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Abstract

More than hundred years ago R. BRICARD determined all continuously flex-
ible octahedra. On the other hand, also the geometric characterization of
first-order flexible octahedra has been well known for a long time. The ob-
jective of this paper is to analyze the cases between, i.e., octahedra which are
infinitesimally flexible of order n > 1 but not continuously flexible. We prove
explicit necessary and sufficient conditions for the orders two, three and even
for all n < 8, provided the octahedron under consideration is not totally flat.
Any order > 8 implies already continuous flexibility, as the configuration prob-
lem for octahedra is of degree eight.
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1 Introduction

Let F be a framework in the Euclidean d-space E? with verter set V and edge set E. i.e.,
V={pi.....p,}, B, ER? Vie I:={1,....,0} and EC{(i.j)]i<j, (i.j)€I*}.

For each edge p,p; of F the Euclidean length [;; obeys

(1) fi(pisp;) =P = pill = li; =0 V(5 j) € E.

We suppose [;; > 0 for all edges of F.

Definition: The framework F = (V, F) is infinitesimally flexible of order n (in the classical
sense) if and only if for each k € I there is a polynomial function

(2) Xp(t) =pp +txp1+ ...+ "X, n>1,
such that

e the replacement of p; and p; in (1) by x;(?) and x;(?), resp., gives functions obeying

(3) Jii (xi(1), %(1)) = [Ixi(1) =% ()| = Ly = o(")  ¥(i,j) € E,
i.e., with a zero of multiplicity > n+1 at t =0, and
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e in order to exclude {rivial flexes, the vectors xy1,...,%,1 are not the velocity vectors
of the vertices py,...,p,, resp., under any motion of F as a rigid body.

The v-tupel of functions (xy(¢),...,x,(t)) is called a nontrivial n-th-order flex of F.!

Suppose, the framework F is given by its combinatorial structure £ and by the lengths
l;; of its edges. Then (1) defines a system of e := #FE quadratic equations

(4) (p;—p;) (i —p;) =15 Y(i.j)eE
for the d - v unknown coordinates of the vertices. After substituting (2) in (4) the comparison

of coefficients of ¢,1%,...,1" gives rise to the following systems of linear equations, each for
all (1,7) € E, for the unknown x5, € R4, k=1,...,vand r € {1,...,n}:

(5) (pi —py)- (Xiq —%ju) = 0,

(6) (P, —P;) - (xiz = Xj2) = —3(xia—x51) - (Xix — Xj1),

(7) (Pi —py) - (Xig —Xj3) = —(Xix —Xj0) - (Xiz — Xj2),

(8) (P =Py (Xia — Xja) = —(xix —Xj1) " (X0 — Xy3) — 5(Xi2 = Xj2) - (Xi2 — X;2),

and so on. The exwvd matrix M of coefficients on the left side of these systems is always the
same. It is called rigidity matriz of F (cf. [10]). If (X1,,...,X,,) is any particular solution
of the r-th linear system, r € {1,...,n}, then also

9) Xp, = Xp, +C+Cpy, CT=-C, for k=1,...,v

with constant ¢ € R? and any skew symmetric d x d matrix C solves this system.

In particular, the “velocity vectors” xq1,...,%,1 of the vertices of F have to solve the
homogeneous system (5). Therefore infinitesimal flexibility of order 1 can be characterized
by the rank condition

d(d+1)

—

Any nontrivial solution of (5) defines the right side in the inhomogeneous system (6), and
then 2"-order flexibility of F is equivalent to the solvability of this system. This can be

repeated step by step for (7), (8), ... to figure out the order of flexibility for any given
framework.

(10) k(M) < vd —

2 Flexible Octahedra

In 1898 Raoul BRICARD [4] proved that there are exactly three types of flexible octahedra® O
in the Euclidean 3-space E?, the octahedra with line symmetry, those with planar symmetry
and finally a particular third type which admits also two flat positions.

Tn this “classical” definition the cases with trivial velocity vectors X1,1 = -+ = X,,1 = 0 are excluded.
This is a proper restriction since R. CoNNELLY and H. SERVATIUS [6] presented 1994 a framework which
admits an analytical flex, but only under the assumption of vanishing initial velocities. Already a few years
earlier I. SABITOV [9] proposed to denote the order of an infinitesimal flex by a pair (m, n) of numbers, the
smallest and the highest exponent of ¢ showing up in (2). Note also Remark 2 in [13].

