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This paper discusses the relative position between two incongruent con-
figurations of a complete bipartite framework with given edge lengths in the
Euclidean n-space. It is proved that there is an appropriate displacement of
one configuration such that in the generic case the two locations of each knot
become corresponding points of two confocal quadrics. Then the equal lengths
are a direct consequence of Ivory’s theorem. Modifications of the first config-
uration theorem cover the special cases where one or both classes of knots are
located in a hyperplane.

Introduction

There are many examples showing that generically rigid frameworks can become flexible
when the knots are somehow related to second order surfaces (see e.g. [4, 5, 10, 11, 8, 9]). Tt
is well known that a bipartite framework is infinitesimally flexible of first order if and only
if the knots are located on a quadric (see e.g. [18, 12, 8]). Also the infinitesimally flexible
cross-polytopes are in a certain way linked to quadrics ([13]). The following theorems
reveal one reason for this connection between flexibility and quadrics.

The first theorem treats the generic case in the Euclidean n-space E": Two incongruent
configurations of a complete bipartite framework with sufficiently many knots and given
edge lengths are always associated to two confocal quadrics such that the equal distances
in both configurations result from Ivory’s theorem. In the second theorem the knots of one
class are coplanar. The third theorem characterizes two configurations in the particular
case where the two classes of knots are located in two perpendicular hyperplanes.

These theorems generalize results presented in [10] for E*. This time the necessary
and sufficient conditions for the configuration theorems are formulated more precisely.
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And the new proofs reveal that Ivory’s theorem is intimately related to selfadjoint affine
transformations.

The results of [10] have originally been used to characterize singular positions in satellite
geodesy (compare also [17]). Later it turned out that they were of basic importance for
proving the flexibility of structures. E.g., it was a basis for a new proof of the uniqueness
of Bricard’s flexible octahedra [11]. One can expect that the new theorems enable to prove
some new results on the flexibility of geometric structures, e.g. of polytopes (cf. [1]). They
might offer a chance to prove or disprove the existence, e.g., of flexible suspensions in E?
with a pentagonal equator or of flexible cross-polytopes in higher dimensions (see [14] and
references there).

These configuration theorems are also true in the spherical n-space. There are good
reasons to conjecture that they also hold in the Minkowski-n-space and in hyperbolic
spaces.

The first configuration theorem

THEOREM 1: Let Fy be a complete bipartite framework of type K, 1,441 with given
bar lenghts l;,. Suppose this framework admits two incongruent configurations F and F'
in the Fuclidean n-space E". This means that the knots Xy, ..., X, Yy,... Y, of F and
Xgy oo, X0, Y, Y] of F'oobey the (n+1)(q+1) quadratic equations

(1) 2 =XV =X, forall i €{0,...,n} and k€ {0,...,q}.

The knots Xy, ..., X, are supposed to form a simplex.
1. There is an appropriate displacement 3: E* — E" such that for F and the displaced
B(F') the following statement holds:
For all i and k the knots X; — [(X]) and S(Y]) — Y are corresponding points of
two confocal® surfaces ®, U of second order (see Fig. 1).

2. For anyr, s € N the framework Fo can be extended to a complete bipartite framework
F of type Kpiri1,g+s+1 which still admits two incongruent configurations F, F' with
knots Xg, ... , Xp4r € @ and Yy, ... Y4 € V.

3. For knots of the second class this is the only choice for extending Fy, i.e., for any
pair of points Y, Y' the equations

XY

1

X;Y forall i € {0,...,n}

imply Y' € 371(®).

4. The analogous statement that
X'Y! = XY} forall ke€{0,...,q}

implies X € ® is not true. It holds for ¢ > n under the condition that the point set

Yy, ..., Y] contains a simplex.

2The terms corresponding points and confocal 229 -order surfaces in E" are used according to [16] and
they will be explained in detail in the following proof. The surface ¥ can be singular.
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5. Two different knots X;, X; of F share their distance with the corresponding points
of Xi, X} of F' if and only if the spanned line [X; X;] is subset of the second-order
surface ®, i.e.,

XX;=X/X] < [X;X;]Cd.

