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Abstract

This is a geometric approach to spatial involute gearing which has recently been
developed by Jack Phillips [2]. New proofs of Phillips’ fundamental theorems are
given. And it is pointed out that also a permanent straight line contact is possible
for conjugate helical involutes. In addition, the gearing is illustrated in various
ways.
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1 Basic kinematics of the gear set

The function of a gear set is to transmit a rotary motion of the input wheel Σ1 about
the axis p10 with angular velocity ω10 to the output wheel Σ2 rotating about p20 with
ω20 in a uniform way, i.e., with a constant transmission ratio

i := ω20/ω10 = const. (1)

According to the relative position of the gear axes p10 and p20 we distinguish the following
types (see Fig. 1):

a) Planar gearing (spur gears) for parallel axes p10, p20,

b) spherical gearing (bevel gears) for intersecting axes p10, p20, and

c) spatial gearing (hyperboloidal gears) for skew axes p10, p20, in particular worm gears
for orthogonal p10, p20.

1.1 Planar gearing

In the case of parallel axes p10, p20 we confine us to a perpendicular plane where two
systems Σ1,Σ2 are rotating against Σ0 about centers 10, 20 with velocities ω10, ω20,
respectively. Two curves c1 ⊂ Σ1 and c2 ⊂ Σ2 are conjugate profiles when they are in
permanent contact during the transmission, i.e., (c2, c1) is a pair of enveloping curves
under the relative motion Σ2/Σ1. Due to a standard theorem from plane kinematics
(see, e.g., [5] or [1]) the common normal at the point E of contact must pass through the
pole 12 of this relative motion. The planar Three-Pole-Theorem states that 12 divides
the segment 01 02 at the constant ratio i. Hence also 12 is fixed in Σ0. We summarize:
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a) spur gears b) bevel gears
c) hyperboloidal gears

e.g. worm gears

Figure 1: Types of gears
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Figure 2: Planar involute gearing

Theorem 1.1 (Fundamental law of planar gearing):
The profiles c1 ⊂ Σ1 and c2 ⊂ Σ2 are conjugate if and only if the common normal
e (=meshing normal) at the point E of contact (=meshing point) passes through the
relative pole 12.

Due to L. Euler (1765) planar involute gearing (see Fig. 2) is characterized by the condi-
tion that with respect to the fixed system Σ0 all meshing normals e are coincident. This
implies

(i) The profiles are involutes of the base circles, i.e., circles tangent to the meshing
normal and centered at 01, 02, respectively.

(ii) For constant driving velocity ω10 the point of contact E runs relative to Σ0 with
constant velocity along e.

(iii) The transmitting force has a fixed line of action.
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(iv) The transmission ratio depends only on the dimensions of the curves c1, c2 and not
on their relative position. Therefore this planar gearing remains independent of
errors upon assembly.

1.2 Basics of spatial kinematics

There is a tight connection between spatial kinematics and the geometry of lines in the
Euclidean 3-space E3.

1.2.1 Metric line geometry in E3

Any oriented line (spear) g = a+ Rg can be uniquely represented by the pair of vectors
(g, ĝ), the direction vector g and the momentum vector ĝ, with

g.g = 1 and ĝ := a×g.

It is convenient to combine this pair to a dual vector

g := g + εĝ,

where the dual unit ε obeys the rule ε2 = 0 . We ex-
tend the usual dot product of vectors to dual vectors
and notice

g · g = g.g + 2g.ĝ = 1 + ε 0 = 1 .

Hence we call g a dual unit vector.