ZAn octahedron is called flexible when its 1-skeleton can be flexibly embedded in F*. During the induced
analytical self-motion edges are allowed to pass through one another.



Let (py,Py)s (4;,9,) and (r1,r2) denote the pairs of opposite vertices of O. We sup-
pose that for all 2,7, & € {1,2} the vertices p;q,r) are non-collinear. Then for the first of
BRICARD’s types all pairs of opposite vertices are symmetric with respect to a line. In the
second case two pairs are symmetric with respect to a plane which passes through the two
remaining vertices. The flat configurations of the third type have edges which are tangent
to three concentric circles (see [5], Fig. 297) or which form three parallelograms (see [5], Fig.
298 or [12], Fig. 4). For further references see [12] where a new proof for the uniqueness of
BRICARD’s octahedra was given.

Actually there are two additional but degenerate cases®: One consists of a two-fold cov-
ered four-sided pyramid (p; =p,), which trivially flexes like a spherical four-bar mechanism.
At the fifth type two pairs of opposite vertices, e.g. q,,q,,r1, T2, are located on a line [.
Hence this octahedron consists of two flat four-sided pyramides which can rotate indepen-
dently about the common “basis line” [.

Both degenerate cases have also non-degenerate configurations which in general are rigid:
In the first case this configuration consists of a double pyramid with a planar equator q;r1q,r,
and the remaining vertices py, p, being symmetric with respect to the equator plane (cf. [12],
footnote 1 and case 1.2.1). The octahedra treated in [16] are of this type. In the second case
the equator q;r1q,rs is located on a one-sheet hyperboloid of revolution while p; and p, lie
on the hyperboloid’s axis (cf. [12], case 1.2.2). There are octahedra which at the same time
belong to all three BRICARD types and whose flexions can also continuously blend into the
trivial motions listed above as degenerate cases ([12], p. 53).

Octahedra made from cardboard can also look flexible when they are infinitesimally flex-
ible or when they admit two isometric and sufficiently adjacent configurations. Suggestions
for producing such 'flexible’ models can be found in W. WUNDERLICH’s paper [15]. Here he
also proves by kinematic means a geometric characterization of octahedra with first-order
infinitesimal flexibility (German: “Wackeloktaeder”). This is the equivalence “(i) < (ii)” in
the following

Theorem 1: For an octahedron O with four non-coplanar qy,r1,dy,r2 and py # p, any
two of the following four statements are equivalent:

(i) O is infinitesimally flexible of first order.

(i1) There are two points sy,8y such that pyq ris1 and pyqyrase are two tetrahedra of
MOBIUS type which at the same time are mutually inscribed and circumscribed.

(iii) There are four pairwise edge-disjoint faces of O, which span concurrent planes.

(iv) There is a second-order surface ® passing through the vertices py, py and through the
sides of the skew quadrangle q;r1q,rs.

The quadruples of edge-disjoint faces mentioned in (iii) are {p;q;r1, P2Qsr1, P1UsT2,
P.q;r2} as well as {p,q,ra, P14 T2, P21, P;d,T1}- The concurrence of the planes spanned
by one of these quadruples implies already the concurrence of the other four. The common
points are exactly s; and sy showing up in statement (ii).

3The author expresses his thanks to I. SABITOV for the valuable discussion held recently in this concern.
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Figure 1: First-order flexible octahedron O with velocity vectors orthogonal to ®

The statement (iv) (see Fig. 1) can be found in [1], p. 316, and in [12], p. 44. The equiv-
alence “(i) < (iv)” shows that one can build a first-order flexible octahedron from any given
five vertices (compare Corollary 1 in Section 4). This is since the sides of the skew quad-
rangle q,r1q,ry together with the vertex p, define the second-order surface ® of statement
(iv) uniquely. The surface ® is the geometric locus for the sixth vertex p,. For a planar
quadrangle q,riq,rs it is sufficient to choose p, in the affine span of this quadrangle. We
will prove later with equation (23) that in the skew case the velocity vectors of the vertices
can be specified orthogonally to the surface ®.

