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Abstract Ordinarily, gears and belt drives are used for uniform transmission of

rotations between parallel axes. Here we focus on the nonuniform case, i.e., with

non-constant transmission ratio. We treat the geometry of tooth profiles and pulleys

and their algorithmic computation. Concerning gears, we recall a method due to S.

Finsterwalder. Concerning belt drives, we study their relation to tooth profiles and

focus on ‘strict’ cases which work without tightener.
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Introduction

The problem of designing noncircular gears has often been addressed in publica-

tions (see [1, 2, 3, 4] and in particular Litvin’s monograph [5], pp. 346–381). Such

gears are used for nonuniform transmission between parallel axes. Similarly, certain

cam-like mechanisms have rolling centrode contact surfaces. Here we recall an ap-

plicable, classical design method formulated by S. Finsterwalder (1862–1951, see

[6], [7, p. 284] or [8, p. 205]) which is also useful for an algorithmic computation.

J. Hoschek [9] and F. Freudenstein [10] (see also [11]) created methods to design

belt drives for given nonuniform transmission such that the length of the surround-

ing belt remains constant. Such belt drives with belt slack zero will briefly be called

strict. After discussing geometric properties of belt drives we present a modification

of Hoschek’s method for computing conjugate pulleys for strict belt drives that is

not confined to discrete (i.e., polygonal) models, like those treated in [12] or [13],

but nevertheless produces satisfactory results. However implementation of large

transmission ratio variations results in pulley profiles with singularities analogous to
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undercut gear teeth. Hoschek’s method as well as ours fail in the case of global 1:1

transmissions where a full rotation of the input wheel corresponds to a full rotation

of the output wheel.

Gearing for Nonuniform Transmission

Let the driving wheel �1 rotate about the center O1 = 01 through the angle ϕ1

with respect to the frame of the fixed housing �0 while the output wheel �2 ro-

tates about O2 = 02 through ϕ2 . Then the pole 12 of the relative motion �2/�1

divides the segment O1 O2 in the ratio of instantaneous angular velocities, i.e.,

O1 12 :O2 12 =ϕ̇2 : ϕ̇1 = ω2 : ω1 .

In the sequel we seek gears and belt drives that transmit rotary motion according

to some transmission function

ϕ2 = f (ϕ1) for 0 ≤ ϕ1 ≤ 2π

Function f (ϕ1) is assumed to be strictly monotonic, quite often differentiable,

and obeys f (ϕ1 + 2π ) = f (ϕ1) + 2π/n for , n ∈ Z, n 	= 0 . The integer

n is called global transmission ratio. The transmission function f (ϕ1) defines the

associated perturbation function g(ϕ1) by

g(ϕ1) = n. f (ϕ1) − ϕ1 or f (ϕ1) = [ϕ1 + g(ϕ1)]/n

Because of g(ϕ1 + 2π ) = g(ϕ1) function g(ϕ1) is periodic and can be set up

as a Fourier series. In the gear box �0 we use a coordinate frame (see Fig. 3) with

O1 = (0, 0) , O2 = (e, 0) , and 12 = (r1(ϕ1), 0) . Then the coordinate r1(ϕ1) of 12

obeys ω2 : ω1 = r1 : (r1 − e) , hence

r1(ϕ1) =
e f ′(ϕ1)

f ′(ϕ1) − 1
=

e (1 + g′(ϕ1))

1 − n + g′(ϕ1)
(1)

when the prime indicates differentiation by ϕ1.

c1 ⊂ �1 and c2 ⊂ �2 are conjugate tooth profiles if and only if they are an

enveloping pair of the relative motion �2/�1. Due to the ‘Law of Gearing’ the

common normal line at the meshing point C passes always through the relative pole

12 (Fig. 1). We express the position of C in polar coordinates (ρ, ψ) with respect to

the relative pole 12 and choose the negative vector of the pole velocity as zero-axis

for measuring the polar angle ψ . We may suppose 0 ≤ ψ ≤ π for ρ ∈ R . Angle ψ

with the meshing normal is unique even for ρ = 0. As the two polodes p1, p2 are in

contact at 12, these coordinates of C are the same with respect to �1 and �2.
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Fig. 1 Conjugate tooth profiles c1, c2 for the relative polodes p1, p2

