)Again, these de�ne surfaces of second order, one passing through the sides of p0 : : :p3, theother through the poles q1;q2 . The di�erence of these functionsh3(x;y) := xT h(A2 �A21 +AT2 )(A1+AT1 ) + (A1+AT1 )(A2 �AT21 +AT2 )iy++ h(aT1 �bT1 )(A2 �AT21 +AT2 ) + (aT2 �bT2 )(A1+AT1 )i (x+y)++2(aT1 �bT1 )(a2�b2) = 0(31)depends only on the �rst and second derivatives of a(t), b(t) and A(t) at t = 0, hence onthe bilinear functions f1, f2 and g2 according to (22), (25) and (26).A geometric interpretation for these conditions in analogy to Theorem 3 is based on thesurfaces 
: h3(x;x) = 0 , 
p : f3(x;x) = 0 and 
q : g3(x;x) = 0. This yieldsTheorem 4: A second-order 
exible octahedron O with non-coplanar equator p0 : : :p3 andpoles q1;q2 according to Theorem 3 is in�nitesimally 
exible of order three if and only if12



there are surfaces 
0p 6= � through the sides of p0 : : :p3 and 
0q 6= � through q1;q2 suchthat the pencil spanned by 
0p and 
0q shares a surface 
0 with the pencil spanned by � and
: h3(x;x) = 0 , associated to �, 	p and 	q .The quadric 
 is de�ned by �, 	p and 	q . But the geometricmeaning of this dependencehas not been �gured out yet.Corollary 2: A third-order 
exible octahedron O can be built from �ve arbitrary verticesp0; : : : ;q1, provided fp0; : : : ;p3g are not coplanar. The last vertex q2 is a point of inter-section between the three quadrics �, 	0q, 
0q passing through q1.Proof: In addition to the choice used in the proof of Corollary 1 we set 
0p = 	0p and specify
0q 2 [
0p
] as the surface passing through q1.Suppose O is of Bricard's type 1 or 2. Then the quadrangle p0; : : : ;p3 must be sym-metric with respect to a plane or line. For type 3 the quadric � must be a hyperboloidof revolution (see e.g. [12]). According to Corollary 2 there are third-order 
exible octahe-dra which do not obey any of these necessary conditions. This reveals that for octahedrain�nitesimal 
exibility of order 3 does not imply continous 
exibility.Example: For the data given above in Table 3 we get
: h3(x;x) = �24x2 � 53y2 � 104z2 � 96z = 0 ; 
0q : 24x2 + 85y2 + 72z2 + 32z � 32 = 0 :The only real solutions for q2 are ��12p5; 0;�12�. The solution q2 6= q1 gives a Bricardoctahedron of types 1 and 2, simultaneously. The example presented in Table 3 with adi�erent choice of q2 is exactly of 2nd-order 
exibility.There are analogous conditions for in�nitesimal 
exibility of order 4 and higher. In thesense of Fig. 4 these conditions express projective dependencies of particular quadrics in theprojective 9-space of quadrics in E3 .AcknowledgementThis research is partially supported by the INTAS-RFBR-97 grant 01778.References[1] G.T. Bennet: Deformable Octahedra. Proc. London math. soc., Sec. Series 10, 309{343 (1912).[2] W. Blaschke: �Uber a�ne Geometrie XXVI: Wackelige Acht
ache. Math. Z. 6, 85{93(1920). 13



[3] O. Bottema, B. Roth: Theoretical Kinematics. North-Holland Publishing Company,Amsterdam 1979.[4] R. Bricard: M�emoire sur la th�eorie de l'octa�edre articul�e. J. math. pur. appl., Liouville3, 113-148 (1897).[5] R. Bricard: Le�con de cin�ematique II. Paris 1927.[6] R. Connelly, H. Servatius: Higher-order rigidity { What is the proper de�nition?Discrete Comput. Geom. 11, no. 2, 193{200 (1994).[7] A. Karger, M. Husty: On Self-Motions of a Class of Parallel Manipulators. InJ. Lenar�ci�c, V. Parenti-Castelli (eds.): Recent Advances in Robot Kinematics,Kluwer Acad. Publ., 1996, pp. 339{348.[8] A. Karger, M. Husty: Singularities and Self-motions of Stewart-Gough Platforms.In J. Angeles, E. Zakhariev (eds.): Computational methods in Kinematics, NATOAdvanced Study Institute, Varna, Bulgaria, June 1997, vol. II, 279{288.[9] I.Kh. Sabitov: Local Theory of Bendings of Surfaces. In Yu.D. Burago, V.A. Zal-galler (eds.): Geometry III, Theory of Surfaces. Encycl. of Math. Sciences, vol. 48,Springer-Verlag 1992, pp. 179{250.[10] J. Graver, B. Servatius, H. Servatius: Combinatorial rigidity. Graduate Studiesin Mathematics, vol. 2, American Mathematical Society, Providence 1993.[11] H. Stachel: Bemerkungen �uber zwei r�aumliche Trilaterationsprobleme. Z. Angew.Math. Mech. 62, 329{341 (1982).[12] H. Stachel: Zur Einzigkeit der Bricardschen Oktaeder. J. Geom. 28, 41{56 (1987).[13] H. Stachel: In�nitesimal Flexibility of Higher Order for a Planar Parallel Manipula-tor. Institut f�ur Geometrie, TU Wien, Technical Report 64 (1999).[14] H. Stachel: Higher-Order Flexibility of a Bipartite Planar Framework. In A.Kecskem�ethy, M. Schneider, C. Woernle (eds.): Advances in Multibody Sys-tems and Mechatronics. Inst. f. Mechanik und Getriebelehre, TU Graz, Duisburg 1999(ISBN 3-9501108-0-1), pp. 345{357.[15] W. Wunderlich: Starre, kippende, wackelige und bewegliche Acht
ache. Elem. Math.20, 25{32 (1965).[16] W. Wunderlich: Fast bewegliche Oktaeder mit zwei Symmetrieebenen. Rad Jugosl.Akad. Zagreb 428, Mat. Znan. 6, 129{135 (1987).
14