3 Conditions for n-th-order flexibility

We change the notation used in the previous sections. We see the octahedron O as a
suspension with the equator pg,. .., p; and the two poles q,,q,. Now we subdivide the edge
set £ of O into the equator {pypy,-- -, P3Py} and the set of edges p,q;, ¢ € {0,..., 3} and
J € {1,2}. The latter form a bipartite sub-framework O’ of O. This is the reason why

4



we can take over some of the arguments used in [14] for the analysis of a planar bipartite
framework.

Let an n-th-order flex of O be given by
(11) Pi(t) = P+ Piat +-- +p;,l" and qi(t) = q; +qut +--- + ;0"

forte=0,...,3and y =1,2.

From now on we suppose non-coplanar {pgy,...,ps}: Then for each ¢ € R there is an
affine transformation «: p;, — pi(t) for ¢« = 0,...,3. When we use matrix notation and
write the coordinate vectors as columns, then we can set up

(12) a(t): p; — pit) =a(t)+ A(t)p;, with a(0) =0, A(0)=1;,

where I3 denotes the 3 x3 unit matrix. The coordinates of a(t) and the entries of A(?) are
polynomials of degree < n. In the new notation equation (3) reads

(13)  [pit) — d(t)] — (p; —q,)? = oft") forall i€ {0,....3) and je€ {1,2}.
We subtract the equation for i = 0 and obtain

[Pi(t) — po(1)]" [Pi(t) + Ph(1) — 2d(1)] — (P, — Po)" (Pi + Py — 2a;) = o(1").
The difference of these equation for j = 1,2 gives

=2[pi(t) = po(1)]" [ah(t) — i (1)] + 2(p; — Po) (dz — &) = o(t"),
and due to (12) we get
=2(p; — Po) AW [d5(1) — o (D] + 2(p; — Po)T (A — ay) = o(1") for i€ {1,2,3}.
The supposed linear independence of the difference vectors {p; — pg, P» — Po, P3 — Po | implies
A () — a ()] = (@ — ;) = o(1").

This means that for each # € R there is a second affine transformation
(14) a(t): di(t) = alt) + At dj(t) = q; +o(t") for j=1,2

with a(0) = o.

For ¢ sufficiently near to 0 the image points {py(?),...,p5(t)} are non-coplanar, too.
Hence there exists the inverse

(15) at)™": q; = b(t)+ A()"'q; = g, +o(t") with b:=—A""a
We substitute in (13) the matrix representations (12) of @ and (14) of & and obtain

ala+2al(Ap, — q;) + p! ATAp, — QP?ATOI; + q'qu; -

16
(16) —a’a—2a"(ATq, — p;) — o] AATq, + 2pT ATq, — pTp, = o(t").



Separating the terms with p; from those with q(#) leads to

p/ (ATA — I)p; +2(a” A+ a")p; +a"a =

=g (AAT = L), +2(a” +a"AT)q, + a%a + o(1").
As this equation must hold for all ¢ € {0,...,3} and j € {1,2}, both sides of the equation
must be constant for each ¢ € R. This results in two equations which are quadratic in the
coordinates of p; and d , respectively. With (15) we obtain — after subtracting bTa =a’b
from both sides —

(17) p/ (ATA - L)p, +2(a” —bT)Ap; + (" —bNa=~(t), i=0,...,3,
and for y =1,2
q’f(t)(AAT — L)di(t) +2(a” —b"AAT)q(t) + b"AATb — a’b = () + o(t")

with a rational function ¥(¢). For the sake of brevity we have ceased to indicate that the
matrix A as well as the vectors a and b are functions of .

Now we apply &~ to ¢(t) in the second quadratic equation. Due to (15) we get finally
(18) q (I — A7 A7), +2(a” =bT) A g, + (a7 =bT)b = (1) + o(t")

for j = 1,2. Conversely, the two equations (17) and (18) imply (16) and hence (13).