Theorem 1.2 There is a bijection between oriented
lines (spears) g in E3 and dual unit vectors g

g 7→ g = g + εĝ with g · g = 1 .
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Figure 3: Two spears g, h with
the dual angle ϕ = ϕ+ εϕ̂

The following theorem reveals the geometric meaning of the dot product and the cross
product of dual unit vectors, expressed in terms of the dual angle (see Fig. 3) ϕ = ϕ+εϕ̂
between g und h, i.e., with ϕ =<) gh and ϕ̂ as shortest distance between the straight
lines (compare [3], p. 155 ff):

Theorem 1.3 Let ϕ = ϕ+ εϕ̂ be the dual angle between the spears g and h and let n be
a spear along a common perpendicular. Then we have

cosϕ− εϕ̂ sinϕ = cosϕ = g · h = g.h+ ε(ĝ.h+ g.ĥ),

(sinϕ+ εϕ̂ cosϕ)(n+ εn̂) = sinϕn = g×h = g×h+ ε(ĝ×h+ g×ĥ).

The components ϕ, ϕ̂ of the dual angle ϕ are signed according to the orientation of the
common perpendicular n. When the orientation of n is reversed then ϕ and ϕ̂ change
their sign. When the orientation either of g or of h is reversed then ϕ has to be replaced
by ϕ + π (mod 2π). Hence, the product (ϕ̂ tanϕ) is invariant against any change of
orientation.

g · h = 0 characterizes perpendicular intersection.
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1.2.2 Instantaneous screw

There is also a geometric interpretation for dual vectors which are not unit vectors: At
any moment a spatial motion Σi/Σj assigns to the point X ∈ Σi (coordinate vector x)
the velocity vector

Xvij = q̂ij + (qij×x). (2)

relative to Σj . We combine the pair (qij , q̂ij) again to a dual vector q
ij
. This vector can

always be expressed as a multiple of a unit vector, i.e.,

q
ij
:= qij + εq̂ij = (ωij + ε ω̂ij)(pij + ε p̂ij) = ωij pij

with p
ij
· p

ij
= 1 . (3)

It turns out that Xvij coincides with the velocity vector of X under a helical motion
(= instantaneous screw motion) about the instantaneous axis pij with dual unit vector
p

ij
. The dual factor ωij is a compound of the angular velocity ωij and the translatory

velocity ω̂ij of this helical motion. q
ij
is called the instantaneous screw.

For each instantaneous motion (screw q
ij
) the path normals n constitute a linear line

complex, the (= complex of normals) as the dual unit vector n = n + εn̂ of any normal
n obeys the equation

q̂ij .n+ qij .n̂ = 0 (⇐⇒ q
ij
· n ∈ R). (4)

This results from Xvij .n = 0 and n̂ = x×n. By Theorem 1.3 it is equivalent to

(ωij + εω̂ij) cosα ∈ R or ω̂ij/ωij = α̂ tanα (5)

with α as dual angle between pij and any orientation of n.
The following is a standard result of spatial kinematics (see e.g. [1] or [4]):

Theorem 1.4 (Spatial Three-Pole-Theorem):
If for three given systems Σ0,Σ1,Σ2 the dual vectors q

10
, q

20
are the instantaneous

screws of Σ1/Σ0, Σ2/Σ0, resp., then

q
21

= q
20
− q

10

is the instantaneous screw of the relative motion Σ2/Σ1.

Let the line n (dual unit vector n) orthogonally intersect both axes p
10

of Σ1/Σ0 and
p

20
of Σ2/Σ0. Then n does the same with the axis p

21
of Σ2/Σ1, provided ω21 6= 0. This

follows from

n · p
10

= n · p
20

= 0 =⇒ ω21(n · p21
) = ω20(n · p20

)− ω10(n · p10
) = 0,

and there exists an inverse ω−1

21
.

1.2.3 Fundamentals of spatial gearing

Let the systems Σ1,Σ2 rotate against Σ0 about the fixed axes p10, p20 with constant
angular velocities ω10, ω20, respectively. Then the instantaneous screw of the relative
motion Σ2/Σ1 is constant in Σ0, too. It reads

q
21

= ω20 p
20
− ω10 p

10
for ω10, ω20 ∈ R . (6)
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When two surfaces Φ1 ⊂ Σ1 and Φ2 ⊂ Σ2 are conjugate tooth flanks for a uniform
transmission, then Φ1 contacts Φ2 permanently under the relative motion Σ2/Σ1. In
analogy to the planar case (Theorem 1.1) we obtain

Theorem 1.5 (Fundamental law of spatial gearing):
The tooth flanks Φ1 ∈ Σ1 and Φ2 ∈ Σ2 are conjugate if and only if at each point E of
contact (=meshing point) the contact normal (=meshing normal) e is included in the
complex of normals of the relative motion Σ2/Σ1.