Conversely, for any Y/, Yj' € F' and the corresponding points Y;,Y; € F we have

YY) =YY, <= VY]] B7(D)

An immediate consequence of Theorem 1 for the flexibility of bipartite frameworks
reads:

COROLLARY 1: A complete bipartite framework of type ICp, in E" with knots

Xi,..., X, spanning E" admits a continuous flexion if and only if there is an at least
one-parametric set of quadrics ® passing through Xy, ..., X, such that a confocal quadric
U contains simultaneously all Yy, ... Y.

Specify for example the X-knots as the vertices (£¢;,...,£¢,), i =1,...,n—1, of
n — 1 boxes symmetric with respect to the axes of a cartesian coordinate system in [E".
And select the Y-knots as the vertices of another such box. Then the framework of type
K(n-1)2n,2n is continuously flexible. It generalizes one of Dixon’s mechanisms (compare
[5, 8, 10]).

Figure 1: The statement of Theorem 1 for dimension n = 2

Proof of Theorem 1

We use two cartesian coordinate systems S and S’ in E", one for each configuration. Let
x;, ¥ denote the coordinate vectors of the knots X;, Yy with respect to S, and x;,y, those
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of X!, Y} with respect to 8":* Then the equations (1) imply

(2) (xi —yp)? = (X, —y,)? forall i € {0,...,n} and k €{0,...,q}.
After subtracting the equations for the indices (0, k) and (7, k) we obtain

(3) Xo = X; +2(x; = %0) Y = x5" = X7 + 20 = X0) Y -

For each k this can be seen as a fixed system of n linear equations for the unknown vector
yp- As X, ..., X, is supposed to form a simplex, this system has a unique solution for
any given yj.. In order to express this solution in an appropriate form we take into account
that there is a unique affine transformation

(4) a: E'" 5 E", x— «a(x) =a +1(x) with x; — x} for all i € {0,...,n}.

Here [ denotes the induced linear map defined by I(x; — x¢) = x; — x, @ = 1,...,n. Let
[*: R — R” be the adjoint map obeying

(5) l(u)-v' =u-I*(V') forall u,v €R".
In the case ¢ > 1 we subtract from (3) the equation for £ = 0 and get
(6)  (xi —x0)-(yp —Yo) =1U(x —%0)- (v, —yp) forall i e {1,...,n} and k€ {1,...,q}.
Then we fulfill all equations (6) by setting
Vi — Yo =" (y,, —vyp) forall k=1,...,q.

This adjoint map [* together with one pair y; — y, of points defines the affine transforma-
tion

(7) o't E" =S E", yy—=a*(y)=b+1*y) with y, —y, forall ke {0,...,q}.

We call o and o* “

necessary condition:

adjoint” affine transformations. Thus we can formulate the following

LEMMA 1: Let F, F' in E" be two incongruent configurations of Fq as defined in
Theorem 1. Then there are two adjoint affine transformations o, o™ with

a: X;—= X! foralli=0,...,n, and a*: Y, — Y/ forallk=0,....q.
Neither a nor o* is an isometry.

Proof of the last statement in Lemma 1: Suppose « is an isometry. Then we specify
the coordinate system &’ such that xi = x; holds for each i = 0,...,n. Eq. (3) gives rise to
a homogeneous system of linear equations

(x; — xo)(yr, — ys) =0 for each k € {0,...,q}.

which admits only the trivial solution y;, =y,. The two configurations F, F' are congruent
— thus contradicting the initial assumption. o

3For the sake of brevity we identify points with their coordinate vectors.



CONFIGURATION THEOREMS ON BIPARTITE FRAMEWORKS 339

Now we replace in (2) x; by a(x;) and y, by a*(y},) and obtain
x; = 2x;-[b+ I (yp)] + [b+ " (yi)]* = [a + 1(x)]* — 2[a" + 1(x;)]-y, + i
or — because of x;-I*(y}) = l(x;) -y}, due to (5)
x2 —1(x;)% = 2x;-b — 21(x;)-a’ + b* = yi2 — I*(y,)* — 2y}-a’ — 20*(y,)-b +a'>

This equation holds for all i € {0,...,n} and all £ € {0,...,q}. As the left side depends
on 7, the right side on k£ only, both sides must equal any constant C'. This results in two
quadratic functions

(8) f(x) = x® = 1(x)? = 2x-[b + I*(a')] + b* = C, and f(xi)=0 Vi=0,...,n,
g'y) = y?=I(y) -2y +i(b)]+a?-C gy, =0 Vk=0,...,q.