Until now we have only dealt with the bipartite sub-framework O’ of the octahedron.
The edges p;p,;; of the equator (subscripts modulo 4) impose the additional condition

[Pi(t) = Py (0] — (P = Pisy)? = o(") for i=0,....3.
We substitute the representation (12) of a and obtain
(pi = Piyt)  (ATA = L) (p; — Pigy) = o(t").
Due to (17) this is equivalent to
(19)  p/(ATA = I3)p,y, + (&7 —=bT)A(p; + piyy) + (a7 —bT)a—(t) = ot").
Due to (17) and (18) we define two bilinear functions

oy )= XA )y 4 @ =BT +y) + (o = b =0

g(tx,y) = x" (I = A7 AT )y + (a7 = b AT (x +y) + (a7 = bT)b — (1),
Then we can combine the equations (17), (18) and (19) in
Theorem 2: The octahedron O with non-coplanar {py,...,ps} is flexible of order n if and

only if in a neighborhood of t = 0 there are functions a(t), b(t), A(t), and y(t) of class C™
such that the vertices pgy,...,Ps, Ay, dy 0bey the equations

fpsp) =0, f(Gp; i) = o), g(lq;,q;) = o(l")
forall v € {0,...,3} and j € {1,2} with f and g according to (20).
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Similar to the proof of Lemma 2 in [14] we could show that for each ¢y sufficiently near to
0 the equations f(to;x,x) = 0 and g(to; x,x) = 0 represent two confocal surfaces of second
order. The condition f(to;p;, Pir1) = 0 expresses conjugate position of two points p; and
P,;, on the first of these two surfaces. This is equivalent to the fact that the connecting line
is a generator of this surface.

Hence, if for any o the equations f(to; p;, ;) = f(t0; Pi» Piy1) = 9(to;d;,q;) = 0 hold for
alle =0,...,3 and y = 1,2, then we have found a second-order surface passing through the
sides of the skew quadrangle py, ..., p; such that there is a confocal surface passing through
q; and q, (compare [11] or [12], p. 42, Satz 1). Whenever such a pair of surfaces is found,
the theorem of IVORY gives a new octahedron (py(to),...,q,(to)) which is incongruent but
isometric to the initial octahedron (py(0),...,q,(0)).

The conditions (17), (19) and (18) show that in the case of higher-order flexibility there is
a multiple zero at ¢ty = 0 for the determination of pairs of confocal second-order surfaces with
the above mentioned property. Since this problem is algebraic of degree 8, a multiple zero
of order > 8 at t = 0 implies already a one-parametric set of solutions, i.e., a continuously
flexible octahedron.

4 Characterizing 2*'- and 3“-order flexibility

The equations in Theorem 2 are necessary and sufficient for an octahedron O being infinites-
mally flexible of order n. In order to obtain geometric characterizations for n =1,2,... we
compare the coeflicients of ¢/, ¢ = 1,2,..., in these equations. For this purpose we set up
the Taylor expansions as

Alt) =4+ At + A2 + ..., a(t) =ajt+agt*+...,
) =ttt +.., b(t)=bit+byt?+....

The inverse matrix A7'(¢) can be expanded in the form
A_l(t) — ]3—|—B1t—|—B2t2—|—
with

By =-4 Bs = —As+ AyA1 + A1 Ay — A
B2 — —A2 —|— A% Bk — —Ak - Ak—lBl — ... AlBk—l .

This implies for the flexion (11) according to (12) and (15)
(21) P, = a; + A p,, qN:bj—l—Bquj for r=1,...,n.
The coefficients of ¢ in (17), (19) and (18) yield

fl(pivpi):fl(pivpi-l—l):fl(qjvqj):0 for Z:0773 and ]:172

with

(22) Alxy) = x (A + ADy + (a] —b])(x+y) —m.

¢ : fi(x,x) = 0 is the second-order surface mentioned in statement (iv) of Theorem 1
(Fig. 1).



For the velocity vectors p;; = a; + A1p; and q;; = by — A{q; according to (21) we
can suppose a symmetric matrix A; and by = —a;. This is possible since otherwise we
superimpose a motion which appoints to each point x the instantaneous velocity vector

v(x) = —L(a; + by) — L4 — A )x
with the skew symmetric matrix (A; — AT). Then we obtain the vectors

(23) Py =(ar —bi)+ 1A+ A )p;, g,y =—3(ar — b)) — LA + A)q;,

which still solve (5). These vectors are orthogonal to ® (see Fig. 1) as according to (22) the
equation of the polar plane of point r with respect to ® reads

(24) filx.r) =x" [(Al + A ) + (2 — b1)] +(af = bHr— 4, =0.