Let (ti , ni ) denote the Frenet frame of the polode pi , i = 1, 2, with position

vector pi (t) and arc length s. The derivatives by time t are

ṫi = v κi ni , ṅi = −v κi ṫi and ṗi = vti

with pole velocity v = ds /dt and curvature κi of pi . The position vector ci =

pi + ρ(cosψ ti + sinψ ni ) of the tooth profile has the velocity

ċi = v ti +ρ̇(cosψ ti +sinψ ni )+ρψ̇(−sinψ ti +cosψ ni )+ρ v κi (cosψ ni −sinψ ti )

orthogonal to ci − pi . This implies

ρ̇ = −v cosψ (2)

This differential equation for ci (t) is independent of the curvature κi of the

polodes pi and is therefore the basis for

S. Finsterwalder’s principle of gearing [6, p. 243]:1 We imagine p1 as a flexible

metal band and replace c1 by a discrete set of line elements, each attached to the

polode p1 by fixing the angle ψ and the distance ρ (Fig. 2). Then for any flex p2 of

p1 the curve c2 formed by the attached line elements is conjugate to c1 if the relative

motion �2/�1 is defined by p2 rolling along p1 . This principle works not only for

wheels rotating about fixed centers, but for any planar motion given by a pair of

polodes.

In the sense of Differential Geometry the functions and obeying ( 2) can be called

natural functions of the specified gearing.

1 This is the discretized version of the general Reuleaux (or Camus) principle saying that conjugate

profiles are envelopes of any curve c0 while an auxiliary curve atached to c0 is rolling on the

polodes.
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Fig. 2 S. Finsterwalder’s principle of gearing (extracted from [7], p. 284, Fig. 446, compare [8],

Abb. 151)

If the metal band is stretched like p0 in Fig. 2 then is the tooth profile of the

conjugate broaching rack. A straight line segment defines a constant angle ψ and

therefore the nonuniform involute gearing.

Theorem 1. The following conditions are necessary to avoid local undercuts of con-

jugate tooth profiles given by their natural functions:

(1 + v κi )ρ − v sinψ 	= 0 for

i = 1, 2 and ψ̇ 	= ρ − v sinψ .

The proof is based on Frenet equations of the tooth profile ci . The first condition

excludes singularities, the second avoids intersections between c1 and c2 because of

3-point contact.

For computing conjugate tooth profiles c1 , c2 of a given transmission one has to

take the following steps:

(1) Compute the polode p1 in �1 with polar coordinates (r1, −ϕ1) and r1 by (1) as

well as p2 in �2 with coordinates p2 = (r1 − e, −ϕ2).

(2) Rectify p1, i.e., bend it into the straight line p0. Freely choose the rack tooth pro-

file c0 as long as it is nowhere orthogonal to p0 and compute the polar coordinates

(ρ(s), ψ(s)) with respect to p0.

(3) Bend p0 back into p1 and p2 and use (ρ, ψ) with respect to the Frenet frames of

p1 and p2 for obtaining c1 and c2.
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(4) The applicable segments of c1 and c2 are arrived at by inspecting their relative

movement in view of local and global undercuts.

Geometry of Belt Drives

Let b1, b2 be conjugate pulley profiles (Fig. 3). The upper belt span between the

contact points B1 ∈ b1 and B2 ∈ b2 defines a new system �3. As line b3 = B1 B2

rolls on b1 and b2, the points B1, B2 are the relative poles 13 and 23, resp., and this

implies the necessary condition [10, 9, 14, 8].

Theorem 2. label2 At each instant the upper belt span must be aligned with the

relative pole 12.

Fig. 3 The upper belt span connects the relative poles 13 and 23

Under the relative motion �3 /�1 an arbitrary point C attached to the line B1 B2

traces an involute c1 of b1 (see Fig. 4). The path of C ∈ �3 under �3 /�2 is an

involute c2 in �2, which contacts c1 under �2 /�1 at C .

Theorem 3. Conjugate pulley profiles b1 ⊂ �1 and b2 ⊂ �2produce the given

transmission from �1 to �2if and only if b2 and b1 are evolutes of an enveloping

pair (c2, c1) of the relative motion �2/�1. At each instant the endpoints B2 and B1

of the upper belt span are corresponding under the curvature transformation of the

relative motion �2/�1 (see Fig. 4).

Of course, b1 and b2 must be closed curves – contrary to the locally acting tooth

profiles c1 and c2.

Now we recall Finsterwalder’s method with the polodes p1, p2 as metal bands.