Conversely, for all x,y" € R" the equations f(x) = ¢’(y’) = 0 imply
Ix = a*(y) | = [a(x) = ¥'[|-

We will see in the sequel that this is exactly Ivory’s theorem for corresponding points of
confocal surfaces in E" (see [16]). We summarize in

LEMMA 2: Let « and o* be adjoint affine transformations according to (4) and (7).
For any Xq, ... ,%p, Yo, - - - ,y; € R" the points

X055 X, @ (Yg)s -5 @ (yy) and a(xo), ..., alxy), Y, - .- 5y, in B
constitute two configurations of a complete bipartite framework of type Kpi1 441, t.e. with
[Ixi = o (i)l = ller(xi) = il

if and only if there is a constant C' such that for f and g' according to (8) the following
equations hold true:

We are now going to specify the coordinate systems S and S": It is well known that
the composite mapping [*ol: R” — R" is self-adjoint as

u-[l*ol(v)] = I(u)-1(v) = [I*ol(u)]-v for all u,v € R".
There is an orthonormal basis of eigenvectors ey, ... ,e, obeying
ol(e;) = A\fe; with A7 =1I(e;)-I(e;) > 0,
because of

(9) [(er)-1(e;) = [I"ol(es)] & = Ai(es ) = Ndi.
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We assume
(10) )\1:"':)\520, )\s+17---:)\r7£0;1; )\r+1:"':)\n:1
with 0 <s<r<nand r>1
because of [*ol # idg» according to Lemma 1.
The eigenvectors e, ... , e, have pairwise orthogonal images I(e;), ..., l(e,) due to (9).
Hence there is also an orthonormal basis €], ..., e/ such that
(11) l(e;) = \ie, and [*(e},) = M\reg for all i,k € {1,...,n}.
We use eq,...,e, and e],..., e/ as the basis vectors of & and &', respectively. For an

appropriate choice of the origin there are two cases to distinguish:

CASE 1: The composite affine transformation a*oa keeps a point f fixed :
Then we choose f as the origin of S and «(f) as the origin of S§’. Due to (11) we obtain

x_f+2xez —  a(x —|—Z)\xel,

1

=af)+2y2ek — a’(y') :f+z)\kykeka
- k=1

and therefore a’=o0 in (4) and b=o in (7). Hence because of (10) the coordinate represen-
tations of the quadratic functions in (8) read

(12) f=af+ a2+ 1= )2+ + (1= Az — C =g'(x).

The equation f(x) = 0 defines a surface ® of second order. Its affine image @' := a(®)
obeys

for s = 0: f’(x’)::lgf’\?x’f—i---- %x’f—CzO,
(13) for s >0: 2y =-.- =2, =0 and

1-X2 1-X2
1(J\ . +1 T oAal2
f'(x) = /\3; TR 4+ o — O <0

In the “singular” case s > 0 we use the symbol 99’ for the boundary of ® = «(®), i.e.,
for the set
' ={x'"=(0,...,0,2,4,...,2,) | f'(X)=0}.
Now we displace the second configuration such that the associated coordinate system S’
coincides with S. This isometry is denoted by [ (see Fig. 1). Then because of
A2 1

7
= ~1
-2 1-N

the second-order surface ® and the displaced affine image ¥ := foa(®) or (in case s > 0)
O are confocal in E* (compare [16])*.