The coefficients of t? in (17), (19) and (18) lead to the following equations: fo(p;, p;) =
f2(PisPipr) =0 for e =0,...,3 with

fa(xy) = xT(AL + AT AL+ Ay)y +

) +[iaf = BT)A, + (af )] (x4 ) (o] ~ BT 7,

and 92(01]‘701]‘) =0,5=1,2, with

$2(%,y) = xT(Ay — AT + AT — A2 - ATy 4

2 +[@f ~BT)AT + (2 D) (x ) + (o] ~ BT )by 7.

The difference

hQ(X7Y) = f2(X7 Y) - 92(X7 Y) =
(27) = xT(A+A7) y + (al =b{ ) (A1 +A])(x+y) + (af —b] )(a1—by) =
= [xT(A+A]) + (af = b)) [(Ar+AD)y + (a1 — by)]

depends only on the first derivatives a;, by, Ay, but not ;.

U, fa(x,x) = 0 and U, : go(x,x) = 0 are two surfaces of second order, one passing
through the sides of py...p5, the other through q; and q,. The surface ¥: hy(x,x) = 0
belongs to the pencil [¥,V¥,] spanned by ¥, and ¥,. According to the last line in (27) the
equation hy(x,y) = 0 is equivalent to the statement that the points x and y have orthogonal
polar planes with respect to ® (note (24)). Hence W: hy(x,x) = 0 is polar to the absolute
conic with respect to ®, provided ® is regular.

In Table 1 all possible cases for ® are listed. Here the equations (22) of ® are given
in standard form. The corresponding equations (27) of ¥ and of one particular surface W’
selected from the pencil [®W] can be found in Table 2.

These specifications prove, that for a nontrivial flex the polynomial hy(x,%) is never
proportional to fi(x,x), fa(x,%) or g2(x,x). Since for regular ® the (imaginary) surface W
is polar to the absolute conic, the pencil [®W] must be polar to the linear system of surfaces
confocal to ®. The cylinder ¥’ in the first two cases of Table 2 is polar to one focal conic of
® with respect to .



type of ® ‘ reduced equ. of ® ‘ Ay = AT ‘ a;=—b, ‘ Y1 ‘
x2 y2 22 1/@2 0 0 0
one-sheet hyperb. | — 4+ > — — =1 0 1/6 0 0 2
a? b2 2 9
0 0 —1/c 0
2 2 1/a? 0 0 0
Z Y
hyp. paraboloid ——=—2z=0 0 —1/6* 0 0 0
CL2 62 1
0 0 0 —3

0 0 0
intersecting planes |  k*z% — 22 =0 0 0 0 0 0
0 0 —1 0
Table 1: Different cases of ®
‘ type of ® ‘ ha(x,x) ‘ surface W'
4 2 4 2 4 2 2 2 b2 2
hyperboloid a—i b—gi ci4 a ;_c z? + Z;c y> =1 ... ell. cylinder
4 2 4 2 2 b2 b2
hyp. paraboloid i + - +1 “t 2*— 24+ — =0 ... parab. cylinder
4 bt a 4
inters. planes 4hkta? + 427 22=0 two-fold plane of symmetry

Table 2: Different cases of ¥ and W’

For a 2*.order flex of O obeying (22) it is
necessary that there is a surface W, pass-
ing through the sides of the skew quadrangle
Py--.P3 and a surface U, through q, and
q, such that the pencil [W,¥,] spanned by
U, and ¥, contains U. With ® and V¥, each
surface W7 in the pencil [®W,] passes through
the equator pgy...p;. In the same way each
v, € [@¥,] contains q; and g,. And any
V€ [@W,]\{®} and V] € [®@V¥,]\ {®} span
a pencil which contains any W' € [®WU] since
all these surfaces are contained in the two-
dimensional linear system spanned by &, ¥
and W, (see Fig. 4 where the linear system is
represented as a projective plane).

Conversely, if a pair (U], W} ) of second-order surfaces with W/ passing through the equator
and q;, q, € U} is given such that the pencil [W] W]] contains any W' € [®, W]\ {®}, then the
octahedron is infinitesimally flexible of order 2. This results from the following arguments:
We can determine ¥, € [®@W]] and ¥, € [®@W]] such that the difference of their equations
gives hy(x,x) = 0 in (27). Then from the equations of ®, ¥, and ¥, one gets A, + AL and

9

Figure 2: The linear system of second-
order surfaces spanned by ®, ¥ and ¥,




g — b2.