Due to (4) the dual unit vector e of any meshing normal e obeys the equation of the
linear line complex

q
21
· e = ω20 (p

20
· e)− ω10 (p

10
· e) ∈ R.

Hence Theorem 1.3 implies for the dual angles α1, α2 between e and p10 and p20, resp.,
(see Fig. 3, compare [2], Fig. 2.02, p. 46)

ω20α̂2 sinα2 − ω10α̂1 sinα1 = 0 =⇒ i =
ω20

ω10

=
α̂1 sinα1

α̂2 sinα2

. (7)

2 J. Phillips’ spatial involute gearing

In [2] Jack Phillips characterizes the
spatial involute gearing in analogy
to the planar case as follows: This is
a gearing with point contact where
all meshing normals e are coinci-
dent in Σ0 — and skew to p10 and
p20. We exclude also perpendicular-
ity between e and one of the axes.
According to (7) this meshing nor-
mal e determines already a constant
transmission ratio.

In the next section we determine
possible tooth flanks Φ1,Φ2 for such
an involute gearing. At any point
E of contact the common tangent
plane ε of Φ1,Φ2 is orthogonal to e .
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Figure 4: Spatial involute gearing with the
meshing point E tracing the fixed meshing

normal e

2.1 Slip tracks

First we focus on the paths of the meshing point E relative to the wheels Σ1, Σ2. These
paths are called slip tracks c1, c2:
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2.1.1 Slip tracks as orthogonal trajectories

Σ1/Σ0 is a rotation about p10, and we have E ∈ e where e is fixed in Σ0. Therefore this
slip track c1 is located on the one-sheet hyperboloid Π1 of revolution through e with axis
p10.

The point of contact E is located on Φ1; therefore the line tangent to the slip track
c1 is orthogonal to e. This leads to our fist result:

Lemma 2.1 The path c1 of E relative to Σ1 is an orthogonal trajectory of the e-regulus
on the one-sheet hyperboloid Π1 through e with axis p10.

Let this hyperboloid Π1 ⊂ Σ1 with point E rotate about p10 with the constant angular
velocity ω10, while simultaneously E runs relative to Σ1 along c1 (velocity vector Ev1)
such that E traces in Σ0 the fixed meshing normal e (velocity vector Ev0). For the sake
of brevity we call this movement the “absolute motion” of E via Σ1. The velocity vector
of E under this absolute motion is

Ev0 = Ev1 + Ev10 (8)

with Ev10 stemming from the rotation Σ1/Σ0 about p10.

PSfrag replacements

E′

E′′

S′

S′′c′′1

e′′

e′ = g′1

r
ω10

Ev
′′
10

Ev
′
10

Ev0

Ev1

Sv0

ε′′ = g′′1

ϕ

ϕ

p′′10

a1

α1

α̂1

n′1

n′′1

Π′′1

z = 0

Figure 5: The velocities of the meshing point E relative to Σ1 and Σ0

We check the front view in Fig. 5 with p10 and e being parallel to the image plane.
Hence the tangent plane ε ⊥ e is displayed as a line.
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Let r denote the instantaneous distance of E from p10. Then we have ‖Ev10‖ = rω10.
In the front view of Fig. 5 we see the length

‖Ev
′′

10‖ = |rω10 cosϕ| = |α̂1ω10| = const.

with α̂1 as the shortest distance between e and p10 — as used in (7) and Fig. 4. This
implies a constant velocity of E also against Σ0 along e, namely

‖Ev0‖ = |α̂1ω10 sinα1| = const. with α1 =<) e p10. (9)

When E moves with constant velocity along e, then the point S of intersection between
the plane ε of contact (ε ⊥ e) and p10 moves with constant velocity, too. We get

‖Sv0‖ = |α̂1ω10 tanα1| = const. (10)

This means, that ε performs relative to Σ1 a rotation about p10 with constant angular
velocity −ω10 and a translation along p10 with constant velocity ‖Sv0‖. So, the envelope
Φ1 of ε in Σ1 is a helical involute (=developable helical surface), formed by the tangent
lines g1 of a helix (see Fig. 7) with axis p10, with radius α̂1 and with pitch α̂1 tanα1.