These confocal surfaces have e.g. the following properties:

4As an example for the singular case in E® take an ellipsoid ® and its focal ellipse 9. The affine image
Boa(®) is the elliptic disc bounded by 9¥.
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e Under C' # 0 the sections of ® and ¥ with any principal 2-plane spanned by e; and
e; for s < i < j <r are confocal conics

P 2 9 2
L+ —=C and — + -2 =C

1—)2 1-22 =27 1

of the same type. For 7 < s the second conic degenerates.

e For s = 0 the intersections of ®, ¥ with the space spanned by the coordinate axes
x1,...,x, are regular second-order surfaces. If they are seen as quadratic sets of
tangential hyperplanes, they span a one-parametric linear system together with the
set of isotropic hyperplanes. This results from the fact that the tangential equations
of these quadrics in homogeneous hyperplane coordinates (&, ... ,&,) obey

(o ++ a8 —28) - (84 +€) = (Zogd++ 258 - L8).

Hence ® and ¥ share the isotropic tangential hyperplanes. This holds also in the
singular case s > 1 for ® and 0V in the space spanned by zs,1,... , 7.

e Points x € ® and their images foa(x) € U are called corresponding in the sense of
[16] (see X;, 3(X]) in Fig. 1). Whenever another surface confocal to ® passes through
x, then it passes also through the image Boa(x).® This can be proved as follows:
The confocal set is given by

2 2
x] T

E%:;+u_k_4;__czo,teR\{—L.” =}

F(x,t) = 1y =27 12
T—x2

From F(x,0) = f(x) = 0 and F(x,t) = 0 with ¢ # 0 we conclude F'(a(x),t) = 0 as
the latter can be expressed as the affine combination

F(a(x),t) = =1 F(x,0)+ (1+ 1) F(x1).

This is a consequence of

2
g ()
CASE 2: There is no fized point of
a*oa: x — b+ 1*(@" +1(x)) =b+1"(a") + I"ol(x).
This means that the system of linear equations
(I*ol —idgn)(x) = —b — I*(a")

has no solution, i.e., the rank rk(/*ol —idg») = r is smaller than n, hence 1 is an eigenvalue
of [*ol, and
d:=—-b—1*d") & (I"ol —idg:)(R") = [ey, ... ,&].

°See in Fig. 1 the dotted hyperbolas passing simultaneously through X; and 8(X}).
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We decompose
d=dy+d; such that dy € [eq,...,e] and dy € [e;41,... , €,
with d; # o. Now we specify the origin f of S as a solution of
(I*ol — idg»)(f) = dg .

And we modify the basis vectors €,,1,... ,e, in the eigenspace of 1 such that d; = —2ae,
with a # 0. This implies

a*oa(f) = —=dy — d; + [*ol(f) = —dy + f = 2ae, + 1.
Let f := a(f) — ae/, be the origin of §’. Then we get with (11) and A, =1
a(f) =f +ael, and o (f) = a*oa(f) — al*(e)) = f + ae,
and therefore a’ = ae], in (4) and b = ae,, in (7). From (8) we obtain
(14) f)=ai+-+al+ 1= )2+ + (1= )22 — daz, + D = ¢'(x)

with D := a® — C. The image ®' of the quadratic surface ®: f(x) = 0 under a obeys

_\2
(15) = =2,=0, f'(X):= lAgjfl x’sil—l—---—l—%x?—mug—a)—ingO

where equality holds in the regular case s = 0 only.

Figure 2: Theorem 1 in the parabolic case (Case 2)

Again an isometry  brings &’ in coincidence with S, and this gives confocal second-
order surfaces with analogous properties as listed above. The sections of ® and ¥ or 0V
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with principal 2-planes spanned by e; and e, for s < 7 < r are confocal parabolas with
equations

2
La? —da(r, —a)+ D=0

22

)

(1 —A)z? — dax, + D =0,

as they share the axis of symmetry (= x,-axis) and the focal point

e = (0, a+ 24 N ) (o, 2y @
Todn) =A\L O T T\ da T2 )

This proves

LEMMA 3: Let F, F' in E" be two incongruent configurations as defined in The-
orem 1. There is an isometry 3 : E" — E" such that the knots of F and 3(F') are
corresponding points of two confocal surfaces ®, U, i.e., with

Xo, oo s Xy B(YG), -, B(Y])) € @ and B(Xy), ..., B(X,), Yo,... , Yg €V,

Remark 1: After applying (3 the affine transformations a and a* coincide, or more
precisely

Boa = a*of™" = (Boa)*.