This time we focus on the envelopes of the attached normal lines making the ori-

ented angle ψ with the polodes. These envelopes b1, b2 are conjugate pulley pro-

files. Hence we obtain

Theorem 4. For any transmission function and any driving pulley b1 there is a

unique conjugate profile b2. However, b2 needs not be convex.
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Fig. 4 Points B2 �→ B1 and O2 �→ O1are corresponding under the curvature transformation of

�2/�1 (Bobillier’s construction, see [14], Abb. 152)

We call ψ(s) the natural angle function of this design. The important case ψ =

const. of involute gearing corresponds to evolutoides2 of the polodes as conjugate

pulley profiles b1, b2.

Strict Belt Drives

When in each position the length of the surrounding belt with taut spans remains

constant, then the lower belt span rolls on b1 and b2, too.

Theorem 5. [9]: Conjugate pulley profiles b1 and b2 operate without needing a

tightener if and only if at each instant both the upper and the lower belt span are

aligned with the relative pole 12 (Fig. 5)

Wunderlich and Zenow [15] discovered 1975 the following nontrivial example of

a nonuniformly transmitting strict belt drive for n = −1: �2/�1 is a line-symmetric

motion with ellipses as polodes p1 and p2. The pulleys are ellipses b1, b2 confocal

with p1, p2 (Theorem of Graves). It should be noted that in the uniform case with

n = 1 any convex disk together with a translated copy yield a strict belt drive.

Theorem 5 implies an algorithm for computing strict belt drives:

(1) In an arbitrary initial position (ϕ1 = ϕ
(0)
1 ) we specify an upper belt span (ψ =

ψ (0)) passing through 12. We attach this line to �1.

(2) The next point of intersection of this line with the polode p1 defines a position

(ϕ1 = ϕ
(1)
1 ) where this line becomes a lower belt span. This must be tangent to

the conjugate profile b2, and we attach it to �2.

2 An evolutoide of curve p is the envelope of lines meeting p at a constant angle ψ .
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Fig. 5 A strict belt drive for the transmission function ϕ2 = 0.5 [ϕ1 + 0.2 sinϕ1 + 0.16 sin 2ϕ1 +

0.008 cos 2ϕ1]. The length of the surrounding belt varies within about 0.002 %

(3) When its next point of intersection with p2 becomes the relative pole (ϕ1 = ϕ
(2)
1 ),

the line again covers an upper belt span. In general, this gives a new tangent line

of b1 (ψ = ψ (2)).

Iteration gives a finite set of lines tangent to b1 . In contrast to Hoschek’s method

using Bézier curves we represent the tangent lines by their support function h1(α1)

(see Fig. 3). Then we use a least square method for finding the Fourier series of

fixed order which approximates the computed tangent lines best. By Theorem 4 we

obtain the conjugate c2.

This algorithm works well (see Fig. 5) in all examples with global transmission

ratio n 	= 1. The computed lines obviously envelope a unique curve 1. This obser-

vation together with some arguments give rise to

Conjecture 1: For a given nonuniform transmission function with global trans-

mission ratio n 	= 1 there is a one-parametric set of conjugate pairs (b1, b2) of

profiles for a strict belt drive. However, these profiles are convex (hi + h′′
i > 0 by

[16]) only if the given transmission lies sufficiently close to the uniform transmission

with the same global ratio n.

A rigorous mathematical proof is open but there is some supporting evidence:

For convex relative polodes and an analytic transmission function the mapping

(ϕ
(0)
1 , ψ (0)) �→ (ϕ

(2)
1 , ψ (2)) of lines is analytic, too. Lines tangent to p1 (ψ = 0)

are fixed. Passing through O1 (ψ = γ , see Fig. 1) is preserved. And the support

function obeys

h1 (ϕ
(2)
1 ) : h1 (ϕ

(0)
1 ) = 	 (ϕ

(2)
1 ) : 	 (ϕ

(1)
1 ) with

	 = ω2 /ω1

The excluded case n = 1 shows a strange behavior that was observed –but not

reported – by J. Hoschek: The lines obtained by the above algorithm do not envelope

any curve. It is proved in [17] that in this case a starting line passing through O1
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after iteration does not rotate fully about O1 but approaches a limiting position. By

continuity, this seems to contradict the required convexity of b1 and leads to

Conjecture 2: There is no pure belt drive for nonuniform transmission with

global transmission ratio n = 1.

Conclusion

Tooth profiles for gears and pulleys of belt drives are closely related. However, the

determination of strict belt drives for a given non-uniform transmission leads to

deeper mathematical problems. It is to hope that in the near future the conjectures

stated above can be proved rigorously.
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