1

Lemma 2.2 The slip track c1 is located on a helical involute Φ1 with the pitch α̂1 tanα1.
At each point E ∈ c1 there is an orthogonal intersection between Φ1 and the one-sheet
hyperboloid Π1 mentioned in Lemma 2.1.

We resolve equation (8) for the vector Ev1, which is tangent to the slip track c1 ⊂ Φ1,
and obtain

Corollary 2.3 The velocity vector Ev1 of the slip track c1 at any point E is the image
of the negative velocity vector −Ev10 of the rotation Σ1/Σ0 under orthogonal projection
into the tangent plane ε of Φ1.

2.1.2 The tooth flanks

The simplest tooth flank for point contact is the envelope Φ1 of the plane ε of contact in
Σ1. Hence we can summarize:

Theorem 2.1 (Phillips’ 1st Fundamental Theorem:)
The helical involutes Φ1,Φ2 are conjugate tooth flanks with point contact for a spatial
gearing where all meshing normals coincide with a line e fixed in Σ0.

Fig. 5 shows one generator g1 of the helical involute Φ1. At E there is a triad of three
mutually perpendicular lines, the generator g1 of Φ1, the generator e of the hyperboloid
Π1, and the line which is parallel to the common normal n1 of e and p1.

The screw motion about the axis p10 which generates the helical involute Φ1 has also
a linear complex of normals. The e-regulus of the one-sheet hyperboloid Π1 is subset of
this complex. Thus, with eq. (5) we can confirm the pitch of Φ1 as stated in Lemma 2.2.
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Figure 6: Slip tracks c1 as orthogonal trajectories on the one-sheet hyperboloid Π1

2.1.3 The continuum of slip tracks on Π1 and on Φ1

In Figures 6 and 7 different slip tracks c1 are displayed, either on the one-sheet hyper-
boloid Π1 or on the helical involute Φ1.

Let p10 be the z-axis of a cartesian coordinate system with the plane z = 0 containing
the throat circle of Π1 (see Fig. 5). Then the slip track c1 which starts in the plane z = 0
on the x-axis can be parametrized as

c1(t) :




x(t)
y(t)
z(t)


 = α̂1




cos t
sin t
0


 + α̂1t sinα1




sinα1 sin t
− sinα1 cos t

cosα1


 . (11)

This follows from (9) or from the differential equation expressing the perpendicularity
between c1 and the e-regulus. The different slip tracks on Π1 arise from each other by
rotation about p10.

The same curve can also be written as

c1(t) :




x(t)
y(t)
z(t)


 = α̂1




cos t
sin t

t tanα1


− α̂1t sin

2 α1



− sin t
cos t
tanα1


 . (12)

This shows c1 as a curve on the helical involute Φ1 as

1. the first term on the right hand side parametrizes the edge of regression of Φ1;

2. the second term has the direction of generators g1 ⊂ Φ1.

1The signed distances α1, α̂1 specified in Figures 5 und 6 give α̂1 tanα1 < 0. In Fig. 7 the pitch of

Φ1 is positive.
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Figure 7: The tooth flank Φ1 (helical involute) with the slip track c1 of point E ∈ g1

The lengths along g1 is proportional to the angle t of rotation measured from the starting
point. Therefore any two different slip tracks on Φ1 (see Fig. 7) enclose on each generator
a segment of the same length.