The last equation results from 3! = $* for isometries and (foa)* = a*o3*. Hence the
affine transformation foa is self-adjoint (compare [15]).

Proof of Theorem 1: The items 1, 2 and 3 are a consequence of Lemmas 1, 2 and 3.
For proving item 4, take any point X € ® and X' = o(X). Then according to 2. we have
X'Y] = XY, for all k € {0,...,q}. Suppose that the affine span Y := [Y;... Y] has a
dimension < n, and let X be the image of X under the reflection in Y (or any other motion
which keeps Y fixed). Then we obtain again

XY, = XY, = XY},

though X needs not be a point of ® (note e.g. X3 in Fig. 2).

In order to prove item 5 in Theorem 1, we notice that [X; X;] C ® is equivalent to the
statement that f (Ax; + (1 — A)x;) = 0 for all A € R. From (8) and f(x;) = f(x;) = 0 we
get

(O + (1= A)x)
= M+ (1= )x ] = L%+ (1= X)%))" = 2[x + (1= A)xg]- b+ 17 (@)] + b* = C =
= N[x¢ = 1(x:)?] + (1 = N[5 — 1(x)*] 4+ 2A(1 = A)[xix; — 1(xi)-1(x;)] =

= ApG = 1(x:)?] = (1= A)[x} = U(x)’] =
= A1 = A) [ =5+ 1(x;)% + 1(x))? + 2x50%; — 20(x:)-1(x;)] =

= M= 1) [0 = %)% = (106) = 10;))°] = A = 1) [(x = )2 = (alxi) = alx;))’]
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which gives the equivalence
[(Xi X5 C @ =[x — x| = la(xi) = alx;)]l.

The analogous computation shows that [Y/ Y]] € 7'(®) is equivalent to Y;Y; = Y'Y/
This is also a consequence of statements 2 and 3 in Theorem 1 as Y;Y; = Y/Y]/ implies
congruent triangles Y;Y; X, = Y/Y/X; for each k € {0,...,n}. Hence for any point Y of
the line [Y; Y;] and its image Y’ € [Y’ Y]] under the 1s0metry [Y:Y;] = [Y] Y]] with Y; Y/
and Y; — Y] we have Y X}, = Y'X and therefore Y' € 57'(®). O

The other configuration theorems

We now suppose that at the bipartite framework the knots of one class, say the X-knots,
are located in a hyperplane H,. In this case incongruent configurations with the same edge
lengths arise by reflecting single Y-knots in H,. We exclude these in the following theorem
by saying that we treat pairs of “essentially different” configurations only.

THEOREM 2:  Let Xo,... ,Xn_1,Y0,..., Y, and Xg,... , X)) Yy, ..., Y, be the
knots of two essentially different configurations F, F' of a complete bipartite framework
Fo of type Ky 11 with given bar lenghts Ly in E". Suppose that X, ..., X, 1 span a
hyperplane H, which also contains the knots X{,..., X]
1. There is an appropriate displacement (3 : E* — E* with H, — H, such that for all
i € {0,...,n — 1} the knots X; — B(X]) are corresponding points of two confocal
quadrics ®, 3(®') in H,.
For all k € {0,...,q} the knots B(Y}) — Yy are corresponding points of two confocal
quadrics (V},), ¥y which are symmetric with respect to H, and intersect H, along
O and B(P'), respectively (see Fig. 3).
Thus the statement 3(X]) B(Y}) = X;Y}, is a direct consequence of Tvory’s theorem.

2. Two different knots Y;, Yy, of F share their distance with the corresponding points of
Yy, Y}gi of F'if and only if the spannedAlme [Y] Y}] is tangent to the second-order sur-
face W' whose corresponding quadric U through ((®') is flat (see Fig. /). Conversely
— like in Theorem 1 — the equivalence holds:

XX, =XIX] = [X;Xj]C .