Also for the acceleration vectors 2p, , and 2q; , of the vertices we can assume a symmetric
matrix Ay and az = —by in (21)

Pi; =2+ Ayp; and q;, =by + Bqu]' = by — (4] — A1T2)q]' )
because otherwise according to (9) we could add at each vertex x the vector
a(x) := —i(az + by) — L(A; — A])x
and obtain the new solution of the system (6)
(28)  Pip=(as—ba) + 5(As+A7)p;, Q= —3(a2—b2) — J(A+ A5 —247%)q;.

We demonstrate this method at the following

Example: Let ® be a one-sheet hyperboloid according to Table 1, i.e.,

2 2

O fl(x,x):xQ—l—%—zz—l:O = U hz(x,x):xz—l—yz—l—zzz().

We specify W as a pair of tangent planes of ® and ¥} as a hyperboloid:

27y?

L2 2 ) 2 2 _
\I/;).y—(z—l—l) =0 and \I/;.Ql'—l- —6(z+1)"=1=0.

Then the pencil [¥]W!] contains the associated elliptic cylinder W': 22* + %yz —1 =0 from
Table 2. Now we replace W) by W, € [®@W]] and set W, = W, such that the difference of the
equations fy(x,x) = 0 of ¥, and g¢2(x,x) = 0 of ¥, gives exactly the equation hy(x,x) =0
of U according to (27). This yields

fao(x,x) = —42% — 26y + 282% + 482 + 28 and g2(x,x) = —8x% — 2Ty + 242* + 482 + 28.

The comparison with (22), (25) and (26) gives

10 0 -5 0 0
Ar=AT=[0 % 0 |, A+A]=| 0 -2 0 |,
00 -1 0 0 27

al = —bl =(0,0,0), al —bl'=(0,0,24), 7 =2, 5 =-28.

The coordinates of the four vertices py, ..., ps defining the quadrangle @ N ¥ = &N V¥, and
those of the poles q;, q, selected from ® N W, = & N W, are listed in Table 3 as well as the
corresponding velocity vectors (23) and acceleration vectors (28) obeying the linear systems

(5) and (6).

We summarize:
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‘ vertex ‘ velocity vector ‘ half acceleration vector

p; = (0,2,1) po. = (0,1,—1) P2 = (0, =%, %)

pi = (v2,0,-1) |p{,=(v2,0,1) piy=(—2v2,0,-3)

p; = (0,-2,1)  |pi;=(0,-1,-1) p.= (0,77, %)

Py = (=v2,0,—1) | pl, = (—v2,0,1) pl, = (3v2,0,-2)

ai = (5v5,0,—3) | afy = (=3v5,0,—3) | al, = (7V5,0,-%)

a = (6,vV2,—¢) |4}, = (—¢,—3V2,—¢) | a3, = (¢, FTV2, =12+ Pe)

c:=34+ 162 obeying 8c¢? —24c—13=0.
Table 3: Example of a 2"d-order flexible octahedron

Theorem 3: A first-order infinitesimally flexible octahedron O with vertices pg,...,qy € P
and a non-coplanar equator py . .. ps is infinitesimally flexible of order two if and only if there
are second-order surfaces Vi, # ® through the sides of the equator and V; # ® through the
poles qy,q, such that the pencil spanned by W) and W) shares a surface W' with the pencil
spanned by ® and the associated W: hy(x,%x) = 0 as listed in Table 2.

Corollary 1: A second-order flexible octahedron O can be built from five arbitrary vertices
Pos- -+, 4y, provided {pg,...,ps} are not coplanar. There is a free choice for the last vertex
d, on a space-curve of order four passing through qy.

Proof: The equator p,...ps and the pole q; define the surface ® uniquely. Then we specify
any other second-order surface W/ through the equator. There is one surface W, € [V V]
passing through q;. In order to meet the conditions of Theorem 3, it is sufficient to specify
pole g, on the curve of intersection between ® and W,. O

Remark: Second-order flexibility of any framework means that to each vertex we can assign
a curvature center in a way which is compatible with the given edges (see [13]). In this sense
there is also a more kinematic characterization for 2"-order flexibility of octahedra based
on the relative motion between opposite faces* as displayed in Fig. 4: An octahedron O
is flexible of order two if and only if there is a spatial motion such that the coplanar lines
q,r1, 1Py, P1g; can serve as curvature axes for the trajectories of the moving points p,,
q,, ', respectively. The relation between movings points and their instantaneous curvature
axes under a spatial motion is e.g. treated in [3], p. 169 ff.