The different slip tracks on Φ1 arise from each other by helical motions about p10 with
pitch α̂1 tanα1 according to Lemma 2.2. The slip tracks c1 on Φ1 are characterized by
the following property: If a rotation of Φ1 about its axis p1 is combined with a movement
of point E on Φ1 such that this point E traces relative to Σ0 a surface normal e of Φ1,
then the path c1 ⊂ Φ1 of E on Φ1 must be a slip track.

In the sense of Corollary 2.3 the slip tracks are the integral curves of the vector field
of Φ1 which consists of the tangent components of the velocity vectors under the rotation
Σ1/Σ0.

2.2 Two helical involutes in contact

Theorem 2.2 (Phillips’ 2nd Fundamental Theorem:)
If two given helical involutes Φ1,Φ2 are placed in mutual contact at point E and if their
axes are kept fixed in this position, then Φ1 and Φ2 serve as tooth flanks for uniform
transmission whether the axes are parallel, intersecting or skew.
According to (7) the transmission ratio i depends only on Φ1 and Φ2 and not on their
relative position. Therefore this spatial gearing remains independent of errors upon as-
sembly.

Proof: When Φ1 rotates with constant angular velocity about the axis p10 and point E
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Figure 8: Different postures of Φ1 and Φ2 with line contact

runs relative to Φ1 along the slip track with Ev1 according to (8), then E traces in Σ0 a
line e which remains normal to Φ1. By (9) the velocity of E under this absolute motion
is ‖Ev0‖ = |α̂1ω10 sinα1|.

Due to (7) E gets the same velocity vector along e under the analogous absolute
motion via Σ2. Hence the contact between Φ1 and Φ2 at E is preserved under the
simultaneous rotations with transmission ratio i from (7). 2

This means that the advantages (ii)–(iv) of planar involute gearing as listed above
are still true for spatial involute gearing.

The velocity vector Ev0 of the absolute motions via Σ1 or Σ2 does not change when
E varies on the generators g1 ⊂ Φ1 (see Fig. 7)2 or on g2 ⊂ Φ2. Hence both generators
perform a translation in direction of e under the absolute motions of their points via Σ1

or Σ2.
It has already been pointed out that gi ⊂ ε, i = 1, 2, is perpendicular to the common

normal ni between pi0 and e (note Fig. 5). Hence the angle between g1 and g2 is congruent
to the angle θ between n1 and n2 (see Fig. 4). This proves

Theorem 2.3 Under the uniform transmission induced by two contacting helical invo-
lutes Φ1,Φ2 according to Theorem 2.2 the angle θ between the generators g1 ⊂ Φ1 and
g2 ⊂ Φ2 at the point E of contact remains constant (see Fig. 10).
This angle is congruent to the angle made by the common normals n1, n2 between e and
the axes p10, p20.

2Note that all normal lines of the helical involute Φ1 make the same dual angle α1 + εα̂1 with the

axis p10.
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seen in direction of the contact normal e (top view — below) and in the
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Corollary 2.4 If two helical involutes Φ1,Φ2 are placed such that they are in contact
along a common generator and if their axis are kept fixed, then Φ1 and Φ2 serve as gear
flanks for a spatial gearing with permanent straight line contact.
All contact normals are located in a fixed plane parallel to the two axes p10, p20.

3

In Figs. 8–10 this gearing is illustrated: Fig. 8 shows a front view for an image
plane parallel to p10, p20 and e. Under the rotation about p10 the tooth flank Φ1 is in
contact along a straight line with the conjugate Φ2 rotating about p20. The flanks are
bounded by two slip tracks and by two involutes, which are the intersections with planes
perpendicular to the axes p10 or p20, respectively. Five different positions of the flanks
in mutual contact are picked out.

These five positions are also displayed one by one in Fig. 9 (θ = 0) and in Fig. 10
(θ 6= 0): The contact normal e of E is now in vertical position; the top view shows
the orthogonal projection of Φ1 and Φ2 into the common tangent plane ε. Beside some
generators of the tooth flanks also the slip tracks of a central point E are displayed.

The double line in the top view of Fig. 9 indicates the line of contact. Fig. 10 shows
a case with point contact at E and the constant angle θ 6= 0.
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