3. For anyr,s € N the framework Fy can be extended to a complete bipartite framework
F of type Ky 1r,q+1+s which still admits two essentially different configurations F, F
with knots Xo,..., Xn_14, € @ and Yy, ..., Y/, € E" \int (V).

Proof: Again, each configuration F, F' gets its own cartesian coordinate system S, S’,
respectively. We suppose that in both systems the hyperplane H, is spanned by the first
n — 1 coordinate axes. If y: E* — H, denotes the orthogonal projection onto H,, i.e.,
parallel to the last basis vector e, of S and e}, of &', then we get

Vi = X(Yk) + Ukn€n: Vi = X(Yi) + Vi€
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Figure 3: The statement of Theorem 2 for dimension n = 3

We subtract the quadratic equations (2) and notice that in (3) only the first n — 1 coordi-
nates of y, are involved. In analogy to Lemma 1 we obtain the necessary conditions: There
are two adjoint affine transformations
a: H, — H,, X; > X, i=0,...,n—1

o: H,— H,, x(y.)—x(yy), E=0,...,q.
As the two configurations F and F' are supposed to be essentially different, neither o nor
a® is an isometry.

Now we substitute the representations (4) of & and (7) of @* in (2) and obtain that
[1xi = yill = lIxi = a"ox(yi) = yknenll = [Ix; = yill = lla(xi) = x(v2) = vk nenl

is equivalent to
(16) x? — 1(x;)? — 2x;-b — 2I(x;)-a' +b* =

2 * *

= X(vk)” — Iox(yi)? = 2x(yi)-a' = 2l*ox(yi) b+ 2% + yi% — ¥ -

This equation holds for all i € {0,...,n — 1} and all £ € {0,...,q}. As the left side
depends on 7, the right side on k only, both sides must equal any constant C'. This results
in two quadratic functions

(17)
f(x) = X2 —1(x)? = 2x:[b+I*(a")] + b* = C,
gly,y") == x(y")* = Fox(y")* = 2x(y')-[a" + I(b)] + "> = C + (y'-€,)* — (y-en)?,

fxi)=0 Vi=0,....,n—1, g(yeys) =0 Vk=0,...,q.
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We now specify the coordinate systems S, S" appropriate to o and o* like previously in the
proof of Theorem 1 for the Cases 1 and 2:
In analogy to (12) and (13) we obtain in Case 1 the coordinate representations

18
a fO) = 2t al - (L= AL )28+ 4+ (L= Aap = C,
g(v.y) =yt A+ Y+ (= Aud +  A= A = O+ -
with 0 < s <r <n — 1. The points x; are located on the quadric
®: f(x)=2z,=0in H,.
The knots x; belong to the affine image @' := «(®) C H, obeying

1— )2 1— )2
xlz...:xs:x;lzoand 275“3;’53*1—1_—’_ Tx’Q_CSO_

2 T
Ait1 A2

If the isometry § brings &’ in coincidence with S then ((®’) becomes confocal to ® with
the pairs (x;, ((x})) of corresponding points.

In which way are for any k& € {0, ..., ¢} the points y, and y, related under the conditions
x(v) = a*ox(yy) and g(y, i) = 07
Due to (18) and y,%n > 0 there is a A\, € R such that for the quadratic function

(19)
Gy) ="+ 7+ (= ALY+ (= Ay = O+ (1= AL
G} (y,.) = 0 holds. Hence ¥}.: G)(y') = 0 is a quadric passing through y). From

9(y,y') = Gi(y) + Moyw — v and g(yg.v) = Gi(y;) =0

we deduce y;, = )\k,ny,g,n which specifies the sign of A, uniquely. This implies together
with (11) fori = 0,...,n — 1 that we can extend o*: H, — H, to an affine transformation
ajp: E" — E with y), — y,. The affine image ¥, := o (V},) obeys under X\, # 0

— A2 1- )‘z n

2
— - < 0.
Mew "

].—)\g_i_l 2 1 ro, 2
ylz---=y5=UaHd27ys+1+"'+ 2 yr—0+
)‘5—1—1 A

r

Let U’ denote the quadric ¥}, in the special case A, = 0. Then ¥ = o (¥') obeys

2

- A
)\QTyf—C’SO.