The coefficients of #* in (17) and (18) give rise to the equations f3(p;,p;) =0,7=0,...,3,

4These motions play also a role in robotics: They are unexpected infinitesimal or even finite self-motions
at “singular postures” of particular parallel manipulators (see [7] or [8]).
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Figure 4: The relative motion between opposite faces p,q,r1 and p,q,r; of a 2°d-order
flexible octahedron O: The curvature circles of the moving vertices p,, q,,r2 have coplanar

axes q,r, r'1p;, P;9;, respectively.

and g3(q;,q;) =0, j = 1,2, with bilinear functions

(29) fa(x,y) = xT(AD + AJAL+ AT A + As)y + [(a?—bf)Az + (af —by) A+
+(a] —b3)] (x+y) + |(al =b])az + (a] =b])ai| — 7

gg(X, y> = XT(Ag — A2A1 — A1A2 + A:l)) — AQA? + A%A? — A1A5—|—

(30) FALAT? + AT — ATAT — ATAT + ATy + [(a] =b) (AT + Af?) -

—(a] =b]) AT + (af =b)| (x+y) + [(a] =b{ )bz + (al =b])b1| — 5

Again, these define surfaces of second order, one passing through the sides of p,...ps, the
other through the poles q;, q,. The difference of these functions

ha(x,y) = %" [(As = A+ AD) (A +AT) + (At AT)(A; — AT 4 AD) v +
(31) + |(af =bi) (A2 = AT 4+ AT) + (af —by)(Ar+ AT (x+y)+
+2(af —by)(az—by) = 0
depends only on the first and second derivatives of a(?), b(t) and A(t) at ¢ = 0, hence on
the bilinear functions fi, fo and ¢y according to (22), (25) and (26).

A geometric interpretation for these conditions in analogy to Theorem 3 is based on the

surfaces Q: hs(x,x) =0, Q,: fa(x,x) =0 and Q,: ¢g3(x,x) = 0. This yields

Theorem 4: A second-order flexible octahedron O with non-coplanar equator py . ..ps and
poles qy,qy according to Theorem 3 is infinitesimally flexible of order three if and only if

12



there are surfaces U, # ® through the sides of py...ps and Y, # ® through q,,q, such
that the pencil spanned by QU and Q shares a surface Q' with the pencil spanned by ® and
Q: hs(x,x) =0, associated to &, U, and U, .

The quadric Q2 is defined by ®, ¥, and ¥, . But the geometric meaning of this dependence
has not been figured out yet.

Corollary 2: A third-order flexible octahedron O can be built from five arbitrary vertices
Pos- -+, 4y, provided {pgy,...,ps3} are not coplanar. The last vertex q, is a point of inter-
section between the three quadrics ®, W), Q passing through q .

Proof: In addition to the choice used in the proof of Corollary 1 we set {2/ = W/ and specify
0, € [QQ] as the surface passing through q,. O

Suppose O is of BRICARD’s type 1 or 2. Then the quadrangle pg, ..., ps; must be sym-
metric with respect to a plane or line. For type 3 the quadric & must be a hyperboloid
of revolution (see e.g. [12]). According to Corollary 2 there are third-order flexible octahe-
dra which do not obey any of these necessary conditions. This reveals that for octahedra
infinitesimal flexibility of order 3 does not imply continous flexibility.

Fzample: For the data given above in Table 3 we get
O ha(x,x) = —242* — 53y* — 1042* — 96z = 0, Q) 242% 4+ 85y* + 722 + 322 — 32 =0.
The only real solutions for q, are (:I:%\/g, 0, —%) The solution q, # q; gives a BRICARD

octahedron of types 1 and 2, simultaneously. The example presented in Table 3 with a
different choice of q, is exactly of 2"d-order flexibility.

There are analogous conditions for infinitesimal flexibility of order 4 and higher. In the
sense of Fig. 4 these conditions express projective dependencies of particular quadrics in the
projective 9-space of quadrics in E*.
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