T

11—\ 1
===y =0 and Syl e
S

In all cases ¥y, is confocal to the displaced §(¥},), and these two quadrics have the properties
listed in Theorem 2 (compare Fig. 3). ((y)) and y, are corresponding points. So, each
knot y} defines its own pair (5(V}), ¥y) of confocal quadrics.

The discussion of Case 2 leads to an analogous result which proves the statement 1 of
Theorem 2 completely.

Ad 2. Suppose |ly; — yill = lly; — vill- As explained in the proof of Theo-
rem 1, this is equivalent to the statement that all pairs of points (y = py; + (1— )y
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y' =y + (1 - u)y;c) of the spanned lines h = [y;y,], h' = [y;y;] share the property
Ix; —y|| = |I¥; = y|| for all i = 0,...,n — 1.5 The quadrics ¥}, with equations G/(y’) = 0,
k =0,...,q, according to (19) belong to a pencil spanned e.g. by the double hyperplane
H,:y!? =0 and the quadric

(20)
U G'Y) =ty A=Ay e (A=) = C 4yt =0,

Therefore all quadrics ¥}, share the tangential hyperplanes at the points of the intersection
v'NH,.

e

h/

Figure 4: The second statement of Theorem 2 in the special case n = 2,
f=idm, ® = {Xo, X1}, ¢ = {X{, X]}

Without loss of generality we may suppose that the two points y},y; belong to the
same W}, i.e., Gi(y;) = G(yy) = 0 (see Fig. 4). Then in Case 1 we have

Vi = W Yim1s Yin) Y= Ml A nns Al
y;g = (y;g’li Tt 7/y;g,n717 y;c,n); Yi = ()‘ly;c,la SR )‘nfly;g,nfla )\k,ny;g,n)a

and the distance equation

Vi =20 Ve Y =Y = 2y i

6Tt results also from the identity

(xi = ny; — (L= p)ye)” = plxi = ;) + (1= ) (x; — yi.)? = u(1 = ) (y; — yi)*.
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is equivalent to
(21) (L= M)tk + -+ Q=) + (LF XYk —C = 0.

The upper sign characterizes conjugate position of y; and y; with respect to W} with
equation G (y') = 0 due to (19), i.e., the connecting line [y}y,] is a generator of W} and

therefore tangent to ¥ at a point in H,.

In order to figure out the meaning of the condition with the lower sign, we compute the
discriminant of the polynomial @’(uy} + (1 — p)y,) which is quadratic in g according to
(20). Straight forward computation reveals that this discriminant equals the product of
the left-side terms in (21) with different signs. So eq. (21) holds if and only if the line
[y} yi] is tangent to the quadric U’ G'(y") = 0 or subset of this quadric.

An analogous discussion of Case 2 concludes the proof of statement 2 in Theorem 2, as the
second part has already been proved with Theorem 1.

Remark 2: The equation g¢(y,y') = 0 in (17) or (18) defines a 2-2-correspondence

between the points y' = x(y') + y.e’ and y = a*ox(y') + ynen. The quadric ¥ is mapped
into the hyperplane H,. This gives exactly Jacobi’s generation of a quadric U in E" as
the set of points y' with ||y’ = Xi|| = |ly = x;|l, i =0,...,n — 1, for any y € H, (see [7]).
In the case of equal distances ||y; — y;|| = [ly; — v || the 2-2-correspondence must map the
line ' = [y’ y;] onto the line A = [y;y,]. Therefore [y’ y}] can intersect the quadric T’ in
one point only (see Fig. 4) or it totally lies on \Tl’, as the common points correspond to
[yj yk] N Hac

Ad 3. This follows from the fact that ||y — x;[| = ||y’ —x|| for all i = 0,...,n — 1 is
equivalent to eq. (16) or in Case 1 to f(x;) = 0 and g(y,y’) = 0 in (18). For any point y’
there is a corresponding y = a*ox(y') + yne, with g(y,y') = 0 if and only if the inequality

Un =yt Ty (=N )y (1= D)y = C 4 y2 >0,

is true. This inequality excludes points in the ”interior” of ¥/ with equation (20). The
same holds in Case 2. O
THEOREM 3:  Let Xo,..., X, 9,Y0,... Yy and Xg, ..., X} 5, Y5,... Y] in E" be
the knots of two essentially different configurations F, F' of a complete bipartite framework
Fo of type K1, 441 with given bar lenghts l;,. The knots X, ..., Xn_9, X(, ..., X],_, are
located in a hyperplane H,. The knots Yy, ... Y., Yy, ..., Y, of the other class belong to a
perpendicular hyperplane H,.
The orthogonal projections of Xo, ... ,X,_o onto Hy, are supposed to span the (n — 2)-
dimensional intersection space S := H, N H,,.

1. There is an appropriate displacement 3: K" — E" with H, — H, and H, — H, such
that for all i € {0,...,n — 2} the knots X; — (B(X]) are corresponding points of two
confocal quadrics ®;, 3(P)) in H,, symmetric with respect to S.

For all k € {0,...,q} the knots B(Y}) — Yi are corresponding points of two confocal
quadrics (¥},), ¥y, C H, which are symmetric with respect to S.

All ®; and (V) intersect S along the same quadric ¥ which is confocal to the
common intersection ' = 3(®)) NS =W, NS (see Fig. 5).

Hence the statement B(X]) B(Y]) = XiYy is again a direct consequence of Ivory’s
theorem.
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2. Two different knots X;, X; of F share their distance with the corresponding points
of Xi, X} of F' if and only if the spanned line [X; X}] is tangent to the second-order
surface ® whose corresponding quadric ﬁ(&)’) through %' is flat in S.

Conversely — like in Theorem 2 — we have Y;Y}, = YY) if and only if the spanned
line [Yj’ Y)| is tangent to the quadric U with a flat corresponding quadric ¥ through
P

3. For anyr,s € N the framework Fy can be extended to a complete bipartite framework
F of type Kn—14r,g+14+s which still admits two essentially different configurations F,
F' with arbitrary knots Xo, ... , Xp_opr € H,\int(®) and Y7, ... Y € H,\int(T").

Figure 5: The statement of Theorem 3 for dimension n = 3

Proof: We again start with two different coordinate systems S,S’. In both cases the
given hyperplanes H,, H, are supposed as coordinate planes: H, is perpendicular to the
last basis vectors e, and e|,. H, is perpendicular to e,_; and e],_,. Let 0 : E* — S denote
the orthogonal projection onto S. Thus we get

xi = 0(X;) + Tijn—1€n-1, X = 0(xX) + 27, 1€, 4,
Vi = (Vi) + Yknln, y



350 H. STACHEL

After subtracting the quadratic equations (2), we obtain (3) where only the first n — 2
coordinates of x; and yj, are involved. Since o(xg), ..., (x,—2) are supposed to constitute a
simplex in S, we derive in analogy to Lemma 1 the following necessary conditions: There
are two adjoint affine transformations

a: S—=S, o) — o), i=0,...,n—2,
a’: S_>Sa J(y;C)HU(yk)’ k:())aq

Now we substitute the representations (4) of a and (7) of o* in (2) and obtain that
lo(x) + win-1en-1 — @00 (y}) = yrmenl = laco(xi) + 2 ey 1 = o (Vi) = Ypnesll
is equivalent to

o(x;)? — loo(x;)? — 20(x;)-b — 2loo(x;)-a' + b + :cz n-1 xz,n 1 =

922
(22) =o(y})? — l*oo(y},)? — 20(y})-a' — 2000 (y,) b+ a2 + yi2, — y2...

Again we conclude two quadratic functions

(23)
fx) == 0(x)* =loa(x)* = 20(x)-[b+1"(a")] + b* = C + (x-e,1)* = (X-e, ,)*,
9(y,y') == oly)? = loo(y)? = 20(y)-[' + U(b)] + "2 = C'+ (ye,)” — (y-en),
and
f(xi,x)) =0 Vi=0,...,n—2, and g¢g(y,y,) =0 Vk=0,....q
Now a discussion like in the proof of Theorem 2 leads to the stated properties. O
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